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Stability of β-equilibrated dense matter and core-crust transition in neutron stars
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The stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability
conditions. Based on the density dependent M3Y effective nucleon-nucleon interaction, the effects of the nuclear
incompressibility on the proton fraction in neutron stars and the location of the inner edge of their crusts
and core-crust transition density and pressure are investigated. The high-density behavior of symmetric and
asymmetric nuclear matter satisfies the constraints from the observed flow data of heavy-ion collisions. The
neutron star properties studied using β-equilibrated neutron star matter obtained from this effective interaction
for a pure hadronic model agree with the recent observations of the massive compact stars. The density, pressure,
and proton fraction at the inner edge separating the liquid core from the solid crust of neutron stars are determined
to be ρt = 0.0938 fm−3, Pt = 0.5006 MeV fm−3, and xp(t) = 0.0308, respectively.
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I. INTRODUCTION

The equation of state (EoS) of nuclear matter under exotic
conditions is an indispensable tool for the understanding of the
nuclear force and for astrophysical applications. This implies
knowledge of the EoS at high isospin asymmetries and for a
wide density range (both for subsaturation and suprasaturation
densities). In order to ascertain our knowledge on the nature of
matter under extreme conditions, neutron stars are among the
most mysterious objects in the universe that provide a natural
laboratory. Understanding their structures and properties has
long been a very challenging task for both the astrophysics and
the nuclear physics communities [1].

One of the most important predictions of an EoS is the
location of the inner edge of a neutron star crust. Knowledge
of the properties of the crust plays an important role in
understanding many astrophysical observations [2–14]. The
inner crust spans the region from the neutron drip point to the
inner edge separating the solid crust from the homogeneous
liquid core. While the neutron drip density ρd is relatively well
determined to be about 4.3 × 1011 g cm−3 [15], the transition
density ρt at the inner edge is still largely uncertain mainly
because of limited knowledge on the EoS, especially the
density dependence of the symmetry energy, of neutron-rich
nuclear matter [6–8]. At the inner edge a phase transition
occurs from the high-density homogeneous matter to the
inhomogeneous one at lower densities. The transition density
takes its critical value ρt when the uniform neutron-proton-
electron (npe) matter becomes unstable with respect to the
separation into two coexisting phases (one corresponding to
nuclei, the other to a nucleonic sea) [8].

In general, the determination of the transition density ρt

itself is a very complicated problem because the inner crust
may have a very complicated structure. A well established
approach is to find the density at which the uniform liq-
uid first becomes unstable against small-amplitude density
fluctuations, indicating the formation of nuclear clusters.
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This approach includes the dynamical method [2–5,16–20],
the thermodynamical one [8,21–23], and the random phase
approximation (RPA) [24,25]. It is worthwhile to mention here
that both the dynamical and the thermodynamical methods
give very similar results with the former giving a slightly
smaller transition density than the latter and this is due to the
fact that the former includes the density gradient and Coulomb
terms that make the system more stable and lower the transition
density. The small difference between the two methods implies
that the effects of density gradient terms and the Coulomb term
are unimportant in determining the transition density [19].

In the present work, using the EoS for neutron-rich nuclear
matter constrained by the recent isospin diffusion data from
heavy-ion reactions in the same subsaturation density range as
the neutron star crust, the inner edge of neutron star crusts is
determined. For the EoS used in the present work, which is
obtained from the density dependent M3Y effective nucleon-
nucleon interaction (DDM3Y), the incompressibility K∞ for
the symmetric nuclear matter (SNM), the nuclear symmetry
energy Esym(ρ0) at saturation density ρ0, the isospin dependent
part Kτ of the isobaric incompressibility, and the slope L
are all in excellent agreement with the constraints recently
extracted from measured isotopic dependence of the giant
monopole resonances in even-A Sn isotopes, from the neutron
skin thickness of nuclei, and from analyses of experimental
data on isospin diffusion and isotopic scaling in intermediate
energy heavy-ion collisions [26,27]. The core-crust transition
in neutron stars is determined by analyzing the stability of
the β-equilibrated dense nuclear matter with respect to the
thermodynamic stability conditions [28].

