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By using point-coupling versions of finite-range nuclear relativistic mean-field models containing cubic and
quartic self-interactions in the scalar field σ , a nonrelativistic limit is achieved. This approach allows an analytical
expression for the symmetry energy (J ) as a function of its slope (L) in a unified form, namely, L = 3J +
f (m∗,ρo,Bo,Ko), where the quantities m∗, ρo, Bo, and Ko are bulk parameters at the nuclear matter saturation
density ρo. This result establishes a linear correlation between L and J which is reinforced by exact relativistic
calculations. An analogous analytical correlation is also found for J , L, and the symmetry energy curvature
(Ksym). Based on these results, we propose graphic constraints in L×J and Ksym×L planes that finite-range
models must satisfy.
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I. INTRODUCTION

Several bulk parameter quantities help our understanding of
nuclear matter properties. One of them is the symmetry energy
S, which can be expanded as a function of the nuclear density
ρ as S(ρ) = J + Lx + 1

2Ksymx2 + 1
6Qsymx3 + O(x4), where

x = (ρ − ρo)/3ρo and ρo is the nuclear matter saturation
density. The coefficients of this expansion, namely, J , L,
Ksym, and Qsym are, respectively, the symmetry energy at
the saturation density, the slope, the curvature, and the third
derivative (skewness) of S, all of them also evaluated at
ρ = ρo. The symmetry energy is important for modeling
nuclear matter and finite nuclei by probing the isospin part
of nuclear interactions. Particularly, it is also important in
different issues of astrophysics [1,2]. For a study of the
effects of J and L on neutron star properties such as the
minimum mass that enables the Urca effect, see, for instance,
Ref. [3].

A compelling feature of nuclear matter bulk parameter
studies has been the investigation of correlations among them.
The investigation of correlations between observables is an
important issue in physics since knowledge of one observable
may carry information about the other. In nuclear physics,
particularly, the exact nucleon-nucleon interaction is unknown,
so different proposals for nuclear forces are used. Usually, the
free parameters of nuclear models are eliminated in favor of a
set of observables. Therefore, in nuclear physics, correlations
between two observables acquire an enormous importance
because they reduce the set of independent relevant quantities
to be used in the construction of nuclear models, avoiding
redundant free-parameter fittings [4]. There are few well-
established correlations between nuclear bulk parameters. One
of them, usually known as the Coester line [5], correlates ρo

and the nuclear matter binding energy Bo. Another one was
studied by Furnstahl-Rusnak-Serot (FRS) [6] and involves the
correlation between the finite nuclei spin-orbit splittings and
the ratio m∗ = M∗

o /M for a family of effective finite-range
(FR) relativistic mean-field (RMF) models. Here M∗

o is the

Dirac effective mass of the nucleon in symmetric nuclear
matter at ρ = ρo. The results show that good values for these
splittings are obtained by a restricted class of FR models that
present m∗ in a range of 0.58 � m∗ � 0.64. Hereafter, we will
refer to this range as the FRS constraint. Recently, a correlation
between L and J has been verified by Ducoin et al. [7]
for a set of effective relativistic and nonrelativistic nuclear
models. Such a study was based on numerical results for J
and L, obtained from different parametrizations. We also call
the readers attention to previous investigations on analytical
expressions for J and L in relativistic and nonrelativistic
many-nucleon models in Refs. [8,9].

Theoretically, J and L are expected to be con-
strained [10,11]. Nevertheless, no analytical relationship be-
tween these quantities is known up to now. That is why we
find it important to have a way to relate the two quantities
analytically. In order to proceed in this direction in our paper,
we have chosen to follow three steps to simplify the FR
models which parametrize the infinite nuclear matter bulk
parameters and finite nuclei properties [12–14]. First, we
select FR models containing cubic and quartic interactions
in the scalar field σ ; i.e., we choose models with σ 3 and σ 4

contributions in their Lagrangian density. Basically, they are
known as Boguta-Bodmer models [15]. Second, we use their
point-coupling versions [16–21]. We need to emphasize here
that the point-coupling models are as good as the FR ones in the
description of nuclear matter and finite nuclei. For instance, in
Ref. [21], the authors were able to obtain, by using a relativistic
zero-range model, ground-state binding energies, spin-orbit
splittings, and rms charge radii of a large set of closed shell
nuclei, as well as of nuclei outside the valley of β stability
(see their Tables VIII and X), clearly showing the success
of these kinds of model. As a side remark, we note that the
linear point-coupling model and the Walecka one are exactly
the same, as one can see in Ref. [22]. Third, we perform a
nonrelativistic (NR) limit of the point-coupling models, based
on normalized spinor wave functions after small component
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reduction, exactly in the same way as developed in Ref. [23].
Such a procedure was already used in Ref. [24], in which very
good results were found for ρ � ρo.

