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The hypernucleus 6
��He is studied as a three-body (��α) cluster system in cluster effective field theory at

leading order. We find that the three-body contact interaction exhibits the limit cycle when the cutoff in the
integral equations is sent to the asymptotic limit and thus it should be promoted to leading order. We also derive
a determination equation of the limit cycle which reproduces the numerically obtained limit cycle. We then study
the correlations between the double � separation energy B�� of 6

��He and the scattering length a�� of the
S-wave �� scattering. The role of the scale in this approach is also discussed.
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Although the first observation of 6
��He was reported in

1960s [1], there have been only a few reports on this light
hypernucleus [2,3]. Among them, a track of 6

��He was
clearly caught in an emulsion experiment of the KEK-E373
Collaboration [3], now known as the “NAGARA” event, and
the two-� separation energy B�� of 6

��He is estimated
as B�� = 6.93 ± 0.16 MeV after being averaged with that
from the “MIKAGE” event [4,5]. This would be essential
information to study the �� interaction.

On the other hand, theoretical studies for double � hyper-
nuclei mainly aim at extracting information on baryon-baryon
interactions in the strangeness sector and searching for new
exotic systems for which the value of B�� of 6

��He plays an
important role [6,7]. Theoretical studies on 6

��He have been
reported with various issues [8–12], primarily employing the
three-body (��α) cluster model. One of those issues is the
role of the mixing of the �N channel in the �� interaction
which is triggered by the small mass difference, about 23 MeV,
between �N and �� [11].

Effective field theories at very low energies are expected
to provide a model-independent and systematic perturbative
method where one introduces a high momentum separation
scale �H between relevant degrees of freedom in low energy
and irrelevant degrees of freedom in high energy for the system
in question. Then one constructs an effective Lagrangian
expanded in terms of the number of derivatives order by order.
Coupling constants appearing in the effective Lagrangian
should be determined from available experimental or empirical
data. For a review, see, e.g., Refs. [13,14] and references
therein. In the previous publication [15], we studied 4

��H,
a bound state of a light double � hypernucleus, and the
S-wave scattering of � and 3

�H below the hypertriton breakup
threshold by treating 4

��H as a three-body (�-�-deuteron)
system in cluster effective field theory (EFT) at leading order
(LO).

In this work, we apply this approach to study the structure
of 6

��He as a three-body (��α) cluster system. For this
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purpose, we treat the α particle field as an elementary field. The
binding energy of the α particle is B4 � 28.3 MeV and its first
excited state has the quantum numbers (Jπ = 0+,I = 0) and
the excitation energy of E1 � 20.0 MeV, which is between the
energy gap of 3H-p (19.8 MeV) from the ground state energy
and that of 3He-n (20.6 MeV). Thus the large momentum scale
of the α-cluster theory is �H � √

2μE1 ∼ 170 MeV where
μ is the reduced mass of the (3H,p) system or the (3He,n)
system so that μ � 3

4mN with mN being the nucleon mass.
Therefore, the mixing of the �N channel in the �� interaction
becomes irrelevant because the mass difference ∼23 MeV of
the two channels is larger than E1, the large energy scale
of this approach. On the other hand, we choose the binding
momentum of 5

�He as the typical momentum scale Q of the
theory. The � separation energy of 5

�He is B� � 3.12 MeV and
thus the binding momentum of 5

�He as the (�α) cluster system
is γ�α = √

2μ�αB�, where μ�α is the reduced mass of the
�-α system. This leads to γ�α � 73.2 MeV and thus our
expansion parameter is Q/�H ∼ γ�α/�H � 0.43.

In addition, a modification of the counting rules is reported
by Bedaque, Hammer, and van Kolck, which states that the
three-body contact interaction should be promoted to LO
because of the appearance of the “limit cycle” in its coupling in
the S-wave neutron-deuteron (nd) scattering for spin doublet
channel in the pionless EFT [16]. The limit cycle in a
renormalization group analysis was suggested by Wilson [17]
and it is also known that the limit cycle is associated with the
Efimov states [18] in the unitary limit, where the scattering
length in the NN interaction becomes infinity. Furthermore, a
“determination equation” of the limit cycle, as an expression
of the homogeneous part of the integral equation in the
asymptotic limit, was obtained earlier by Danilov [19].