II. INTRINSIC STABILITY OF THE NEUTRON STAR
MATTER UNDER β EQUILIBRIUM

The inner edge of the neutron star crusts corresponds to a
phase transition from the homogeneous matter at high densities
to the inhomogeneous matter at low densities. In principle, the
inner edge can be located by a detailed comparison of the rel-
evant properties of the nonuniform solid crust and the uniform
liquid core consisting mainly of the npe matter. However, this

0556-2813/2014/90(3)/035802(7) 035802-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.035802


DEBASIS ATTA AND D. N. BASU PHYSICAL REVIEW C 90, 035802 (2014)

procedure is impracticable as the inner crust may contain nu-
clei having very complicated geometries, usually known as the
nuclear pasta [1,11,12,29–31]. Moreover, the core-crust tran-
sition is expected to be a very weak first-order phase transition,
and model calculations lead to very small density discontinu-
ities at the transition [4,16,25,32]. In practice, therefore, a good
approximation is to search for the density at which the uniform
liquid first becomes unstable against small amplitude density
fluctuations with clusterization. This approximation has been
shown to produce a very small error for the actual core-crust
transition density and would yield the exact transition density
for a second-order phase transition [4,16,25,32]. Here, we use
the thermodynamical method for analyzing the stability of the
neutron star matter under β equilibrium.

A. The equation of state

The nuclear matter EoS is calculated using the isoscalar
and the isovector [33,34] components of the M3Y interaction
along with the density dependence. The density dependence
of this DDM3Y effective interaction is completely determined
from nuclear matter calculations. The equilibrium density of
the nuclear matter is determined by minimizing the energy per
nucleon. The energy variation of the zero range potential is
treated accurately by allowing it to vary freely with the kinetic
energy part εkin of the energy per nucleon ε over the entire
range of ε. This is not only more plausible, but also yields
excellent results for the incompressibility K∞ of the SNM
which does not suffer from the superluminosity problem [35].
Details of the DDM3Y effective interaction is provided at the
end as an Appendix.

The calculations are performed using the values of the
saturation density ρ0 = 0.1533 fm−3 [36] and the saturation
energy per nucleon ε0 = −15.26 MeV [37] for the SNM
obtained from the coefficient of the volume term of the
Bethe-Weizsäcker mass formula which is evaluated by fitting
the recent experimental and estimated atomic mass excesses
from the Audi-Wapstra-Thibault atomic mass table [38] by
minimizing the mean square deviation incorporating a correc-
tion for the electronic binding energy [39]. In a similar recent
work, including the surface symmetry energy term, the Wigner
term, the shell correction, and the proton form factor correction
to the Coulomb energy also, av turns out to be 15.4496 MeV,
and it is 14.8497 MeV when A0 and A1/3 terms are also
included [40]. Using the usual values of α = 0.005 MeV−1

for the parameter of energy dependence of the zero range
potential and n = 2/3, the values obtained for the constants of
density dependence C and β and the SNM incompressibility
K∞ are 2.2497, 1.5934 fm2, and 274.7 MeV, respectively. The
saturation energy per nucleon is the volume energy coefficient
and the value of −15.26 ± 0.52 MeV covers, more or less, the
entire range of values obtained for av for which now the values
of C = 2.2497 ± 0.0420, β = 1.5934 ± 0.0085 fm2, and the
SNM incompressibility K∞ = 274.7 ± 7.4 MeV.

B. Intrinsic stability of a single phase under β

equilibrium and the core-crust transition

The basic equation in neutron star matter research is the
shape of the relationship between the pressure and energy

density P = P (ε), usually called the equation of state. At
the zero temperature, the state of neutron star matter should
be uniquely described by the quantities that are conserved
by the process leading to equilibrium. Stable high density
nuclear matter must be in chemical equilibrium for all types of
reactions including the weak interactions, while the β decay
and orbital electron capture takes place simultaneously. For the
β-equilibrated neutron star matter we have free neutron decay
n → p + β− + νe which are governed by weak interaction
and the electron capture process p + β− → n + νe. Both
types of reactions change the electron fraction and thus affect
the EoS. Here we assume that neutrinos generated in these
reactions leave the system. The absence of neutrinos has a
dramatic effect on the equation of state and mainly induces a
significant change on the values of the proton fraction xp. The
absence of neutrinos implies that

μ = μn − μp = μe, (1)

where μe, μn, and μp are the chemical potentials for the
electron, neutron, and proton, respectively.