Following these steps, we were able to write, in an
analytical way, L and Ksym as a function of ρo, Bo, m∗, and
Ko (incompressibility at the saturation density). Our results
indicate that both approaches, namely, the NR limit and the
FR-RMF models, suggest a decreasing L when m∗ increases
whereas the L dependence on Ko is very weak. Similar
behavior is also found regarding the m∗ and Ko dependence
of Ksym. In the case of symmetry energy slope, we also could
predict a linear correlation between L and J , which was also
supported by the exact FR-RMF calculations.

In particular cases (models presenting close values for Ko),
our NR calculations also indicate another linear correlation for
two distinct cases, namely, (i) between Ksym and L for fixed
values of J or (ii) between Ksym and J for fixed values of
L. These results are also confirmed by the relativistic models
submitted to the same conditions.

Our paper is organized as follows. In Sec. II, we obtain the
expressions for J and L for the NR limit of the point-coupling
models, and we show how they are correlated with each
other. In Sec. III, we present, based on these correlations, the
predictions on the exact FR-RMF models, also proposing new
constraints that such models should satisfy in order to exhibit
good values for finite nuclei spin-orbit splittings. Finally, in
Sec. IV, the main conclusions are summarized.

II. THE NONRELATIVISTIC LIMIT OF NONLINEAR
POINT-COUPLING MODELS

The relativistic nonlinear point-coupling (NLPC) versions
of the Boguta-Bodmer models are described by the following
Lagrangian density:

LNLPC = ψ̄(iγ μ∂μ − M)ψ − 1

2
G2

V(ψ̄γ μψ)2

+ 1

2
G2

S(ψ̄ψ)2 + A

3
(ψ̄ψ)3 + B

4
(ψ̄ψ)4

− 1

2
G2

TV(ψ̄γ μ�τψ)2, (1)

which mimics the two-, three-, and four-body pointlike
interactions with the fermionic spinor field ψ associated with
the nucleon of mass M . In this equation, the last term was
included in order to take into account the asymmetry of
the system (different number of protons and neutrons). In
the nonrelativistic limit of the NLPC model, and by using
the mean-field approach, the energy density functional at
zero temperature for asymmetric nuclear matter is written
as

ε(NR)(ρ,y) = (
G2

V − G2
S

)
ρ2 − Aρ3 − Bρ4

+G2
TVρ2(2y − 1)2 + 3

10M∗(ρ,y)
λρ

5
3 , (2)

where the effective mass is

M∗(ρ,y) = M2(
M + G2

Sρ + 2Aρ2 + 3Bρ3
)
H 5

3

, (3)

with H 5
3

= 2
2
3 [y

5
3 + (1 − y)

5
3 ], λ = (3π2/2)

2
3 , and y = ρp/ρ

being the proton fraction of the system. The proton density
is ρp. For a detailed derivation of Eq. (2) from Eq. (1) in the
y = 1/2 case, we refer the reader to Ref. [24].

The coupling constants of the model are G2
S, G2

V, A,
B, and G2

TV. The first four of them are adjusted in or-
der to fix ρo, Bo, Ko, and M∗

o . This is done by solving
a system of four equations, namely, ε(NR)(ρo,1/2) = −Bo,
K (NR)(ρo,1/2) = Ko, P (NR)(ρo,1/2) = 0 (nuclear matter satu-
ration), and M∗(ρo,1/2) = M∗

o . The pressure and incompress-

ibility are defined, respectively, by P (NR)(ρ,y) = ρ2 ∂(ε(NR)/ρ)
∂ρ

and K (NR)(ρ,y) = 9 ∂P (NR)

∂ρ
.

