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Pion structure in the nuclear medium
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Using the light-front pion wave function based on a Bethe-Salpeter amplitude model, we study the properties
of the pion in symmetric nuclear matter. The pion model we adopt is well constrained by previous studies to
explain the pion properties in vacuum. In order to consistently incorporate the constituent up and down quarks
of the pion immersed in symmetric nuclear matter, we use the quark-meson coupling model, which has been
widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the
in-medium modifications of the pion electromagnetic form factor, charge radius, and weak decay constant in
symmetric nuclear matter.
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I. INTRODUCTION

One of the most exciting challenges in hadronic physics is
to investigate the changes in hadron properties in a nuclear
medium as well as in a nucleus [1,2]. In particular, partial
restoration of chiral symmetry in a dense nuclear medium has
not yet been confirmed by experiment, although it is generally
accepted to occur based on quantum chromodynamics (QCD).
In spite of the notorious complex number or sign problem of the
fermion determinant, one hopes that lattice QCD simulation
will eventually be able to study hadron properties in a nuclear
medium with relatively high baryon densities [3–6].

Chiral symmetry is one of the most important symmetries
in QCD. Therefore, it is very interesting to study the pion
properties, since it is the Nambu-Goldstone boson of the theory
which is realized in nature due to the spontaneous breaking
of chiral symmetry. Thus, it is natural to ask how the pion
properties would be modified in a nuclear medium, where
chiral symmetry is expected to be (partially) restored (see
Ref. [7] for a review concerning this question).

There exist several works on pion properties in a nuclear
medium, e.g., using the Nambu–Jona-Lasinio (NJL) model [8],
studies were made for the dynamical mass (of the pion-like
mode) [9], the pion structure function [10], and the mass and
decay constant [11–13]. Other studies dealt with the pion
decay constant in a composite-operator approach [14], pion
cloud effects on the Drell-Yan scattering [15], mass shifts
via in-medium chiral perturbation theory [16–18], masses and
decay constants within a Dyson-Schwinger and Bethe-Salpeter
equation ansatz [19]. Furthermore, the pion in finite density
has been studied with QCD sum-rule approaches [20], using
virial expansions [21], a nonlocal chiral quark model [22],
a relativistic mean field approach [23], and by exploiting
operator relations in QCD [24]. However, only one of
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them [23] examined the in-medium modification of the pion
elastic form factor (in asymmetric nuclear matter) based on
the ρ − ω mixing mechanism at the hadronic level. In the
present work, we investigate the pion structural properties in
symmetric nuclear matter based on quark degrees of freedom.

In order to do so, it is necessary to have a reliable pion
model which is well constrained and successful in describing
its properties in vacuum. However, because of the Nambu-
Goldstone boson nature of the pion with an anomalously small
mass, its description in vacuum itself is not straightforward
either, and a special treatment is necessary. Furthermore,
even if such a successful model is available, one requires a
proper description of the system’s state as well as a consistent
current operator to perform a meaningful comparison with
experimental data. To properly define the state of a relativistic
system, three space-time hypersurfaces were identified by
Dirac [25]. These hyper-surfaces correspond to different forms
of relativistic Hamiltonian dynamics, namely instant form,
front form, and point form.

In the present study, we apply the front-form dynamics
incorporating consistency between the current operator and
the state from a field theoretical point of view with a fixed
number of particles. In particular, although the state has an
infinite number of components in the Fock space [26], only
the lowest Fock component or valence component is usually
modelled and used for calculating electroweak form factors. In
principle, the infinite set of coupled eigenvalue equations for
the Hamiltonian operator in the Fock space can be replaced by
an effective squared-mass operator or an effective Hamiltonian
acting on the valence sector. At the same time, it is also possible
to express systematically the higher Fock-state components of
the wave function as functionals of the lower ones [26–28].
The effective electroweak current operator for the valence
component of the state can also be consistently derived within
the field theoretical framework of the Bethe-Salpeter equation
projected on the equal light-front time [29,30]. However, the
major advance in the extraction of the form factors from the
front-form wave function is the realization that in the Drell-Yan
frame (q+ = 0) the pair production does not contribute unlike
in the q+ �= 0 frame [31].
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In Ref. [32], the effect of such pair terms was studied
in detail to evaluate the form factors of a system with two
identical fermions, where effective constituent quark masses
of the lowest Fock-space component were used to describe
the pion properties in vacuum. The vertex function describes
the momentum component of the coupling of the quarks
to the pion bound state, where by momentum component we
mean the light-front wave function obtained by integrating
over the relative quark momentum, k−, after the separation of
the instantaneous terms in the external quark legs. Namely,
the momentum component is the light-front wave function
which depends on the kinematic variables, k+ and �k⊥. In
this model, the symmetric vertex function and the light-
front valence wave function which are symmetric under the
exchange of the fermion momenta are employed [32]. (See
also Ref. [33] for a nonsymmetric case.) Symmetry properties
of a Bethe-Salpeter amplitude are derived from quantum field
theory, where conceptual and phenomenological problems
arise when a nonsymmetric vertex function is used to describe
the pion [31,33]. For example, the form factor and weak decay
constant cannot be reproduced simultaneously. In this study,
we use the pion model of Ref. [32] which has all the desired
properties discussed above.

