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Evolution of fission-fragment mass distributions in the neutron-deficient lead region
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Low-energy β-delayed fission of 194,196At and 200,202Fr was studied in detail at the mass separator ISOLDE at
CERN. The fission-fragment mass distributions of daughter nuclei 194,196Po and 202Rn indicate a triple-humped
structure, marking the transition between asymmetric fission of 178,180Hg and symmetric fission in the light Ra-Rn
nuclei. Comparison with the macroscopic-microscopic finite-range liquid-drop model and the self-consistent
approach employing the Gogny D1S energy density functional yields discrepancies. This demonstrates once
more the need for dynamical fission calculations, because for both models the potential-energy surfaces lack
pronounced structures, in contrast to those for the actinide region.
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Nuclear fission, the division of a heavy atomic nucleus
into predominantly two parts, continues to provide new and
unexpected features in spite of a long history of intensive
theoretical and experimental studies [1–7]. The fission process
is not only important for several applications, such as energy
production and radiopharmacology, but it also has a direct
impact on the understanding of the fission recycling process
in r-process nucleosynthesis [8,9]. Therefore, a description of
the fission process with reliable predictive power is needed,
in particular for low-energy fission where the fission-fragment
(FF) mass distributions are strongly sensitive to microscopic
effects [4]. Mass distributions (MDs) are usually predomi-
nantly symmetric or asymmetric with the yields exhibiting
a single peak or two distinct peaks, respectively. However,
in several cases a mixture of two modes was observed [5].
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Experimental observables characterizing various fission
modes are the widths of the MD peaks, the position of these
peaks in asymmetric mass division, and the total kinetic energy
(TKE) of the FFs.

The dominance of asymmetric fission in most of the
actinide region beyond A = 226 up to about 256Fm was
attributed to strong microscopic effects of the heavier FF,
near the doubly magic 132Sn [4,10,11]. However, nuclei such
as 258Fm and 259,260Md exhibit complex MDs, each with
a narrow and a broad symmetric component with a higher
and lower TKE, respectively. This phenomenon is called
bimodal fission [12–15]. Competition between symmetric
and asymmetric fission, corresponding to respectively lower
and higher TKE and resulting in a triple-humped MD has
been reported around 226Th [16–18]. These observations
strongly support the hypothesis that nuclei may fission through
several independent fission modes corresponding to different
prescission shapes and fission paths in a multidimensional
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FIG. 1. (Color online) Calculated MDs (gray), with fission-fragment masses on the horizontal and their relative yields on the vertical axis,
for even-N neutron-deficient isotopes between gold and radium at excitation energies slightly above the theoretical fission-barrier heights
Bf,th [33]. The calculated yields are compared with selected experimental MDs (red) from particle-induced [20,21], β-delayed ([25,26], this
work), and EM-induced fission [23,24]. The border of the lightest known isotopes is shown by the thick solid line; β-stable nuclei are shown
on a gray background.

potential-energy landscape, referred to in the literature as
multimodal or multichannel fission [4,5,11,16–19].

In the pre-actinide region, predominantly symmetric FF
mass distributions were measured. A few relevant cases for
the present discussion (see also Fig. 1) are 195Au, 198Hg, and
208,210Po, studied by means of charged-particle-induced reac-
tions [20–22] and 204,206,208Rn studied via electromagnetically
(EM)-induced fission [23,24].

In contrast to this, recent β-delayed fission (βDF) exper-
iments have established a new region of asymmetry around
the nuclei 178,180Hg [25–27], which in fission divide into
neutron-deficient fragments with most probable mass numbers
around AL ∼ 80 and AH ∼ 100. The mechanism behind the
asymmetric MD is different from that in the uranium region,
since strong shell effects in the respective FFs are absent in the
neutron-deficient lead region. Several theoretical models have
reproduced this observation [28–31].

Extensive calculations of the FF mass yields by use of
the recently developed Brownian Metropolis shape-motion
treatment [32] are shown in Fig. 1. These calculations
reproduced well the observed mass asymmetry of 178,180Hg and
symmetry of 204,206,208Rn and predict a smooth transition in
between. We report in this Rapid Communication on the fission
properties of neutron-deficient isotopes 194,196Po and 202Rn
situated between these two regions, which were measured
through the βDF process.