An advantage of this approach is that we can obtain simple
analytical expressions for the equations of state (EOS) of the
model, in comparison to those calculated in the exact FR
models. It is worth mentioning that in the EOS of the NR
limit of the NLPC models, there are no quantities found in a
self-consistent way. All observables are functions of ρ and y,
as one can see, for instance, in Eq. (2). Thus, the study of the
correlation between the symmetry energy and its slope can be
performed analytically. For this purpose, we first use Eq. (2)
to write S(ρ) = 1

8 [ ∂2(ε(NR)/ρ)
∂y2 ]y= 1

2
. Then, J = S(ρo) is given by

J = λρ
2
3
o

6M
+ (

G2
S + 2Aρo + 3Bρ2

o

) λρ
5
3
o

6M2
+ G2

TVρo. (4)

The symmetry energy S(ρ) is used again in order to obtain
L = 3ρo( ∂S

∂ρ
)ρ=ρo

. The result is

L= λρ
2
3
o

3M
+ (

5G2
S + 16Aρo + 33Bρ2

o

) λρ
5
3
o

6M2
+ 3G2

TVρo. (5)

From Eq. (4) it is possible to determine the last coupling
constant G2

TV, by imposing upon the model the requirement of
presenting a particular value for J .

At this point, we rewrite the coupling constants of the
model, namely, G2

S, G2
V, A, and B, in terms of the bulk

parameters m∗, ρo, Bo, and Ko. An analogous procedure is
done in the context of the Skyrme models in Ref. [25] through
the simulated annealing method. Therefore, it is possible to
write L explicitly as L = L(m∗,ρo,Bo,Ko). By doing so, and
by subtracting 3J from L, we finally find a clear correlation
between J and L in the following form:

L = 3J + f (m∗,ρo,Bo,Ko), (6)

where the function

f (m∗,ρo,Bo,Ko) =
(

1

m∗ − 1

)
g(ρo) + h(ρo,Bo,Ko) (7)

exhibits a dependence on the inverse of the effective mass.
The functions g(ρo) and h(Bo,Ko,ρo) are written, respectively,
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FIG. 1. (Color online) Effect of �f in the L-J correlation of
Eq. (6) for (a) 0.50 � m∗ � 0.80 and (b) 250 � Ko � 315 MeV.

as

g(ρo) = λρ
2
3
o

3M

[
1 + 2Eo

F(
M − 2Eo

F

)

−
(
M − 10Eo

F

)
MEo

F(
3M2 − 19Eo

FM + 18Eo2
F

)(
M − 2Eo

F

)
]

(8)

and

h(ρo,Bo,Ko)

= −λρ
2
3
o

6M

[
1 + 2Eo

F

(
M − 9Eo

F − 27Bo

) + KoM(
3M2 − 19Eo

FM + 18Eo2
F

)
]
, (9)

with Eo
F = 3λρ

2
3
o /10M . Equations (6)–(9) contain the main

result of our paper. They show, in an analytical way, a linear
correlation between L and J . Moreover, if we keep fixed the
values ρo, Bo, and Ko, the functions g(ρo) and h(ρo,Bo,Ko)
become constant. Therefore, Eq. (6) will exhibit parallel lines
for different m∗ values [see Fig. 1(a)].

Usually, in nuclear mean-field models, the binding energy
and the saturation density are well established closely around
the values of Bo = 16 MeV and ρo = 0.15 fm−3. The same
assumption does not apply to the incompressibility and
effective mass. Therefore, it is important to see how the
function f (m∗,ρo,Bo,Ko) in Eq. (7) varies as a function of
Ko, or of m∗ for the mentioned values of Bo and ρo. From
Eqs. (7)–(9), it is straightforward to check that, for a fixed
value of m∗, the variation in f will be given by

(�f )Ko
= − λρ

2
3
o

18M2 − 114Eo
FM + 108Eo2

F

�Ko. (10)

For the range of 250 � Ko � 315 MeV, recently proposed in
Ref. [26], one can verify that |(�f )Ko

| = 0.32 MeV. On the
other hand, by choosing two different models presenting the
same incompressibility Ko but with two different effective

masses m∗
1 and m∗

2, the f variation can be inferred by

(�f )m∗ = − g(ρo)

m∗
1m

∗
2

�m∗, (11)

where �m∗ = m∗
2 − m∗

1. For a typical range of 0.50 � m∗ �
0.80, presented by FR-RMF models, one has |(�f )m∗ | =
18 MeV, since g(ρo = 0.15 fm−3) = 24.5 MeV.