The main purpose of the present article is to investigate
the in-medium modifications of the pion properties, i.e., the
electromagnetic form factor, radius and decay constant in sym-
metric nuclear matter, where the pion model [32] is adjusted
so as to provide the best description of the electromagnetic
form factor data in vacuum. Because the (symmetric) nuclear
matter is translational and rotational invariant, usual Lorentz
transformation can be applied. Thus, the input obtained in the
nuclear matter rest frame by the nuclear matter model we em-
ploy, keeps the track of the Lorentz scalar and vector nature of
mean fields, and thus our assumption on the pion vertex model
enables us to extract the form factor in a covariant manner.

For the nuclear matter, we employ the quark-meson cou-
pling (QMC) model [34–36] in order to include consistently
the in-medium properties of the constituent up and down
quarks in the pion in symmetric nuclear matter. The QMC
model has been widely applied to various nuclear and hadronic
phenomena in a nuclear medium with successes. Although our
approach may be regarded as crude, this is a first exploratory
study that treats both the constituent quarks forming nuclear
matter in the bound nucleons and those in the pion immersed
in this nuclear medium on the same footing. In particular, it
is known that a treatment of nuclear matter based on quark
degrees of freedom is very difficult and a description starting
from first principles of QCD is far remote. In this sense,
although phenomenological, this study may give some insight
in the pion properties in a nuclear medium.

This article is organized as follows. In Sec. II we briefly
describe the QMC model focusing on the properties of
constituent up and down quarks and the pion vertex in
symmetric nuclear matter. The expressions for the in-medium
electromagnetic form factor of the pion are discussed in
Sec. III, while the results for the in-medium pion properties,
electromagnetic form factor, radius and weak decay constant
are presented in Sec. IV. Finally, Sec. V is devoted to a
summary and discussions.

II. QUARKS IN NUCLEAR MATTER

In order to study consistently the modifications of the pion
properties in a nuclear medium, we need a reasonable model
of nuclear matter based on the quark degrees of freedom,
as well as a pion model which successfully describes the
pion properties in vacuum. We first discuss the quark model
description of nuclear matter with the QMC model, with
presenting some results calculated for symmetric nuclear
matter.

A. Quark model of nuclear matter: QMC model

The QMC model was introduced in 1988 by Guichon [34]
with the MIT bag model, and by Frederico et al. in 1989 [37]
with help of a confining harmonic potential, both approaches to
describe nuclear matter properties based on the quark degrees
of freedom. The model has been successfully applied for
various studies of finite (hyper)nuclei [35] as well as the
hadron properties in a nuclear medium (see Ref. [36] for a
comprehensive review). In the model the medium effects arise
through the self-consistent coupling of phenomenological
isoscalar-Lorentz-scalar (σ ), isoscalar-Lorentz-vector (ω), and
isovector-Lorentz-vector (ρ) meson fields to the confined light-
flavor u and d valence quarks—rather than to the nucleons. As
a result the internal structure of the bound nucleon is modified
by the surrounding nuclear medium with respect to the free
nucleon case.

The effective Lagrangian density for a uniform, spin-
saturated, and isospin-symmetric nuclear system (symmetric
nuclear matter) at the hadronic level is given by [34–36]

L = ψ[iγ · ∂ − m∗
N (σ̂ ) − gωω̂μγμ]ψ + Lmeson, (1)

where ψ , σ̂ , and ω̂ are, respectively, the nucleon, Lorentz-
scalar-isoscalar σ , and Lorentz-vector-isoscalar ω field opera-
tors, with

m∗
N (σ̂ ) = mN − gσ (σ̂ )σ̂ , (2)

which defines the σ -field dependent coupling constant, gσ (σ̂ ),
while gω is the nucleon-ω coupling constant. All the important
effective nuclear many-body dynamics including three-body
nucleon force modeled at the quark level, will effectively be
condensed in gσ (σ̂ ). Solving the Dirac equations for the up
and down quarks in the nuclear medium with the same mean
fields (mean values) σ and ω, which act on the bound nucleon
self-consistently based on Eq. (1), we obtain the effective σ -
dependent coupling gσ (σ ) at the nucleon level [34–36]. The
free meson Lagrangian density is given by

Lmeson = 1
2

(
∂μσ̂ ∂μσ̂ − m2

σ σ̂ 2
) − 1

2∂μω̂ν(∂μω̂ν − ∂νω̂μ)

+ 1
2m2

ωω̂μω̂μ , (3)

where we have ignored the isospin-dependent Lorentz-vector-
isovector ρ-meson field, since we consider isospin-symmetric
nuclear matter within the Hartree mean-field approximation.
In this case the mean value of the ρ-mean field becomes zero
and there is no need to consider its possible contributions due
to the ρ-Fock (exchange) terms.
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In the following we work in the nuclear matter rest frame.
For symmetric nuclear matter in the mean-field approximation,
the nucleon Fermi momentum kF (baryon density ρ) and the
scalar density (ρs) associated with the σ -mean field can be
related as

ρ = 4

(2π )3

∫
d�k θ (kF − |�k|) = 2k3

F

3π2
, (4)

ρs = 4

(2π )3

∫
d�k θ (kF − |�k|) m∗

N (σ )√
m∗2

N (σ ) + �k2
, (5)

where m∗
N (σ ) is the constant value of the effective nucleon

mass at a given density and is calculated in the quark model.
In the standard QMC approach [34–36], one uses the MIT bag
model and the Dirac equations for the up and down quarks
in symmetric nuclear matter are solved self-consistently with
the σ and ω mean-field potentials. The Dirac equations for
the quarks and antiquarks (q = u or d, and Q = s,c, or b,
quarks) in the bag of hadron h in nuclear matter at the position
x = (t,�r) (|�r| � bag radius) are given by [36]