In this work, we investigate the bound state of the (��α)
cluster system in cluster EFT at LO in order to describe 6

��He.
We find that the three-body contact interaction exhibits the
limit cycle behavior when the coupled integral equations with
a sharp cutoff are numerically solved. Thus the contact interac-
tion should be promoted to LO. We also derive a determination
equation of the limit cycle for the ��α system and find that
the solution of the equation reproduces remarkably well the
numerically obtained limit cycle. In addition, we investigate
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the correlation between B�� and the scattering length a�� of
the S-wave �� interaction including the three-body contact
interaction with different cutoff values. The case without the
three-body contact interaction will be studied as well.

The LO effective Lagrangian relevant to our study reads

L = L� + Lα + Ls + Lt + L�t . (1)

Here, L� and Lα are one-body Lagrangians for the spin-1/2
� and spin-0 α-cluster field in the heavy-baryon formal-
ism [20,21], respectively,

L� = B†
�

[
iv · D + (v · D)2 − D2

2m�

]
B� + · · · , (2)

Lα = φ†
α

[
iv · D + (v · D)2 − D2

2mα

]
φα + · · · , (3)

where vμ is the velocity vector vμ = (1,0) and m� and mα are
the � and α masses, respectively. The dots denote higher order
terms. The Lagrangian of the auxiliary fields s and t are given
by Ls and Lt , respectively, where s is the dibaryon field of two
� particles in the 1S0 channel and t is the composite field of
the (�α) system in the 5

�He (S = 1/2) channel [15,22,23],

Ls = σss
†
[
iv · ∂ + (v · ∂)2 − ∂2

4m�

+ 
s

]
s

− ys

[
s†

(BT
�P (1S0)B�

) + H.c.
] + · · · , (4)

Lt = σt t
†
[
iv · ∂ + (v · ∂)2 − ∂2

2(m� + mα)
+ 
t

]
t

− yt [t
†B�φα + H.c.] + · · · , (5)

where σs,t are sign factors. The mass differences between ��
and the s dibaryon state and between �α and the composite
t state ( 5

�He) are represented by 
s,t , respectively. P (1S0) =
−i 1

2σ2 is the spin projection operator to the 1S0 state. The
dibaryon s state is coupled to two � in 1S0 state and the
composite t state to the S-wave �α state with the coupling
constants ys,t , respectively. The Lagrangian for the contact
interaction of � and t reads

L�t = −2mαy2
t

g(�c)

�2
c

(BT
�P (1S0)t

)†(BT
�P (1S0)t

) + · · · , (6)

where the coupling g(�c) is a function of the cutoff �c, which
is defined in the coupled integral equations below.

In the present work we consider two composite states in the
two-body part, namely, the s field and t field. The dibaryon s
state was investigated in our previous publication [15], where
the Feynman diagrams for the dressed dibaryon propagator
can be found. The renormalized dressed dibaryon propagator
is obtained as

Ds(p) = 4π

y2
s m�

1

1
a��

−
√

−m�p0 + 1
4 p2 − iε

, (7)

where ys = − 2
m�

√
2π
r��

. The scattering length and the effective

range of S-wave �� scattering are represented by a�� and

r��, respectively. We note that the expression of the dressed
dibaryon propagator in Eq. (7) is for the large value of a��. In
the case of a small value of a�� one can expand it in terms of
the kinetic square root term [24]. The diagrams for the dressed
t(�α) propagator can be found, e.g., in Ref. [15], which lead
to the renormalized dressed t(�α) propagator as

Dt (p) = 2π

y2
t μ�α

1

γ�α −
√

−2μ�α

(
p0 − 1

2(mα+m�) p2 + iε
) ,

(8)

where yt = − 1
μ�α

√
2π
r�α

. We also note that the dependence of

ys,t on the effective ranges r�� and r�α disappears in the
final expression of the three-body coupled integral equations
at LO [15].