Figure 1 shows how such variations affect the correlation
given in Eq. (6). From this figure we can conclude that different
models presenting the same effective mass will exhibit points
on a L×J graph situated very close to the same line, since
in this case the variation of the linear coefficient in Eq. (6)
is very small compared to that of the case in which Ko is
fixed. This leads us to draw the conclusion that, in the NR
limit of the NLPC models described by Eq. (1), the linear
correlation between J and L in Eq. (6) is achieved for the
more distinct models under the condition that their effective
masses are equal. Before we end this section, let us remark
that in Refs. [8,9] the authors could have anticipated a J×L
correlation if they had worked out their general results for
L(ρ = ρo) and Esym(ρ = ρo). Regarding this correlation itself,
let us emphasize here that, mathematically, the linear behavior
is ensured in the NR limit of the NLPC model, since there is
only one isovector parameter, namely, G2

TV, in the equations
of J and L [see Eqs. (4) and (5)]. Thus, the result pointed
out in Eq. (6) reflects the limitation of the model parameters,
in particular, the isovector one. We defer to a future work
on further investigations of possible, not necessarily linear,
analytical correlations between J and L for models with more
than one isovector parameter.

III. PREDICTIONS OF FR-RMF MODELS

A. Symmetry energy slope

Now, we pose the question of whether the NR correlation
obtained in Eq. (6) and the results showed in Fig. 1 with
the subsequent conclusions still remain valid for exact FR
models. The answer is given by the study we have done for a
set of representative FR models, whose results are displayed
in Fig. 2.

Figure 2(a) shows the J dependence on L for three different
parametrizations of the FR models. For each one of them, we
kept fixed their respective bulk parameters m∗, ρo, Bo, and
Ko, but we allowed their symmetry energy J to vary. One can
verify that, for each value of J , the corresponding L, obtained
from the relativistic FR models calculations, will be a point on
a line of angular coefficient equal to 3. Furthermore, it is also
observed that L decreases as m∗ increases, which is exactly the
same result found in the NR limit. In Fig. 2(b), we selected a set
of FR parametrizations [12,27–35], presenting the same effec-
tive mass, in this case m∗ = 0.60. A best-fitting curve for these
points indicates a line, as was also indicated by the NR calcula-
tions. Moreover, its angular coefficient is given by 2.96, which
is practically the same number found in Eq. (6). For a complete
list of the FR-RMF models used in this work with their main
saturation properties, we refer the reader to the Appendix.

As an application of the J -L correlation found in this
work, we furnish a constraint under the values of L for the
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FIG. 2. L vs J for the (a) NLM5 [36], NL3 [27], and SMFT2 [37]
FR parametrizations (see text) and (b) FR parametrizations in which
m∗ is the same.

Boguta-Bodmer FR models. In order to do that, we first
restrict the range of effective masses to those of the FRS
constraint. Following Ref. [6], we find that this is the range of
m∗ in which Boguta-Bodmer models have to be constrained
in order to produce spin-orbit splittings in agreement with
well-established experimental values for 16O, 40Ca, and 208Pb.
By having this constraint as a starting point, we can construct
a limiting line defined by m∗ = 0.58 and another one at
m∗ = 0.64 in the L×J plane. We have constructed such lines
for the same FR models as in Fig. 2(b) by keeping their ρo, Bo

and Ko values but changing their effective mass for m∗ = 0.58
and m∗ = 0.64. The result is shown in Fig. 3. Notice that
the correlation we have found, together with the range for
the effective mass obtained in Ref. [6], naturally establishes
a band of possible values of L as a function of J for the
Boguta-Bodmer models. In the figure, we show this band in
the particular range of 25 � J � 35 MeV.