[
iγ · ∂x − (

mq − V q
σ

) ∓ γ 0

(
V q

ω + 1

2
V q

ρ

)] (
ψu(x)

ψu(x)

)
= 0,

(6)[
iγ · ∂x − (

mq − V q
σ

) ∓ γ 0

(
V q

ω − 1

2
V q

ρ

)] (
ψd (x)

ψd (x)

)
= 0,

(7)

[iγ · ∂x − mQ]ψQ(x) (or ψQ(x)) = 0,

(8)

where we have neglected the Coulomb force as usual, since the
nuclear matter properties are due to the strong interaction, and
we assume SU(2) symmetry for the light quarks, mq = mu =
md , and define m∗

q ≡ mq − V
q
σ = m∗

u = m∗
d . In symmetric

nuclear matter, the isospin dependent ρ-meson mean field in
Hartree approximation yields V

q
ρ = 0 in Eqs. (6) and (7), so

we ignore it hereafter. The constant mean-field potentials in
nuclear matter are defined by V

q
σ ≡ g

q
σσ = g

q
σ 〈σ 〉 and V

q
ω ≡

g
q
ωω = g

q
ω δμ,0〈ωμ〉, with g

q
σ and g

q
ω being the corresponding

quark-meson coupling constants, and the quantities inside the
brackets stand for taking expectation values by the nuclear
matter ground state [36]. Note that, since the velocity averages
to zero in the rest frame of nuclear matter, the mean vector
source due to the quark fields as well, 〈ψq �γψq〉 = 0. Thus we
may just keep the term proportional to γ 0 in Eqs. (6) and (7).

The normalized, static solution for the ground state quarks
or antiquarks with flavor f in the hadron h, may be written
as ψf (x) = Nf e−iεf t/R∗

hψf (�r), where Nf and ψf (�r) are the
normalization factor and corresponding spin and spatial part
of the wave function. The bag radius in medium for a hadron h,
R∗

h, is determined through the stability condition for the mass
of the hadron against the variation of the bag radius [36]. The

TABLE I. Coupling constants, the parameter ZN , bag constant B

(in B1/4), and calculated properties for symmetric nuclear matter
at normal nuclear matter density ρ0 = 0.15 fm−3, for mq = 5
and 220 MeV. The effective nucleon mass, m∗

N , and the nuclear
incompressibility, K , are quoted in MeV (the free nucleon bag radius
used is RN = 0.8 fm, the standard value in the QMC model [36]).

mq (MeV) g2
σ /4π g2

ω/4π m∗
N K ZN B1/4(MeV)

5 5.39 5.30 754.6 279.3 3.295 170
220 6.40 7.57 698.6 320.9 4.327 148

eigenenergies in units of 1/R∗
h are given by

(
εu

εu

)
= 
∗

q ± R∗
h

(
V q

ω + 1

2
V q

ρ

)
,

(
εd

εd

)
= 
∗

q ± R∗
h

(
V q

ω − 1

2
V q

ρ

)
, εQ = εQ = 
Q. (9)

The hadron masses in a nuclear medium m∗
h (free mass mh),

are calculated by

m∗
h =

∑
j=q,q,Q,Q

nj

∗
j − zh

R∗
h

+ 4

3
πR∗3

h B,
∂m∗

h

∂Rh

∣∣∣∣
Rh=R∗

h

= 0,

(10)

where 
∗
q = 
∗

q = [x2
q + (R∗

hm
∗
q)2]1/2, with m∗

q = mq−g
q
σσ ,


∗
Q = 
∗

Q
= [x2

Q + (R∗
hmQ)2]1/2, and xq,Q being the lowest

bag eigenfrequencies. nq(nq) and nQ(nQ) are the quark (an-
tiquark) numbers for the quark flavors q and Q, respectively.
The MIT bag quantities, zh, B, xq,Q, and mq,Q are the
parameters for the sum of the c.m. and gluon fluctuation
effects, bag constant, lowest eigenvalues for the quarks q or Q,
respectively, and the corresponding current quark masses. zN

and B (zh) are fixed by fitting the nucleon (the hadron) mass
in free space. (See Table I the nucleon case.)

For the nucleon h = N case in the above, the lowest,
positive bag eigenfunction is given by

q(t,�r) = N√
4π

e−iεq t/R∗
N

(
j0(xr/R∗

N )

iβq �σ · r̂j1(xr/R∗
N )

)
θ (R∗

N − r)χm,

(11)

with r = |�r| and χm the spin function and


∗
q =

√
x2 + (m∗

qR
∗
N )2, βq =

√

∗

q − m∗
qR

∗
N


∗
q + m∗

qR
∗
N

, (12)

N−2 = 2R∗3
N j 2

0 (x)[
∗
q(
∗

q − 1) + m∗
qR

∗
N/2]/x2, (13)

where x is the eigenvalue for the lowest mode, which satisfies
the boundary condition at the bag surface, j0(x) = βqj1(x).
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The same meson mean fields σ and ω for the quarks satisfy
the following equations at the nucleon level self-consistently:

ω = gωρ

m2
ω

, (14)