The baryon number B is conserved by this type of reaction
so the energy density ε and pressure P should be function
of baryon number density ρ. We assume that the matter is
electrically neutral and spatially homogeneous. The star as a
whole is electrically neutral but the matter does not need to be
locally neutral. So the thermodynamic state of a given phase
is described by two quantities: baryon number B and charge
Q where Q is the sum of all charges. The total energy U then
becomes a function of U (V,B,Q). To consider stability of a
single phase, one needs to introduce local quantities ε = U

B
.

The energy per particle ε then becomes a function of other local
quantities taken per baryon number v = V

B
and x = Q

B
. The

first principle of thermodynamics takes the following form:

dε = −Pdv − μdx, (2)

where P is the pressure and μ is the chemical potential of
an electric charge. The stability of any single phase, also
called intrinsic stability, is ensured by convexity of ε(v,x).
The thermodynamical inequalities allow us to express the
requirement in terms of following inequalities:

−
(

∂P

∂v

)
x

> 0, −
(

∂μ

∂x

)
P

> 0. (3)

One may find another pair of inequalities that are equivalent
to above equations [21,22]:

−
(

∂P

∂v

)
μ

> 0, −
(

∂μ

∂x

)
v

> 0. (4)

The intrinsic stability conditions are equivalent to requiring
the convexity of the energy per particle in the single phase [8]
by ignoring the finite size effects due to surface and Coulomb
energies as shown in following. Here the P = P b + P e is the
total pressure of the npe system with the contributions P b

and P e from baryons and electrons, respectively. The proton
fraction xp = ρp

ρ
where ρ = ρn + ρp and the asymmetry
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parameter X = ρn−ρp

ρn+ρp
. Total energy ε = εb(xp) + εe(μ).

P = −∂ε

∂v
= ρ2 ∂ε

∂ρ
, (5)

(
∂P

∂v

)
μ

= ∂P b(ρ,xp)

∂v
+ ∂P e(μ)

∂v
. (6)

Here ∂P e(μ)
∂v

= 0 because if β equilibrium is satisfied then
μ = μn − μp = μe, and the electron contribution to P e is
only a function of the chemical potential μ and in that
case ( ∂P e(μ)

∂v
) = 0. Eventually −( ∂P

∂v
)μ > 0 can be written as

−( ∂P b

∂v
)μ > 0.(

∂P

∂v

)
μ

= ∂P b

∂ρ

∂ρ

∂v
+ ∂P b

∂xp

∂xp

∂v

= −ρ2 ∂P b

∂ρ
− ρ2 ∂P b

∂xp

∂xp

∂ρ
, (7)

−
(

∂P

∂v

)
μ

= ρ2

(
∂P b

∂ρ
+ ∂P b

∂xp

∂xp

∂ρ

)
, (8)

μ = μn − μp = −
(

∂εb

∂xp

)
ρ

= −∂εb(ρ,xp)

∂xp

. (9)

Differentiating the above equation with respect to xp, we get

∂μ

∂xp

= −∂2εb

∂x2
p

. (10)

From Eq. (5) we get

P b = ρ2 ∂εb

∂ρ
, (11)

and differentiating the above with respect to xp, one obtains(
∂P b

∂xp

)
= ρ2 ∂2εb

∂xp∂ρ
= ρ2εb

ρxp
. (12)

By Maxwell’s relation(
∂xp

∂ρ

)
μ

= −v2

(
∂xp

∂v

)
μ

= v2

(
∂P b

∂μ

)
s,v

, (13)

∂P b

∂μ
=

∂P b

∂xp

∂μ
∂xp

=
ρ2 ∂2εb

∂ρ∂xp

∂μ
∂xp

= −
ρ2 ∂2εb

∂ρ∂xp

∂2εb

∂x2
p

. (14)