In order to test whether the FR-RMF models satisfy this
constraint, we included in the inset of Fig. 3 some FR
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FIG. 3. (Color online) Graphic constraint in the L×J plane
(see text).
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FIG. 4. (Color online) Comparison between the (a) Ko and
(b) m∗ dependencies of L for NR and FR-RMF models at J = 25, 30,
and 35 MeV.

parametrizations compatible with the FRS constraint, namely,
the same of Fig. 2(b) together with CS [38], E [38], ER [38],
NL3∗ [39], NLB [40], NLB1 [23], NLC [40], NLRA [41],
NLZ [34], NLZ2 [34], and VT [38]. We see that all of them
fall inside the band.

Before we end this section we remark here that the NR limit
also predicts, for a fixed value of J , correlations between L
and the quantities Ko and m∗, according to Eqs. (6)–(9). For
constant m∗, L scales as −Ko, while for constant Ko, L scales
as 1/m∗. In Fig. 4, we show such dependencies for NR models
as well as for the FR-RMF ones.

As we can see, both approaches present the same L variation
tendency regarding Ko and m∗. Notice also that, as m∗
increases, in the case of Ko fixed [Fig. 4(b)], the NR limit
better approaches the exact FR-RMF models.

B. Symmetry energy curvature

In the NR framework it is also possible to find an analytical
expression for Ksym = 9ρ2

o ( ∂2S
∂ρ2 )ρ=ρo

. It reads

Ksym =
(

1

m∗ − 1

)
s(ρo) + r(ρo,Bo,Ko) (12)

with

s(ρo) = 5λρ
2
3
o

3M

[
1 + 4Eo

F(
M − 2Eo

F

)

− Eo
F

(
M − 10Eo

F

)(
19M − 18Eo

F

)
5
(
M − 2Eo

F

)(
3M2 − 19Eo

FM + 18Eo2
F

)
]

(13)

and

r(ρo,Bo,Ko) = −λρ
2
3
o

3M

[
1 + Ko

(
19M − 18Eo

F

)
2
(
3M2 − 19Eo

FM + 18Eo2
F

)

−
(
81BoM + 8Eo

FM + 18Eo2
F

)
3M2 − 19Eo

FM + 18Eo2
F

]
. (14)
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By rearranging these equations, we find a simplified form
for Ksym, namely,

Ksym = [L − 3J ]p(ρo) + q(ρo,Bo,Ko), (15)

where

p(ρo) = s(ρo)

g(ρo)
(16)

and

q(ρo,Bo,Ko)

= −h(ρo,Bo,Ko)p(ρo) + r(ρo,Bo,Ko)

= λρ
2
3
o

3M

{
[p(ρo) − 2]

2
+ MEo

F[p(ρo) + 8](
3M2 − 19Eo

FM + 18Eo2
F

)

− 9Eo2
F [p(ρo) − 2] + 27Bo

[
Eo

Fp(ρo) − 3M
]

(
3M2 − 19Eo

FM + 18Eo2
F

)

+ M[p(ρo) − 19] + 18Eo
F

2
(
3M2 − 19Eo

FM + 18Eo2
F

)Ko

}
. (17)

In the above, p(ρo) = 5.13 at ρo = 0.15 fm−3 and an L
and J dependence of Ksym is explicit [see Eq. (15)]. It is
worth noting that the mathematical relation presented between
Ksym and L was based on the result of Eq. (6), which by
itself is a consequence of the limitation of the number of
isovector parameters of the NR limit of the NLPC model,
in this case only one, G2

TV. For models with two or more
isovector parameters, the correlation between J and L and,
consequently, the other between Ksym and L (or between Ksym

and J ) may follow a behavior different from the linear one.
Once again, we test whether these results reflect the FR-

RMF model calculations. First, notice that Eq. (12) predicts
constant Ksym for fixed values of Ko and m∗, quite independent
of J . For the sake of illustration we calculate Ksym for a set of
FR-RMF models with ρo = 0.15 fm−3, Bo = 16 MeV, Ko =
270 MeV, and m∗ = 0.60, with J running in the range of
25 � J � 35 MeV. For these cases, we have obtained a unique
value of Ksym = 96.4 MeV, supporting the NR prediction of
Eq. (12).