σ = gσ

m2
σ

CN (σ )
4

(2π )3

∫
d�k θ (kF − |�k|) m∗

N (σ )√
m∗2

N (σ ) + �k2
,

(15)

CN (σ ) = −1

gσ (σ = 0)

[
∂m∗

N (σ )

∂σ

]
, (16)

where CN (σ ) is the constant value of the scalar density
ratio [34–36]. Because of the underlying quark structure of the
nucleon used to calculate M∗

N (σ ) in the nuclear medium [see
Eq. (10) with h = N ], CN (σ ) gets σ dependence, whereas the
usual point-like nucleon-based model yields unity, CN (σ ) = 1.
It is this CN (σ ) or gσ (σ ) that gives a novel saturation mecha-
nism in the QMC model, and contains the important dynamics
which originates in the quark structure of the nucleon. Without
an explicit introduction of the nonlinear couplings of the meson
fields in the Lagrangian density at the nucleon and meson level,
the standard QMC model yields the nuclear incompressibility
of K � 280 MeV, which is in contrast to a naive version of
quantum hadrodynamics (QHD) [38] (the point-like nucleon
model of nuclear matter), results in the much larger value,
K � 500 MeV; the empirically extracted value falls in the
range K = 200 − 300 MeV. (See Ref. [39] for the updated
discussions on the incompressibility.)

Once the self-consistency equation for the σ , Eq. (15), has
been solved, one can evaluate the total energy per nucleon:

Etot/A = 4

(2π )3ρ

∫
d�k θ (kF − |�k|)

√
m∗2

N (σ ) + �k2

+ m2
σ σ 2

2ρ
+ g2

ωρ

2m2
ω

. (17)

We then determine the coupling constants, gσ and gω, so as to
fit the binding energy of 15.7 MeV at the saturation density
ρ0 = 0.15 fm−3 (k0

F = 1.305 fm−1) for symmetric nuclear
matter.

The pion model we adopt here [32] uses a vacuum
constituent quark mass, mq = 220 MeV, in order to well
reproduce the electromagnetic form factor data and decay
constant. Therefore, to be consistent with this pion model,
our nuclear matter is built with the same vacuum mass.
The corresponding coupling constants and some calculated
properties for symmetric nuclear matter at the saturation
density, with the standard values of mσ = 550 MeV and
mω = 783 MeV, are listed in Table I. For comparison, we also
give the corresponding quantities calculated in the standard
QMC model with a vacuum quark mass of mq = 5 MeV (see
Ref. [36] for details). Thus we have obtained the necessary
properties of the light-flavor constituent quarks in symmetric
nuclear matter with the empirically accepted data for a vacuum
mass of mq = 220 MeV; namely, the density dependence of the
effective mass (scalar potential) and vector potential. The same
in-medium constituent quark properties will be used as input
to describe the pion immersed in symmetric nuclear matter.

0 0.5 1 1.5 2 2.5 3
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t  /
 A

) 
- 

m
N

  [
M

eV
]

FIG. 1. Negative of the binding energy per nucleon (Etot/A −
mN ) for symmetric nuclear matter calculated with the vacuum up
and down quark mass, mq = 220 MeV. At the saturation point ρ0 =
0.15 fm−3, the value is fitted to −15.7 MeV. (See Ref. [36] for the
mq = 5 MeV case, denoted in there as QMC-I.)

In Figs. 1, 2, and 3, we respectively show our results for the
negative of the binding energy per nucleon (Etot/A − mN ),
effective mass of the nucleon, m∗

N , and effective mass of the
constituent up and down quarks, m∗

q , in symmetric nuclear
matter.

As one can expect from the values of the incompressibility,
K = (279.3,320.9) MeV in Table I, the result for E/A − mN

with mq = 220 MeV shown in Fig. 1 varies slightly faster than
that for mq = 5 MeV [36] with increasing density. As for the
effective nucleon mass shown in Fig. 2 with mq = 220 MeV,
also decreases faster than that for mq = 5 MeV [36] with
increasing nuclear density.

Concerning the effective constituent quark mass m∗
q shown

in Fig. 3, a general comment in connection with the light-
front model [32,40] is in order: due to the pole structure of
the propagators, the sum of the in-medium constituent quark

0 0.5 1 1.5 2 2.5 3
ρ/ρ0

400

600

800

1000

m
N

* 
[M

eV
]

FIG. 2. Nucleon effective mass, m∗
N , in symmetric nuclear matter.

See also caption of Fig. 1.
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FIG. 3. Effective mass of the constituent up and down quarks,
m∗

q ≡ m∗
u = m∗

d . See also caption of Fig. 1.

masses must be larger than the effective mass of the pion, m∗
π ,

namely 2m∗
q > m∗

π . Moreover, the pion mass up to normal
nuclear matter density is expected to be modified only slightly,
where the modification δmπ at nuclear density ρ = 0.17 fm−3

averaged over the pion isospin states is estimated as δmπ �
+3 MeV [1,7,11,17]. Therefore, we approximate the effective
pion mass value to be the same as in vacuum, m∗

π � mπ up to
ρ = ρ0 = 0.15 fm−3. In Fig. 3 we present the results for the
calculated effective mass of the constituent quarks, m∗

q , up to
1.5ρ0, focusing on the relevant region where 2m∗

q > m∗
π � mπ

is satisfied.