Using Eqs. (13) and (14) we get(
∂xp

∂ρ

)
= −v2ρ2

∂2εb

∂ρ∂xp

∂2εb

∂x2
p

= −
∂2εb

∂ρ∂xp

∂2εb

∂x2
p

. (15)

From Eq. (11)

∂P b

∂ρ
= 2ρ

∂εb

∂ρ
+ ρ2 ∂2εb

∂ρ2
. (16)

Using Eqs. (12), (15), and (16) in Eq. (8) we get

−
(

∂P b

∂v

)
μ

= ρ2

(
2ρ

∂εb

∂ρ
+ ρ2 ∂2εb

∂ρ2
− ρ2

εb
ρxp

εb
ρxp

εb
xpxp

)
,

(17)

where for brevity, the symbol εb
ρxp

is used for ∂2εb

∂ρ∂xp
and the

symbol εb
xpxp

is used for ∂2εb

∂x2
p

. The quantity Vthermal which

determines the thermodynamic instability region of neutron
star matter at β equilibrium is given by Vthermal = −( ∂P

∂v
)μ.

Hence [19]

Vthermal = ρ2

⎡
⎣2ρ

∂εb

∂ρ
+ ρ2 ∂2εb

∂ρ2
− ρ2

(
εb
ρxp

)2

εb
xpxp

⎤
⎦ . (18)

The condition for the core-crust transition is obtained by
making Vthermal = 0. In the following we drop the superscript
b and use ε for εb and P for P b.

III. THEORETICAL CALCULATIONS

The β-equilibrated nuclear matter EoS is obtained by
evaluating the asymmetric nuclear matter EoS at the isospin
asymmetry X determined from the β-equilibrium proton
fraction xp [= ρp

ρ
], obtained approximately by solving

�c(3π2ρxp)1/3 = 4Esym(ρ)(1 − 2xp), (19)

where Esym(ρ) is the nuclear symmetry energy. In general

Esym(ρ) is defined as 1
2

∂2ε(ρ,X)
∂X2 |X=0. The higher-order terms

in X are negligible and to a good approximation, Esym(ρ) =
ε(ρ,1) − ε(ρ,0) [41] which represents a penalty levied on the
system as it departs from the symmetric limit of equal numbers
of protons and neutrons and can be defined as the energy
required per nucleon to change the SNM to pure neutron matter
(PNM).

The exact way of obtaining the β-equilibrium proton
fraction is by solving Eq. (1) with μp − μn being equal to
∂ε(ρ,xp)

∂xp
because neutron decays are always associated with

proton productions whereas μe = √
p2

e c
2 + m2

ec
4 ≈ pec =

�kf c = �c(3π2ρxp)1/3 where me and ρe being the rest mass
and number density of the electron, respectively, and from
charge neutrality ρe = ρp = ρxp. Thus

�c(3π2ρxp)1/3 = −∂ε(ρ,xp)

∂xp

= +2
∂ε

∂X
, (20)

where the isospin asymmetry X = 1 − 2xp.
The pressure P of PNM and β-equilibrated neutron star

matter are plotted in Fig. 1 as functions of ρ/ρ0. The
continuous line represents the PNM and the dashed line
(almost merges with the continuous line) represents the β-
equilibrated neutron star matter (present calculations) whereas
the dotted line represents the same using the A18 model
using the variational chain summation (VCS) of Akmal et al.
[42] for the PNM. The areas enclosed by the continuous
and the dashed lines in Fig. 1 correspond to the pressure
regions for neutron matter consistent with the experimental
flow data after inclusion of the pressures from asymmetry
terms with weak (soft NM) and strong (stiff NM) density
dependences, respectively [43]. Although the parameters of the
density dependence of DDM3Y interaction have been tuned to
reproduce ρ0 and ε0 which are obtained from finite nuclei, the
agreement of the present EoS with the experimental flow data,
where the high density behavior looks phenomenologically
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FIG. 1. (Color online) Plots for pressure P of dense nuclear
matter as functions of ρ/ρ0. The continuous line represents the pure
neutron matter and the dashed line represents the β-equilibrated
neutron star matter. The dotted line represents the same for A18
model using variational chain summation (VCS) of Akmal et al.
[42]. The areas enclosed by the continuous and the dashed lines
correspond to the pressure regions for neutron matter consistent
with the experimental flow data after inclusion of the pressures from
asymmetry terms with weak (soft NM) and strong (stiff NM) density
dependences, respectively [43].