In this two-step process a precursor nuclide undergoes β
decay to excited states near the top of the fission barrier in
the daughter nucleus, which then may fission. The excitation
energy of the fissioning daughter is limited by the Qβ

value, thus typically in the region between 3 and 11 MeV.
Presently, 26 βDF cases are known in the region between
thallium and mendelevium [6]. Prior to this work, βDF of
196At was experimentally observed in Dubna [34,35]. In
addition, recent experiments at SHIP (GSI) have identified
βDF of 192,194At [36]. However, due to the detection methods
employed, FF mass distributions remained undetermined in all
three cases.

In this Rapid Communication, we report on the first
identification of βDF in 200,202Fr and on dedicated measure-
ments of 194,196At, situated in a region where fission has
scarcely been studied before. Calculations in Fig. 1 show
predominantly asymmetric fission with a gradually decreasing
mass split when moving from 178,180Hg toward 204,206Rn
nuclei. In contrast to these theoretical predictions, the new
results indicate complex multimodal fission of 194,196Po.

The measurements were carried out at the CERN On-Line
Isotope Mass Separator (ISOLDE) facility [37], where astatine
and francium isotopes are formed in spallation reactions via
the bombardment of a 50 g/cm2 thick UCx target by 1.4 GeV
protons. Surface ionization of francium or laser ionization of
astatine [38] in the ion source of ISOLDE are employed for
the respective element selection. After extraction, acceleration
to 30 keV, and mass separation, the isotopically purified beam
is transported to the “windmill” detection setup, described
in detail in [25,27,39]. There, the ion beam is implanted
into one of ten 20 μg/cm2 thick carbon foils, which are
mounted on a rotatable wheel. FFs, as well as α particles,
are recorded by two silicon detectors of 300 μm thickness,
further denoted by Si1 and Si2, placed on either side of the
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TABLE I. Summary of βDF runs giving the total number of
detected single (S) and double-fold (D) FFs, the ratio of α to βDF
decays recorded in the same detector, corrected for the detection-
efficiency difference between α particles and double-fold fission
events, and the total measurement time.

Data set S FFs D FFs Nα/Nβdf Time

194At - HRS 8 3 2.0+17
−8 × 103 1h 13m

194At - GPS 385 106 1.7(1) × 103 9h 11m
196At - HRS 14 5 3.9+19

−12 × 105 5h 25m
196At - GPS 273 68 4.3(5) × 105 35h 7m
200Fr - HRS 1 0 2.5+123

−17 × 103 21h 34m
200Fr - GPS 7 2 1.5+12

−6 × 103 20h 18m
202Fr - HRS 115 43 1.4(2) × 104 43h 59m

foil. The detection efficiency for single FFs is ∼51%, while
double-fold FFs are recorded with ∼21% efficiency [27].
After ∼40 s, the irradiated foil is turned between another
pair of silicon detectors, where longer-living daughter activity
can be detected. Meanwhile, implantation and measurements
continue on a fresh foil. A high-purity germanium detector
was installed in close vicinity to the implantation point for γ
detection (see Fig. 1 from [25]). The experimental campaign
consisted of two parts, a summary of acquired statistics is given
in Table I. The first part, carried out at the high-resolution
separator (HRS) in 2011, was mainly dedicated to βDF of
202Fr. Daughter activities and the thallium isobaric beam
contaminant, produced by surface ionization, were observed in
the α and γ spectra, respectively. Because of a low QEC value
(Tl) [40] and high fission barrier (Hg) [33], βDF is severely
hindered for 202Tl [6]. The observed FFs are thus uniquely
ascribed to the βDF of 202Fr. A similar reasoning applies for
the βDF measurements of 194,196At and 200Fr.

The data for 194,196At and 200Fr were mainly acquired
at the general purpose separator (GPS) in 2012, although a
limited number of βDF events for these nuclei was observed
at the HRS, see Table I. The full energy spectrum after
35 h of data collection on 196At at the GPS is shown in
Fig. 2. Electrons/positrons, α particles, and fission fragments
(30–90 MeV energy) are marked in the spectrum.