B. Quark propagator and pion vertex in
symmetric nuclear matter

In general, the quark self-energy in symmetric nuclear
matter is modified by the Lorentz-scalar-isoscalar and Lorentz-
vector-isoscalar potentials. In the Hartree mean field approxi-
mation discussed in Sec. II, the modifications enter as the shift
of the quark (antiquark) momentum via pμ → pμ + V μ =
pμ + δ

μ
0 V 0 [=pμ ± δ

μ
0 V

q
ω ; +(−) for quark(antiquark)] due to

the vector potential, and in the Lorentz-scalar part through
the the Lorentz-scalar potential Vs as mq → m∗

q ≡ mq +
Vs (= mq − V

q
σ ). Since the Lorentz transformation properties

are retained in nuclear matter, these modifications can be
implemented in the pion model [32] without difficulties. Then,
the up or down quark propagator (containing the quark and
antiquark components) in symmetric nuclear matter is given
by

S∗(p + V ) = 1

/p + /V − m∗
q + iε

, (18)

while the in-medium pion vertex [32] is modified as

�∗(k + V,P ) = C∗
(
(k + V )2 − m2

R + iε
)

+ C∗
(
(P − k − V )2 − m2

R + iε
) , (19)

where the normalization factor associated with C∗ is also
modified by the medium effects. The regulator mass mR

represents soft effects at short range, namely at about the 1 GeV
scale, and mR may also be influenced by in-medium effects.
However, since there exists no established way of estimating
this effect on the regulator mass and we already approximate
m∗

π = mπ , we also employ m∗
R = mR . In addition, since it is

correlated with the in-medium modified constant C∗ discussed
in Sec. III, we use the vacuum regulator mass value mR to avoid
introducing another source of uncertainty.

III. THE IN-MEDIUM ELECTROMAGNETIC
FORM FACTOR MODEL

The electromagnetic interaction of a pion, a spin-zero
qq bound composite system in vacuum, is based on three
ingredients [32]; (i) effective Lagrangian which models the
coupling of the pion field to the quark fields, (ii) a symmetric
vertex function in momentum space, (iii) effective constituent
quark masses and the lowest Fock state. We follow the
procedure in vacuum (i)–(iii) with the in-medium constituent
quark properties as input and calculate the in-medium pion
properties using an effective Lagrangian density with a
pseudoscalar coupling [41],

LI = −ig∗ �� · qγ 5 �τq �∗, (20)

where g∗ is the coupling constant and �∗ is the in-medium
vertex function. The coupling constant g∗ is given by the
Goldberger-Treiman relation at the quark level, g∗ = m∗

q/f
∗
π ,

with the in-medium pion decay constant f ∗
π . The constant C∗

in Eq. (19) is determined from the charge normalization for the
spin-zero composite system and it is density dependent. The
photon field is coupled the minimal way satisfying current
conservation. The front-form coordinates are defined as, k+ =
(k + V )0 + k3, k− = (k + V )0 − k3, and �k⊥ ≡ (k1,k2).

The electromagnetic current associated with the π+ is
obtained from the corresponding Feynman triangle diagram:

jμ = −i 2e
m∗2

q

f ∗2
π

Nc

∫
d4k′

(2π )4
Tr

[
S∗(k′)γ 5S∗(k′ − P ′)

× γ μS∗(k′ − P )γ 5
]
�∗(k′,P ′)�∗(k′,P ) , (21)

where (k′)μ = kμ + δ
μ
0 V 0, and Nc = 3 is the number of colors.

The factor 2 stems from isospin algebra. (It is easy to prove
that the Ward identity is satisfied in the Breit-frame: first one
performs the trace in q · j , and notices that the integrand of
the resulting expression is odd in �k′ = �k → −�k′ = −�k, and
therefore q · j = 0.)

We choose the symmetric vertex function, Eq. (19), which
also produces a symmetric light-front wave function under
the interchange of the quark and antiquark momenta, which
improves the physical description without the conceptual
difficulties associated with the nonsymmetric regulator (see
also Refs. [31,42]). The normalization constant C∗ in Eq. (19)
is fixed by imposing the condition F ∗

π (0) = 1 on the pion
form factor.

The effect of the vector potential δ
μ
0 V 0 in the loop integral

cancels identically due to the choice of the pion vertex.
Therefore, only the mass shift of the quarks is relevant in the
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loop integral. In the four-momentum integration, we apply the
transformation, k′μ = kμ + δ

μ
0 V 0 → kμ, so that no trace of the

vector potential remains in the expressions of the pion decay
constant and electromagnetic form factor. It is worthwhile to
observe that the current Eq. (21) means to be covariant, while
the quark propagator and pion vertex are computed in the
rest frame of nuclear matter. However, both the shift of the
time component of the quark momentum and effective mass
in the medium allow us to recover a boost invariant form for
the form factor as the shift in the virtual quark energy can be
absorbed by a variable change in the loop momentum, since
we have assumed that the vertex parameter is unchanged by
the medium effects, which may be justified by the fact that it
corresponds to a short-range scale deep inside the pion wave
function, which is much smaller than the nucleon size.