confirmed, justifies its extrapolation to high density. It is
interesting to note that the RMF-NL3 incompressibility for
SNM is 271.76 MeV [44,45] which is about the same as the
274.7 ± 7.4 MeV obtained from the present calculation but
the plot of P versus ρ/ρ0 for PNM of RMF using the NL3
parameter set [44] does not pass through the pressure regions
for neutron matter consistent with the experimental flow data
[43].

In Fig. 2 it can be seen that the maximum of the β-
equilibrium proton fraction xp ∼ 0.0436 calculated using the
symmetry energy (approximate calculation) occurs at ρ ∼
1.35ρ0 whereas the exact calculation yields a maximum of
xp ∼ 0.0422 around the same density. Since the equilibrium
proton fraction is always less than 1/9 [46], the calculated
value of xp forbids the direct URCA process. This feature is
consistent with the fact that there are no strong indications
[47,48] that fast cooling occurs. It was also concluded
theoretically that an acceptable EoS of asymmetric nuclear
matter shall not allow the direct URCA process to occur
in neutron stars with masses below 1.5 solar masses [41].
Even recent experimental observations that suggest a high heat
conductivity and an enhanced core cooling process indicating
the enhanced level of neutrino emission were not attributed
to the direct URCA process but were proposed to be due to
breaking and formation of neutron Cooper pairs [49–52].
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FIG. 2. (Color online) The β-equilibrium proton fractions ob-
tained from the nuclear symmetry energy (approx.) and from exact
calculations using the DDM3Y interaction are plotted as functions of
ρ/ρ0.

The intrinsic stability condition of a single phase for locally
neutral matter under β equilibrium is determined, thermody-
namically, by the positivity of the Vthermal, under a constant
chemical potential which is generally valid in our case.
However, the limiting density that breaks these conditions will
correspond to the core-crust (liquid-solid) phase transition.
Thus the transition density ρt (with corresponding pressure
Pt and proton fraction xp(t)) is determined at which Vthermal

becomes zero and goes to negative with decreasing density.

IV. RESULTS AND DISCUSSION

The stability of the β-equilibrated dense matter in neutron
stars is investigated and the location of the inner edge of
their crusts and core-crust transition density and pressure
are determined using the DDM3Y effective nucleon-nucleon
interaction. The results for the transition density, pressure,
and proton fraction at the inner edge separating the liquid
core from the solid crust of neutron stars are calculated and
presented in Table I for n = 2/3. The symmetric nuclear
matter incompressibility K∞, the nuclear symmetry energy
at saturation density Esym(ρ0), the slope L, and the isospin
dependent part Kτ of the isobaric incompressibility are also
tabulated since these are all in excellent agreement with
the constraints recently extracted from the measured isotopic
dependence of the giant monopole resonances in even-A Sn
isotopes, from the neutron skin thickness of nuclei, and from
analyses of experimental data on isospin diffusion and isotopic
scaling in intermediate energy heavy-ion collisions.

It is recently conjectured that there may be a good
correlation between the core-crust transition density and the
symmetry energy slope L and it is predicted that this behavior
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TABLE I. Results of the present calculations (DDM3Y) of
the symmetric nuclear matter incompressibility K∞, the nuclear
symmetry energy at saturation density Esym(ρ0), the slope L, and
the isospin dependent part Kτ of the isobaric incompressibility (all
in MeV) [27] are tabulated along with the saturation density and the
density, pressure, and proton fraction at the core-crust transition for
β-equilibrated neutron star matter.