The technique described in [27] allowed us to deduce a βDF
probability of PβDF = 9(1) × 10−5 for 196At and a lower limit
at PβDF > 3.1(17) × 10−2 for 200Fr (in agreement with [41],

FIG. 2. Full-range energy spectrum for 196At taken in the mea-
surements at the GPS.

where only a single event was observed). A detailed discussion
on the α decay of 196At is given in a forthcoming paper [42].
In the cases of 194At and 202Fr, PβDF remains undetermined
at this stage since two states (the ground state and an isomer)
with unknown β branching ratios and similar half-lives are
known [36,43,44]. Although the excitation energy of the
isomeric states are most likely less then a few hundred keV,
their difference in spin and parity with respect to the ground
state may result in dissimilar βDF properties. These intriguing
cases will be further studied at the resonance ionization
laser ion source (RILIS) [45] or collinear resonant ionization
spectroscopy (CRIS) [46,47] setup at ISOLDE, where the
production of each state might be selectively enhanced by
exploiting differences in the atomic hyperfine structure.

The Si detectors were individually calibrated with mass-
and energy-separated beams at the FF separator Lohengrin
at the Institut Laue-Langevin (ILL), enabling a precise con-
version of the measured energy distributions in MDs [27].
A possible emission of prompt neutrons would cause a shift
in TKE of about 0.7 MeV per emitted neutron [27]. How-
ever, total-energy-balance considerations limit the number
of prompt neutrons to a maximum of two per fission event
in studied nuclei. Since this emission can only marginally
influence MDs, the corresponding energy correction was
neglected.

The resulting mass and energy distributions of coincident
FFs after βDF of 194,196At and 202Fr are shown in Fig. 3
including, as a reference, the data from 180Tl [27]. Because
of low statistics, 200Fr is excluded. For 180Tl, asymmetric
fission was clearly observed as a double-humped structure
in the two-dimensional (2D) Si1-Si2 energy plot at the top,
showing the energies of two coincident fission fragments. The
single Gaussian-like TKE distribution, depicted in the middle
row, indicates that for the βDF of 180Tl one fission mode
dominates. Finally, the deduced clearly asymmetric MD is
depicted in black at the bottom.

In contrast to 180Tl, a single broad hump is seen in the
2D energy distribution for the βDF of 194,196At and 202Fr. In
addition, TKE distributions are significantly broader compared
to the 180Tl reference as can be concluded from the standard
deviation values, extracted from single Gaussian fits, see
Table II. Mass spectra, drawn in black, exhibit a mixture of
symmetry with asymmetry.

TABLE II. Characteristic parameters of TKE and mass distribu-
tions shown in Fig. 3 when assuming no prompt neutrons are emitted.
The mean value TKE and standard deviation σ of the respective
Gaussian fits are given, as well as corresponding statistical errors.
In addition, the lower mass number AL and the relative mass split
�A/Atot of asymmetric fission are listed.

TKE (MeV) σ (MeV) AL �A/Atot

180Tl
β−→ 180Hga 133.1(3) 6.1(3) 80(1) 0.11(1)

194At
β−→ 194Po 146(1) 9.0(13) – –

196At
β−→ 196Po 147(1) 8.1(15) 88(2) 0.10(2)

202Fr
β−→ 202Rn 149(2) 10(3) 89(2) 0.12(2)

aData taken from [27].
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FIG. 3. (Color online) Summary plot of the 2D energy distribution of coincident FFs in two silicon detectors (top), total kinetic energy
(middle), and mass distributions (bottom) of investigated nuclei. The solid green and dashed blue curves represent data below and above the
average TKE given in Table II. Details are given in the main text.

The indication of triple-humped MDs and breadth of
the extracted TKE suggest the presence of at least two
distinct fission modes each having different mass and TKE
distributions. This feature was therefore further investigated by
discriminating between fission events with high or low TKE,
similar to the method described in [12,13] used to illustrate
bimodal fission in the transfermium region.