Still analyzing Eq. (12), we can see that a variation in m∗
produces a spread in Ksym of

�Ksym = − s(ρo)

m∗
1m

∗
2

�m∗, (18)

for Ko fixed. Thus, the range of m∗ given by the FRS
constraint generates |�Ksym| = 20 MeV, since s(ρo = 0.15
fm−3) = 125.7 MeV. A non-negligible spread in Ksym is also
observed for models with constant m∗ and different Ko. For
such cases, one can see that this spread is entirely due to

�r = − λρ
2
3
o

(
19M − 18Eo

F

)
18M3 − 114Eo

FM
2 + 108MEo2

F

�Ko. (19)

For the range of 250 � Ko � 315 MeV, we calculate
|�Ksym| = 5.9 MeV.

Based on this study and Eq. (15), we can conclude, for
instance, that the linear correlation between Ksym and L for
constant J will certainly occur for models in which �r = 0,
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FIG. 5. Correlation between Ksym and L (see text).

i.e., for fixed Ko. We verified this prediction for the FR-RMF
models of Ref. [14] with J = 32.5 MeV and Ko = 230 MeV.
The result is depicted in Fig. 5(a).

The figure clearly confirms the prediction of Eq. (15). Even
the angular coefficient, 7.17, is comparable with the value
p(ρo) = 5.13 (at ρo = 0.15 fm−3) of the NR calculation.

We remark here that the correlation observed in Fig. 5(a)
only occurs for models with the same values for Ko and
J (230 and 32.5 MeV, respectively, in this case). If J is
not the same, Ksym will be random and independent of the
value of L. Indeed, most FR-RMF models in the literature
can suggest that Ksym first decreases with the increase of
L and attains a minimum at about L = 70 MeV, then rises
back for larger L. We reinforce that our study indicates that,
in the Boguta-Bodmer models, such analysis must take into
account the values of Ko and J of the parametrization, in
the sense that only with these values fixed will the linear
correlation between Ksym and L be established. In order to
show that Ksym ∝ L even for parametrizations presenting
L < 70 MeV, we have constructed Boguta-Bodmer models
with fixed bulk parameters ρo = 0.15 fm−3, Bo = 16 MeV,
Ko = 200 MeV, and J = 20 MeV, and with m∗ in the range of
0.7 � m∗ � 0.8. In such a case, the parametrizations present
L < 70 MeV, and one can see from Fig. 5(b) that the linear
correlation between Ksym and L is preserved. Notice, however,
that, as the value J = 20 MeV is actually ruled out by
experimental evidences, our analysis suggests that despite
being mathematically valid for L < 70 MeV, the correlation
between Ksym and L for Boguta-Bodmer models predicts
higher values for the symmetry energy slope [see Fig. 5(a)].
This is a direct consequence of the model structure itself,
regarding the number of free isovector parameters. Indeed, the
prediction of higher L values for acceptable J values can also
be seen in Fig. 3.

For the sake of completeness, we use the correlations among
the symmetry energy, its slope, and curvature to propose
another graphic constraint in the Ksym×L plane that FR-RMF
models must satisfy. For this purpose, we used the relativistic
framework to construct boundaries in that plane by observing
the FRS constraint and the ranges of 250 � Ko � 315 MeV
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FIG. 6. (Color online) Graphic constraint in the Ksym×L plane
(see text).

and 25 � J � 35 MeV. Within such boundaries, we have
fixed the values of ρo = 0.15 fm−3 and Bo = 16 MeV. This
procedure leads to the band shown in Fig. 6; i.e., all FR-RMF
models presenting m∗, Ko, and J in the mentioned ranges
must produce points on the Ksym×L graph inside this band.
In order to test this prediction, we selected the same FR-RMF
parametrizations of the inset of Fig. 3, which presents
250 � Ko � 315 MeV and the reconstructed the band in the
Ksym×L plane to take into account that such models have
32 � J � 43 MeV (see the inset of Fig. 3). The new band is
represented in the inset of Fig. 6. We can see that all FR-RMF
models (NL3*, NLS, NL4, NL3, NLB1, and NLRA1),
represented by the full circles, fall inside the band. In the next
section we discuss this correlation in a more critical way.