K∞ Esym(ρ0) L Kτ

274.7 ± 7.4 30.71 ± 0.26 45.11 ± 0.02 −408.97 ± 3.01

ρ0 (fm−3) ρt (fm−3) Pt (MeV fm−3) xp(t)

0.1533 0.0938 0.5006 0.0308

should not depend on the relation between L and Kτ [53].
On the contrary, no correlation of the transition pressure
with L was obtained [53]. In Table II, variations of different
quantities with parameter n which controls the nuclear matter
incompressibility are listed. It is worthwhile to mention here
that the incompressibility increases with n. The standard value
of n = 2/3 used here has a unique importance because then the
constant of density dependence β has the dimension of cross
section and can be interpreted as the isospin averaged effective
nucleon-nucleon interaction cross section in the ground state
symmetric nuclear medium. For a nucleon in the ground state
nuclear matter kF ≈ 1.3 fm−1 and q0 ∼ �kF c ≈ 260 MeV, and
the present result for the “in medium” effective cross section
is reasonably close to the value obtained from rigorous Dirac-
Brueckner-Hartree-Fock [54] calculations corresponding to
such kF and q0 values which is ≈12 mb. Using the value of
β = 1.5934 fm2 along with the nucleonic density 0.1533 fm−3,
the value obtained for the nuclear mean free path λ is about
4 fm which is in excellent agreement with that obtained using
another method [55]. Moreover, comparison of the theoretical
values of symmetric nuclear matter incompressibility and
isobaric incompressibility with the recent experimental values
for K∞ = 250–270 MeV [56,57] and Kτ = −370 ± 120 MeV
[58] further justifies importance for our choice of n = 2/3. It
is interesting to mention here that the present EoS for n = 2/3
provides the maximum mass for the static case is 1.92 M�
with a radius ∼9.7 km and for the star rotating with Kepler’s
frequency it is 2.27 M� with an equatorial radius ∼13.1 km

TABLE II. Variations of the core-crust transition density, pres-
sure, and proton fraction for β-equilibrated neutron star matter, the
symmetric nuclear matter incompressibility K∞, and the isospin
dependent part Kτ of isobaric incompressibility with parameter n.

n ρt (fm−3) Pt (MeV fm−3) xp(t) K∞ (MeV) Kτ (MeV)

Expt.
values 250–270 −370 ± 120

1/6 0.0797 0.4134 0.0288 182.13 −293.42

1/3 0.0855 0.4520 0.0296 212.98 −332.16

1/2 0.0901 0.4801 0.0303 243.84 −370.65

2/3 0.0938 0.5006 0.0308 274.69 −408.97

1 0.0995 0.5264 0.0316 336.40 −485.28

[59]. However, for stars rotating with a maximum frequency
limited by the r-mode instability, the maximum mass turns
out to be 1.95 (1.94) M� corresponding to a rotational period
of 1.5 (2.0) ms with a radius about 9.9 (9.8) km [60] which
reconcile with the recent observations of the massive compact
stars ∼2 M� [61,62].

V. SUMMARY AND CONCLUSION

In summary, the stability of the β-equilibrated dense
nuclear matter is analyzed with respect to the thermodynamic
stability conditions. The proton fraction obtained using nuclear
symmetry energy does not affect seriously the results of an
exact calculation. Since the higher-order symmetry-energy
coefficients are needed to describe reasonably well the proton
fraction of the β-stable (npe) matter at high nuclear densities
and the core-crust transition density [63], exact calculations
are performed using the density dependent M3Y effective
nucleon-nucleon interaction for investigating the proton frac-
tion in neutron stars and the location of the inner edge of their
crusts and their core-crust transition density and pressure.

The nucleon-nucleon effective interaction used in the
present work, which is found to provide a unified description
of elastic and inelastic scattering, various radioactivities,
and nuclear matter properties, also provides an excellent
description of the β-equilibrated neutron star matter which
is stiff enough at high densities to reconcile with the recent
observations of the massive compact stars [59,60,64] while
the corresponding symmetry energy is supersoft as preferred
by the FOPI/GSI experimental data. The density, the pressure,
and the proton fraction at the inner edge separating the liquid
core from the solid crust of the neutron stars determined to be
ρt = 0.0938 fm−3, Pt = 0.5006 MeV fm−3, and xp(t) = 0.0308,
respectively, are also in close agreement with other theoretical
calculations [63] corresponding to high nuclear incompress-
ibility and with those obtained using the SLy4 interaction [65].