The amplitude for S-wave elastic �- 5
�He scattering in the

center-of-mass (CM) frame can be described by the coupled
integral equations at LO as

a(p,k; E) = K(a)(p,k; E) − mαy2
t

g(�c)

�2
c

− 1

2π2

∫ �c

0
dl l2

[
K(a)(p,l; E) − mαy2

t

g(�c)

�2
c

]

×Dt

(
E − l2

2m�

,l
)

a(l,k; E)

− 1

2π2

∫ �c

0
dl l2K(b1)(p,l; E) (9)

×Ds

(
E − l2

2mα

,l
)

b(l,k; E),

b(p,k; E) = K(b2)(p,k; E) − 1

2π2

∫ �c

0
dl l2K(b2)(p,l; E)

×Dt

(
E − l2

2m�

,l
)

a(l,k; E),

where the amplitudes a(p,k; E) and b(p,k; E) are half-off
shell amplitudes for the elastic �t channel and the inelastic �t
to αs channel, respectively. Here, p = | p| and k = |k| where
p (k) is the off-shell final (on-shell initial) relative momentum
in the CM frame. Thus the total energy E is determined as
E = 1

2μ�(�α)
k2 − B� where μ�(�α) = m�(m� + mα)/(2m� +

mα). A sharp cutoff �c is introduced in the loop integrals of
Eq. (9). The one-α and one-� exchange interactions are given
by K(a)(l,k; E) and K(b1,b2)(l,k; E), respectively, where

K(a)(p,l; E) = mαy2
t

2pl
ln

[ mα

2μ�α
(p2 + l2) + pl − mαE

mα

2μ�α
(p2 + l2) − pl − mαE

]
,

K(b1)(p,l; E) =
√

2m�ysyt

2pl
ln

[
p2 + m�

2μ�α
l2 + pl − m�E

p2 + m�

2μ�α
l2 − pl − m�E

]
,

K(b2)(p,l; E) =
√

2m�ysyt

2pl
ln

[ m�

2μ�α
p2 + l2 + pl − m�E

m�

2μ�α
p2 + l2 − pl − m�E

]
.

(10)
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FIG. 1. (Color online) The coupling g(�c) as a function of �c

for a�� = −0.6, −1.2, −1.8 fm where the values of g(�c) are fitted
by B�� = 6.93 MeV of 6

��He.

In Fig. 1, we plot curves of g(�c) as a function of �c

with a�� = −0.6, −1.2, −1.8 fm. The curves are numerically
obtained from the homogeneous part of the coupled integral
equations in Eq. (9) so as to reproduce the three-body bound
state with B�� = 6.93 MeV. One can see that the curves
exhibit the limit cycle and the first divergence appears at
�c ∼ 1 GeV. In addition, a larger value of |a��| behaves as
giving a larger attractive force and shifts the curves of g(�c)
to the left in Fig. 1.

As pointed out in Ref. [25], one can check if the system
exhibits the limit cycle behavior by studying the homogeneous
part of the integral equation in the asymptotic limit. From
Eq. (9), assuming the form of the amplitude in the asymptotic
limit p � k as a(p,k) ∼ p−1−s , we have

1 = C1I1(s) + C2I2(s)I3(s), (11)

where

C1 = 1

2π

mα

μ�α

√
μ�(�α)

μ�α

, C2 =
√

2m�μ�(�α)μα(��)

π2μ
3/2
�α

,

(12)

and μα(��) = 2m�mα/(2m� + mα). The functions I1,2,3(s)
are obtained by the Mellin transformation [26] and their
explicit expressions are given in the Appendix. The imaginary
solution s = ±is0 indicates the limit cycle solution and we
have

s0 = 1.0496 . . . . (13)

On the other hand, the value of s0 can be obtained from the
curves of the limit cycle of g(�c) in Fig. 1. The (n + 1)th values
of �n at which g(�c) vanishes can be parametrized as �n =
�0 exp(nπ/s0). By using the second and third values of �n for
the three values of a��, we have s0 = π/ ln(�2/�1) � 1.05,
which is in very good agreement with the value of Eq. (13).
Furthermore, the value of s0 may be checked by using Fig. 52
in Ref. [14] which is a plot of exp (π/s0) versus m1/m3 for
the mass-imbalanced system where m1 = m2 �= m3. In our
case, m1/m3 = m�/mα � 0.3, which leads to s0 � 1.05 by
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FIG. 2. (Color online) The two-� separation energy B�� as a
function of the cutoff �c for a�� = −0.6, − 1.2, − 1.8 fm without
the three-body contact interaction. The experimental data B�� =
6.93 MeV is included as a reference line.

the result of Ref. [14]. This is in very good agreement with
what we find in Eq. (13).