We work in the Breit-frame, where the momentum transfer,
qμ = (P ′ − P )μ, q2 = q+q− − (�q⊥)2 ≡ −Q2, lies in the z −
x plane with q+ = −q− =

√
−q2 sin α, qx =

√
−q2 cos α,

and qy = 0 (the angle θ in Ref. [31] corresponds to α + 90◦).
The initial and final momenta of the composite spin zero bound
state with mass mB are P 0 = E = E′ =

√
m2

B − q2/4, �P ′
⊥ =

− �P⊥ = �q⊥
2 and P ′

z = −Pz = q+
2 . The Drell-Yan condition

q+ = 0 is recovered with α = 0◦, while the q+ =
√

−q2

condition [43] in the Breit-frame follows from α = 90◦. We
here use α = 0◦.

In general, the pion form factor in medium can be extracted
from the covariant expression:

jμ = e(P μ + P ′μ)F ∗
π (q2). (22)

If covariance and current conservation are satisfied in the cal-
culation, one can obviously compute the electromagnetic form
factor in any frame and from any nonvanishing component of
the current.

In the following, to compute the pion elastic form factor,
we use the pseudoscalar Lagrangian density of Eq. (20), the
current defined by Eq. (21), and the symmetric vertex function
given by Eq. (19) with the plus component of the current,
j+, associated with Eq. (21) in the Breit-frame (with �q in the
z − x plane). Only two nonvanishing contributions in Eq. (21)
contribute to the form factor [31,33,44,45]:

F ∗
π (q2) = F ∗(I )

π (q2) + F ∗(II )
π (q2). (23)

With the replacement kμ + δ
μ
0 V 0 → kμ, the two contribu-

tions to the form factor obtained from j+, which correspond to
the two diagrams shown in Fig. 4, are given by the following
expressions:

F ∗(I )
π (q2) = −i

m∗2
q

(P + + P ′+)f ∗2
π

Nc

(2π )4

×
∫

d2k⊥dk+dk−θ (k+)θ (P + − k+)

k+(P + − k+)(P ′+ − k+)

×�∗(k,P,P ′), (24)

k − P

P k

(a)

k − P ′

P ′ΓΓ

k − P

P k

(b)

k − P ′

P ′ΓΓ

FIG. 4. Light-front time-ordered processes for the electro-
magnetic interaction of the pion, where the diagrams (a) and
(b) correspond to F ∗(I )

π in Eq. (24) and F ∗(II )
π in Eq. (25), respectively.

The shift of variables, kμ + V μ → kμ, is applied to the loop integral.

and

F ∗(II )
π (q2) = −i

m∗2
q

(P + + P ′+)f ∗2
π

Nc

(2π )4

×
∫

d2k⊥dk+dk−θ (k+ − P +)θ (P ′+ − k+)

k+(P + − k+)(P ′+ − k+)

×�∗(k,P,P ′) , (25)

where

�∗(k,P,P ′)

= Tr[O∗+]�∗(k,P )�∗(k,P ′)
(k− − k−

on + iε)
(
P − − k− − (P − k)−on + iε

P +−k+
)

× 1

(P ′− − k− − (P ′ − k)−on + iε)
, (26)

with the “in-medium on-the-energy shell” values of the
individual momentum given by

k−
on = k2

⊥ + m∗2
q

k+ ,(P − k)−on = (P − k)2
⊥ + m∗2

q

P + − k+ , and

(P ′ − k)−on = (P ′ − k)2
⊥ + m∗2

q

P ′+ − k+ . (27)

For the trace Tr[O∗+] of the operator in Eq. (26),

O∗+ = (/k + m∗
q)γ 5(/k − / /P

′ + m∗
q)γ +(/k − /P + m∗

q)γ 5,

(28)

one finds
1
4 Tr[O∗+] = −k−(P ′+ − k+)(P + − k+)

+ (
k2
⊥ + m∗2

q

)
(k+ − P + − P ′+)

− 1
2
�k⊥ · ( �P ′

⊥ − �P⊥)(P ′+ − P +) + 1
4k+q2

⊥. (29)

The detailed forms of F ∗(I ) and F ∗(II ) in vacuum after
integration over k− can be found in Appendices A and B
of Ref. [32].
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The explicit form of the symmetric regulator function in the
front-form momentum coordinates in Eq. (26) which enters in
Eqs. (24) and (25) is given by

�∗(k,P ) = C∗
[
k+

(
k− − k2

⊥ + m2
R − iε

k+

)]−1

+C∗
[

(P + − k+)

(
P − − k−

− (P − k)2
⊥ + m2

R − iε

P + − k+

)]−1

. (30)

The sum of the contributions F ∗(I )
π and F ∗(II )

π in vacuum
was already shown to yield the covariant result [32]. The
different directions of �q in the Breit-frame can only change the
absolute values of F ∗(I )

π (q2) and F ∗(II )
π (q2), but not the sum.

For example, with q+ = 0 (α = 0◦) we have F ∗(II )
π (q2) = 0,

and thus F ∗(I )
π (q2) alone yields the covariant result [32].

The in-medium quark Dirac propagator after the variable
shift, kμ + δ

μ
0 V 0 → kμ, can be decomposed using the front-

form momenta [26],

/k + m∗
q

k2 − m∗2
q + iε

=
/kon + m∗

q

k+(
k− − k−

on + iε
k+

) + γ +

2k+ , (31)

where k−
on = (k2

⊥ + m∗2
q )/k+. The second term on the right-

hand side of Eq. (31) is an instantaneous term in the light-front
time. The instantaneous term contributes to both, F ∗(I )

π (q2) and
F ∗(II )

π (q2), due to the analytic structure of the symmetric vertex
function of Eq. (19). These contributions are of nonvalence

nature, as they are not reducible to the impulse approximation
within the valence wave function.