In Fig. 3, MDs of fission events with respectively higher
or lower TKE in comparison to a certain threshold energy
Ethres are shown by respectively the dashed blue and full
green line. The value Ethres was arbitrarily taken as the mean
TKE value listed in Table II and is indicated by a dashed
red line on the TKE distributions and the 2D energy plots.
Remarkably, the 194,196At cases exhibit a narrow symmetric
distribution for fragments with higher TKE, while a broader,
possibly asymmetric structure is observed for lower TKE.
In contrast, this feature is absent in the βDF of 180Tl, in
which only one asymmetric fission mode was identified.
In the case of 202Fr, statistics prohibit drawing definitive
conclusions.

The asymmetry was quantified in Table II as �A/Atot,
where Atot represents the compound-nucleus mass and �A
the difference between the most probable mass numbers of
the observed heavy and light asymmetric FFs, obtained from
Gaussian fits to the total mass spectra.

The data have been compared with two theoretical de-
scriptions. The microscopic Hartree-Fock-Bogoliubov (HFB)
theory with Gogny D1S nuclear force [29,48,49], see Fig. 4,

shows a broad and flat plateau in the potential-energy surface
(PES) with numerous weakly pronounced valleys and ridges,
not exceeding 2 MeV energy difference, for a wide range of
quadrupole (beyond Q2 = 100 b) and octupole deformations.
Such a pattern in the PES for 196Po, without well-defined
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shown in the inset.
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fission valleys, leads to a variety of fission paths possibly
giving rise to a mixture of symmetric and asymmetric MDs.
Ignoring thermal fluctuations, three fission paths with different
scission-point shapes can be identified (see inset in Fig. 4):
one symmetric (A), one with almost symmetric FF masses (C)
and one asymmetric (B). Within the current model, the full FF
mass distribution as well as the balance between various modes
remains, however, undetermined. Furthermore, in contrast to
the actinides where clear valleys in the PES that lead to
fission are present, the rather flat PES plateau in this region
necessitates the inclusion of dynamic effects in describing the
fission process.

The finite-range liquid-drop model (FRLDM) calculations,
which show similar PES patterns as compared to the HFB cal-
culations for nuclei in this region [28], were combined with the
Brownian shape-motion model in order to calculate FF mass
distributions [50,51]. As shown in Fig. 1 and further discussed
in [52], there is reasonable agreement between the calculations
and most of the experimental data earlier obtained. Also
the experimental triple-humped MDs in the transition region
between symmetry and asymmetry around 226Th, resulting
from a competition between symmetric and asymmetric
fission channels, were reproduced with fair accuracy [32,50].
However, the FRLDM calculations show only one asymmetric
fission channel, with a gradual decrease of the mass split,
during the transition from distinctly asymmetric in 178,180Hg
toward symmetry in the Ra-Rn nuclei. This is in contrast to the
experimental findings that show a different mass distribution
(see Fig. 3) and a constant relative mass split of the asymmetric
component between 180Hg and 202Rn (see Table II).

In conclusion, our experimental data for 194,196Po and
202Rn suggest a new region of multimodal fission in the
neutron-deficient lead region. Calculations based on modern
approaches (FRLDM and HFB) show broad and flat potential-
energy surfaces in this region, making it difficult to identify
unique fission paths but providing a much better testing ground

for the dynamical description of fission, as compared to the
actinide region where strong structures in the PES determine
the MDs. In addition, the ground and isomeric states in 194At
and 202Fr may exhibit different βDF behaviors, both in terms
of FF mass distributions and β-delayed fission probabilities.
These cases provide a unique experimental way to study the
spin and parity dependence of fission and will therefore be
further investigated at ISOLDE-CERN using selective laser-
ionization techniques [45,46].

We thank the ISOLDE Collaboration for providing excel-
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carbon foils. Also, we express our gratitude to K.-H. Schmidt
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I. Budinčević, T. E. Cocolios, R. P. de Groote, S. De Schepper,
V. N. Fedosseev, S. Franchoo, R. F. Garcia Ruiz, H. Heylen,
B. A. Marsh, G. Neyens, T. J. Procter, R. E. Rossel, S. Rothe,
I. Strashnov, H. H. Stroke, and K. D. A. Wendt, Phys. Rev. Lett.
111, 212501 (2013).

[47] K. M. Lynch, J. Billowes, M. L. Bissell, I. Budinčević, T. E.
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