As a last remark, we proceed to show the Ko and m∗
dependence of Ksym by using Eq. (12). Notice that, exactly as in
the case of the symmetry energy slope, Eq. (12) expresses clear
correlations of Ksym with the incompressibility and effective
mass, namely, Ksym ∼ −Ko and Ksym ∼ 1/m∗ for fixed values
of m∗ or Ko, respectively. This behavior is depicted in Fig. 7,
which also shows a direct comparison between the results for
the NR and FR-RMF approaches.

As in the case of the symmetry energy slope, we see that,
as m∗ increases, Ksym decreases, while, for both NR and FR-
RMF, the Ko dependence of Ksym is very weak compared to
the m∗ one.

IV. SUMMARY AND CONCLUSION

Since, in the majority of RMF models, Bo and ρo are chosen
to be very close to 16 MeV and 0.15 fm−3, respectively, in this
section, we will forget such model dependence on them. Here,
we are concerned with the m∗ and Ko dependencies.

In summary, the study performed in this paper indicates
that the nonrelativistic limit of the NLPC models described by
Eq. (1) can be used as a suitable guideline to infer possible
correlations related to the FR relativistic models with σ 3 and
σ 4 self-interactions. Regarding the correlations between the
quantities at the saturation density (ρ = ρo), obtained from
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FIG. 7. Comparison between the (a) Ko and (b) m∗ dependencies
of Ksym for NR and FR-RMF models.

the nonrelativistic limit and reproduced by the FR relativistic
models, our main findings are the following:

(i) In the NR approximation, the symmetry energy slope
L is linearly correlated with J [see Eq. (6)]. Moreover,
this same equation shows that L also depends explicitly
on the effective nucleon mass m∗ [scaling as 1/m∗; see
Eqs. (6) and (7)] and the incompressibility Ko [scaling
linearly; see Eqs. (6)–(9)]. The Ko dependence of L
has been verified to be negligible, as shown by the full
lines of Fig. 4(a). We verified that the same features are
also found in the FR-RMF Boguta-Bodmer models, as
one can see in Fig. 2 and in the dashed lines of Fig. 4.

(ii) The symmetry energy curvature Ksym depends on
m∗, scaling as 1/m∗, and is linearly correlated with
Ko in the NR approach [see Eqs. (12)–(14)]. Such
dependencies are not negligible. By aiming at finding
an L (or J ) dependence in Ksym, we have rewritten Ksym

as presented in Eq. (15): Ksym = [L − 3J ]p(ρo) +
q(ρo,Bo,Ko). However, the existing correlation be-
tween L and J [see Eq. (6)] shows that, for a fixed
value of Ko, there are two possible scenarios, namely,
(i) a linear correlation between Ksym and L for models
in which J is the same and (ii) a linear correlation
between Ksym and J for models in which L is the
same. Once again, the same correlations also apply to
the FR-RMF Boguta-Bodmer models, as displayed in
Figs. 7 and 5.

(iii) Convinced of the correlation between L and J , found in
the NR approximation and confirmed for the relativistic
calculations, we have constructed a region of possible
L values as a function of J and according to the FRS
constraint [6] that FR-RMF Boguta-Bodmer models
must satisfy in order to give values for the finite nuclei
spin-orbit splitting compatible with well-established
experimental values (see Fig. 3).

(iv) In Fig. 8, we present our prediction for the lowest
and highest values for L in comparison with other
values found in the literature, by taking into account
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FIG. 8. Comparison between the limits of L obtained in this work
and those from Dong et al. [42], Carbone et al. [43], Liu et al. [44],
Tsang et al. [45], Warda et al. [46], Danielewicz and Lee [47], Shetty
et al. [48], Chen et al. [49], Möller et al. [50], and Chen [51].

the region of Fig. 3 in the range of 25 � J � 35 MeV
for the symmetry energy. Notice that our limits for L
are comparable with other models.

For the sake of completeness, we present in
Fig. 9 a large set of L values obtained from analyses
of different terrestrial nuclear experiments and
astrophysical observations. They include analyses
of isospin diffusion, neutron skin, pygmy dipole
resonances, α and β decays, transverse flow, the
mass-radius relation of neutron stars, and torsional
crust oscillation of neutron stars. Twenty-eight of the
33 points shown in the figure were extracted from
Table I of Ref. [75], in which the authors, through the
Hugenholtz–Van Hove theorem, used these values in
order to constrain the neutron-proton effective mass
splitting in nonrelativistic nuclear models.