IV. VALENCE LIGHT-FRONT WAVE FUNCTION

The valence component of the light-front wave function in
vacuum was obtained in Ref. [32]. The external two-fermion
space-time coordinates of the Bethe-Salpeter amplitude are
constrained to equal light-front time after dropping the instan-
taneous terms of the external Dirac propagators [30]. However,
the effect of the instantaneous terms in a Bethe-Salpeter
approach is included in the effective operators, together with
the valence wave function [30]. In the present treatment, the
Bethe-Salpeter amplitude with the in-medium pion vertex of
Eq. (19) can be written as [32]

�∗(k + V,P ) =
/k + /V + m∗

q

(k + V )2 − m∗2
q + iε

γ 5�∗(k + V,P )

×
/k + /V − /P + m∗

q

(k + V − P )2 − m∗2
q + iε

. (32)

Separating out the instantaneous terms in the quark propa-
gators as well as the remaining spinor operator part in the
numerator of Eq. (32) and the k+ and (P + − k+) factors in
Eq. (32), the momentum part (the part depends on the plus
and transverse momenta) of the valence component of the
light-front wave function with kμ + δ

μ
0 V 0 → kμ is given by

�∗(k+,�k⊥; P +, �P⊥) = iN∗
∫

dk−

2π

1(
k− − k−

on + iε
k+

)(
P − − k− − (P − k)−on + iε

P +−k+
)

×
(

1

k2 − m2
R + iε

+ 1

(P − k)2 − m2
R + iε

)
, (33)

where N∗ is a normalization factor,

N∗ = C∗ m∗
q

f ∗
π

(Nc)
1
2 .

Performing the k− integration in Eq. (33), one has

�∗(k+,�k⊥; P +, �P⊥) = P +

m∗2
π − M2

0

[
N∗

(1 − x)
(
m∗2

π − M2(m∗2
q ,m2

R)
) + N∗

x
(
m∗2

π − M2
(
m2

R,m∗2
q

))
]

, (34)

where x = k+/P +, with 0 � x � 1; M2(m2
a,m

2
b) = k2

⊥+m2
a

x
+ (P−k)2

⊥+m2
b

1−x
− P 2

⊥, and the square of the mass is M2
0 =

M2(m∗2
q ,m∗2

q ). Since the momentum part of the wave function is symmetric under the exchange of the fermion momenta,
we have a second term in Eq. (34), which is different from Ref. [33].

Using only the valence component, the electromagnetic form factor evaluated in the Breit-frame reads [33,41]

F ∗(WF )
π (q2) = 1

2π3(P ′+ + P +)

∫
d2k⊥dk+θ (k+)θ (P + − k+)

k+(P + − k+)(P ′+ − k+)
�∗

(
k+,�k⊥; P ′+,

�q⊥
2

)

×
(

k−
onP

+P ′+ − 1

2
�k⊥ · �q⊥(P + − P ′+) − 1

4
k+q2

⊥

)
�∗

(
k+,�k⊥; P +, − �q⊥

2

)
. (35)
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Once the normalization constant C∗ is obtained from the
condition F ∗

π (0) = 1 [see Eq. (23)], the probability of the
valence qq component for the pion in medium can be
calculated by setting η∗ = F ∗(WF )

π (0).
For convenience, we introduce the transverse momentum

probability density,

f ∗(k⊥) = 1

4π3m∗
π

∫ 2π

0
dφ

∫ P +

0

dk+M∗2
0

k+(P + − k+)
�∗2

× (k+,�k⊥; m∗
π ,�0), (36)

and integration of f ∗(k⊥) leads to the in-medium probability
of the valence component in the pion:

η∗ =
∫ ∞

0
dk⊥k⊥f ∗(k⊥). (37)

The in-medium pion decay constant, f ∗
π , is defined as the

matrix element of the partially conserved axial vector current
in symmetric nuclear matter, with the ground state |0(ρ)〉:

Pμ〈0(ρ)|Aμ
i |π∗

j 〉 = im∗2
π f ∗

π δij � im2
πf ∗

π δij . (38)

Using A
μ
i = qγ μγ 5 τi

2 q and the interaction Lagrangian den-
sity, Eq. (20), for the pion-qq vertex function, we obtain after
integration over k− the in-medium decay constant, f ∗

π , in terms
of the valence component of the model [41],

f ∗
π = m∗

q(Nc)
1
2

4π3

∫
d2k⊥dk+

k+(P + − k+)
�∗(k+,�k⊥; m∗

π ,�0), (39)

where f ∗
π above is associated with the plus-component on the

light-front, i.e., the light-front time component, thus the f ∗
π

cannot be separated into time and space components as done in
chiral perturbation theory [1,7,11,16–18]. The normalization
condition of �∗ is given by the probability of finding the
pion in the valence component state, η∗ = F ∗(WF )

π (0), which
is less than one, similarly to the vacuum case [32]. However,
an interesting feature due to the in-medium effect arises, which
will be discussed in Sec. V.