One may also reproduce the experimental value of
B�� by adjusting the value of �c without introducing the
three-body contact interaction. In this case, the bound state
of 6

��He with B�� = 6.93 MeV is found to appear only
when the cutoff parameter �c is larger than the critical value
�cr ≈ 300 MeV, which is even larger than �H of the theory.
We found that �c ≈ 300 MeV leads to a�� ≈ −3.4 × 103 fm.
When we use a�� = −0.6 to − 1.8 fm as obtained from
the 12C(K−,K+��X) data in Ref. [27], we should have
�c = 570 to 408 MeV. In Fig. 2, we plot B�� as a function
of the cutoff �c for a�� = −0.6, −1.2, −1.8 fm. One can
find that B�� is quite sensitive to both �c and a�� and it
becomes larger as �c or |a��| increases.

Figure 3 shows the two-� separation energy B�� as a
function of 1/a�� while g(�c) is renormalized at the point
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FIG. 3. (Color online) The two-� separation energy B�� as a
function of 1/a�� for �c = 170, 300, 430 MeV, where g(�c)
is renormalized at the point of B�� = 6.93 MeV and 1/a�� =
−2.0 fm−1 that is marked by a filled square. Open squares are the
results from the potential models in Table 5 of Ref. [12].
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marked by a filled square, i.e., B�� = 6.93 MeV and 1/a�� =
−2.0 fm−1. This leads to g(�c) � −0.715, −0.447, −0.254
for �c = 170, 300, 430 MeV, respectively. Open squares are
the estimated values from the potential models given in Table 5
of Ref. [12]. We find that the curves are sensitive to the cutoff
value and the results from the potential models are remarkably
well reproduced by the curve with �c = 300 MeV.

In summary, we have studied the hypernucleus 6
��He as

a three-body (��α) system in cluster EFT at LO. We found
that the three-body contact interaction exhibits the limit-cycle
and it is needed to be promoted to LO to make the result
independent of the cutoff. The determination equation of the
limit cycle for the bound state of 6

��He is derived and its
solutions remarkably well reproduce the numerically obtained
results for the limit cycle. We here note that the determination
equation depends on the masses and the spin-isospin quantum
numbers of the state but not on the details of dynamics,
and that the imaginary solution of the determination equation
implies the Efimov states in the unitary limit [16]. Even though
the system is not close to the unitary limit, the imaginary
solution could imply the presence of a bound state as seen
in this study. Therefore, the determination equation in three-
body cluster systems may be useful to search for an exotic
state.

We also found that B�� of 6
��He can be reproduced

even without introducing the three-body contact interaction,
which, however, requires �c = 570 to 410 MeV for a�� =
−0.6 to −1.8 fm. This range of the cutoff �c may be
converted to the length scale rc = �−1

c = 0.35 to 0.48 fm,
which overlaps the range of a hard core potential in the
early calculations of Ref. [9]. However, the a�� dependence
is significant and it is unlikely to narrow the range of
a��. More precise and diverse experimental data are thus
required.

Finally, the correlation between B�� and a�� was investi-
gated by introducing the three-body contact interaction and
changing the value of �c. We find that the results of the
potential models can be reasonably reproduced by choosing
�c = 300 MeV, which may be understood to show the role
of the two-pion exchange as the long range mechanism of
the �� interaction. Meanwhile, choosing �c > �H (�H �
170 MeV) is inconsistent within our cluster theory because
such a large cutoff probes the short range (or high momentum)

degrees of freedom such as the first excitation state of α, which
is beyond the scope of the present calculation.
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APPENDIX

The functions I1,2,3(s) in Eq. (11) are obtained by the Mellin
transformation [26] as

I1(s) =
∫ ∞

0
dx ln

(
x2 + ax + 1

x2 − ax + 1

)
xs−1

= 2π

s

sin
[
s sin−1

(
1
2a

)]
cos

(
π
2 s

) , (A1)

I2(s) =
∫ ∞

0
dx ln

(
bx2 + x + 1

bx2 − x + 1

)
xs−1

= 2π

s

1

bs/2

sin[s cot−1(
√

4b − 1)]

cos
(

π
2 s

) , (A2)

I3(s) =
∫ ∞

0
dx ln

(
x2 + x + b

x2 − x + b

)
xs−1

= 2π

s
bs/2 sin

[
s cot−1

(√
4b − 1

)]
cos

(
π
2 s

) , (A3)

where a = 2μ�α/mα and b = m�/(2μ�α). When a = b = 1,
they reproduce

I (s) =
∫ ∞

0
dx ln

(
x2 + x + 1

x2 − x + 1

)
xs−1 = 2π

s

sin
(

π
6 s

)
cos

(
π
2 s

) . (A4)
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