(v) Analogously, but based on the situation in which the
correlation between Ksym and L is achieved, we have
also proposed a graphic constraint in the Ksym×L plane
that the FR-RMF models at the FRS condition and
presenting 25 � J � 35 MeV must obey (see Fig. 6).

Before we end this work, some words of caution are
needed. First, we have studied a particular class of σ 3 + σ 4

self-interaction RMF models where the nonrelativistic limit
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FIG. 9. (Color online) Comparison between the limits of L

obtained in this work and those from 33 different analyses of
Refs. [1,11,42–74].

used a point-coupling approximation of them. Nevertheless,
what we have called exact calculations in this work have
no other approximation than that of the mean field, and
the point-coupling versions of them are absent. Second, our
cautionary words here are more in the sense that, nowadays,
of the several families of RMF models (for a review, see, for
instance, Ref. [76]), some of which are density dependent, not
all will necessarily follow the same features of the FR-RMF
models studied here.
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Amparo à Pesquisa do Estado de São Paulo (FAPESP)
and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES) of Brazil.

APPENDIX: SATURATION PROPERTIES
OF THE FR-RMF MODELS

In this Appendix we show in Table I the mainly saturation
properties, calculated at the saturation density, of the FR-RMF
models used in our work.

TABLE I. Nuclear matter properties, at the saturation density, of the FR-RMF models used in this work.

Model ρo Bo Ko m∗ J L Ksym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

CS 0.150 16.17 187.21 0.58 40.91 131.42 136.68
E 0.150 16.13 221.43 0.58 38.58 124.57 132.12
ER 0.149 16.16 220.49 0.58 39.42 126.60 127.62
FAMA1 0.148 16.00 200.05 0.60 38.01 120.53 113.22
Hybrid 0.148 16.24 230.01 0.60 37.30 118.62 110.94
MS2 0.148 15.75 249.92 0.60 35.00 111.00 100.85
NL-VT1 0.150 16.09 179.03 0.60 39.03 123.63 117.72
NL06 0.147 16.05 195.09 0.60 39.33 124.14 110.85
NL3 0.148 16.24 271.53 0.60 37.40 118.53 100.88
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TABLE I. (Continued.)

Model ρo Bo Ko m∗ J L Ksym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

NL3∗ 0.150 16.31 258.25 0.59 38.68 122.63 105.56
NL4 0.148 16.16 270.34 0.60 36.24 114.92 99.72
NLB 0.148 15.77 421.02 0.61 35.01 108.26 54.94
NLB1 0.162 15.79 280.44 0.62 33.04 102.51 76.15
NLC 0.148 15.77 224.46 0.63 35.02 107.97 76.91
NLM5 0.160 16.00 200.00 0.55 30.00 103.18 179.44
NLRA 0.157 16.25 320.48 0.63 38.90 119.09 62.11
NLRA1 0.147 16.15 285.23 0.60 36.45 115.38 95.72
NLS 0.150 16.44 262.94 0.60 42.07 131.59 94.22
NLSH 0.146 16.36 355.65 0.60 36.13 113.68 79.83
NLZ 0.151 16.18 172.84 0.58 41.72 133.91 140.19
NLZ2 0.151 16.06 172.23 0.58 39.01 125.82 140.62
Q1 0.148 16.10 241.86 0.60 36.44 115.71 105.65
RMF401 0.153 16.30 229.99 0.71 32.50 93.79 23.04
RMF403 0.153 16.30 229.99 0.72 32.50 93.13 18.06
RMF407 0.153 16.30 229.99 0.73 32.50 92.50 13.42
RMF411 0.153 16.30 229.99 0.74 32.50 91.90 9.09
RMF415 0.153 16.30 229.98 0.75 32.50 91.33 5.06
RMF419 0.153 16.30 229.99 0.76 32.50 90.79 1.31
RMF422 0.153 16.30 229.99 0.77 32.50 90.27 −2.17
SMFT2 0.162 13.78 211.31 0.66 17.38 52.73 60.27
VT 0.153 16.09 172.74 0.59 39.72 126.83 130.05
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