APPENDIX

In a Fermi gas model of interacting neutrons and protons,
with isospin asymmetry X = ρn−ρp

ρn+ρp
, ρ = ρn + ρp, where

ρn, ρp, and ρ are the neutron, proton, and nucleonic densities
respectively, the energy per nucleon for isospin asymmetric
nuclear matter can be derived as [35]

ε(ρ,X) =
[

3�
2k2

F

10m

]
F (X) +

(
ρJvC

2

)
(1 − βρn), (A1)

where m is the nucleonic mass, kF = (1.5π2ρ)
1
3 which

equals the Fermi momentum in the case of SNM, the

kinetic energy per nucleon εkin = [ 3�
2k2

F

10m
]F (X) with F (X) =

[ (1+X)5/3+(1−X)5/3

2 ], and Jv=Jv00 + X2Jv01, with Jv00 and Jv01

representing the volume integrals of the isoscalar and the
isovector parts of the M3Y interaction. The isoscalar tM3Y

00
and the isovector tM3Y

01 components of the M3Y interaction
potential are given by

tM3Y
00 (s,ε) = +7999

exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s

+ J00(1 − αε)δ(s),
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tM3Y
01 (s,ε) = −4886

exp(−4s)

4s
+ 1176

exp(−2.5s)

2.5s

+ J01(1 − αε)δ(s), (A2)

where s represents the relative distance between two interact-
ing nucleons, J00 = −276 MeV fm3, J01 = +228 MeV fm3,
and the energy dependence parameter α = 0.005 MeV−1. The
strengths of the Yukawas were extracted by fitting their matrix
elements in an oscillator basis to those elements of the G matrix
obtained with the Reid-Elliott soft core NN interaction, and
the ranges were selected to ensure OPEP tails in the relevant
channels as well as a short-range part which simulates the
σ -exchange process [66]. The density dependence is employed
to account for the Pauli blocking effects and the higher
order exchange effects [67]. Thus the DDM3Y effective NN
interaction is given by v0i(s,ρ,ε) = tM3Y

0i (s,ε)g(ρ) where the
density dependence g(ρ) = C(1 − βρn) [35] with C and β
being the constants of density dependence.

The Eq. (A1) can be differentiated with respect to ρ to yield
an equation for X = 0:

∂ε

∂ρ
= �

2k2
F

5mρ
+ Jv00C

2
[1 − (n + 1)βρn] − αJ00C[1 − βρn]

×
[

�
2k2

F

10m

]
. (A3)

The equilibrium density of the cold SNM is determined
from the saturation condition. Then Eqs. (A1) and (A3) with

the saturation condition ∂ε
∂ρ

= 0 at ρ = ρ0, ε = ε0 can be solved
simultaneously for fixed values of the saturation energy per
nucleon ε0 and the saturation density ρ0 of the cold SNM
to obtain the values of β and C. The constants of density
dependence β and C, thus obtained, are given by

β =
[
(1 − p) + (

q − 3q
p

)]
ρ−n

0[
(3n + 1) − (n + 1)p + (

q − 3q
p

)] , (A4)

where p = 10mε0

�2k2
F0

, q = 2αε0J00

J 0
v00

, J 0
v00 = Jv00(εkin

0 ) implying Jv00

at εkin = εkin
0 , the kinetic energy part of the saturation energy

per nucleon of SNM, kF0 = [1.5π2ρ0]1/3, and

C = −
[
2�

2k2
F0

]
5mJ 0

v00ρ0
[
1 − (n + 1)βρn

0 − q�2k2
F0

(1−βρn
0 )

10mε0

] , (A5)

respectively. It is quite obvious that the constants of density
dependence C and β obtained by this method depend on
the saturation energy per nucleon ε0, the saturation density
ρ0, the index n of the density dependent part, and the
strengths of the M3Y interaction through the volume integral
J 0

v00.
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