V. NUMERICAL RESULTS

The pion model in vacuum has two free parameters,
the constituent quark mass, mq = 220 MeV used in meson
phenomenology [41,46,47], and the regulator mass, mR =
600 MeV obtained from fitting Eq. (39) to the experimental
value of f

exp
π = 92.4 MeV [48]. (In fact, the model yields

fπ = 93.1 MeV with these parameter values, whereas to re-
produce exactly the value f

exp
π = 92.4 MeV some fine-tuning

is necessary). Recall that we approximate the in-medium
pion mass, m∗

π � mπ = 140 MeV, based on the analyses of
Refs. [1,11,17] and empirical extraction [7] from pionic-atom
data.

The squared-charge radius of the pion is derived from the
elastic form factor,

〈
r2
π

〉 = −6
∂

∂q2
Fπ (q2)

∣∣∣∣
q2→0

, (40)

and one obtains 〈r2
π 〉1/2 = 0.74 fm in vacuum [32], to be

compared with the experimental value 0.67 ± 0.02 fm [49].

0 2 4 6 8 10 12

Q
2
 = -q

2
[GeV/c]

2

0.00

0.20

0.40

0.60

0.80

1.00

|F
π(

q2 )|

Horn et al. (Exp.)
Tadevosyan et al. (Exp.)
 Frascati  (Exp.)
Volmer et al.  (Exp.)
mq =  220.0 MeV  [ ρ = 0 ]
m*q = 179.9 MeV [ ρ = 0.25ρ0 ]
m*q = 143.2 MeV [ ρ = 0.50ρ0 ]
m*q = 109.8 MeV [ ρ = 0.75ρ0 ]
m*q = 79.5 MeV   [ ρ = 1.00ρ0 ]

FIG. 5. Pion electromagnetic form factor in symmetric nuclear
matter for four nuclear densities and the vacuum case as a function
of Q2 = −q2. Experimental data in vacuum are from Refs. [50–54].
Also shown are the corresponding effective quark mass values, m∗

q ,
where in vacuum mq = 220 MeV.

In practice, since the derivative is evaluated numerically and
|Fπ (q2)| varies quite rapidly near q2 = 0 for all chosen nuclear
densities as well as in vacuum, the values quoted in this work
are all evaluated at Q2 = −q2 = 0.001 (GeV/c)2, where the
stability of the form factor has been checked.

In Fig. 5, the Q2 dependence of the elastic form factor
calculated in symmetric nuclear matter for four nuclear
densities along with the vacuum case is presented. The
experimental data in vacuum are from Refs. [50–54] and the
vacuum result agrees well with the data points of Ref. [50].
As the nuclear density increases, the absolute value of the
form factor |Fπ (q2)| becomes harder. This leads to a larger
pion charge radius in nuclear matter with increasing density.
In Fig. 6, we show the m∗

q dependence of the in-medium pion
charge radius, 〈r∗2

π 〉1/2.
From Figs. 5 and 6 one can see that the pion charge

radius grows as the nuclear density (effective quark mass)

100 120 140 160 180 200 220
m*

q
  [MeV]

0.7

0.8

0.9

1

1.1

1.2

1.3

<
 r

*2

π>
 1/

2 
 [

fm
]

FIG. 6. The m∗
q dependence of the pion charge radius, 〈r∗2

π 〉1/2.
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0 0.2 0.4 0.6 0.8 1
ρ/ρ0

0.4

0.6

0.8

1

f π*
/
f

π

FIG. 7. Ratio of the in-medium to vacuum pion decay constant,
f ∗

π /fπ , associated with the light-front time component, versus nuclear
density.

increases (decreases). The decrease in the constituent quark
mass kinematically allows for the quarks to move in a larger
space region and the quark-antiquark bound state becomes
shallower, i.e., the pion is less bound which results in an
increase of the charge radius.

Next, we show in Fig. 7 the ratio of the in-medium to
vacuum pion decay constant, f ∗

π /fπ , versus nuclear density,
associated with the light-front time component. The result
shows that f ∗

π decreases as nuclear density increases. This is
consistent with the empirical findings based on the pionic-atom
experiment [7], which yield (f ∗

π /fπ )2 � 0.64 (associated with
the time component) at density ρ = 0.17 fm−3, while our result
yields a larger reduction.

Finally, we summarize in Table II some properties of the
pion in symmetric nuclear matter. In particular, it is interesting
to focus on the last column for η∗, which is the probability
of the valence component of the pion in symmetric nuclear
matter, Eq. (37). As nuclear density increases, the probability
of the valence component in the pion is enhanced, which is
again the effect of the decreasing in the effective quark mass.
This makes the quarks freer to move inside the pion than the
heavier valence quarks. This effect has the same origin as the
increase of the pion charge radius in nuclear matter discussed
above.

In the present light-front model, it is not straightforward
to discuss the in-medium quark condensate and Gell-Mann-

TABLE II. Summary of in-medium pion properties. η∗ is calcu-
lated via Eq. (36), the probability of the valence component in the
pion.

ρ/ρ0 m∗
q [MeV] f ∗

π [MeV] 〈r∗2
π 〉1/2 [fm] η∗

0.00 220 93.1 0.73 0.782
0.25 179.9 80.6 0.84 0.812
0.50 143.2 68.0 1.00 0.843
0.75 109.8 55.1 1.26 0.878
1.00 79.5 40.2 1.96 0.930

Oakes-Renner (GMOR) relation [55], as we use constituent
quarks with mq = 220 MeV in vacuum. However, for illus-
tration, we attempt to analyze the GMOR-like relation and
discuss the quark condensates within the present approach.
The difference with the usual GMOR relation is that the
pion decay constant in vacuum, fπ , and in-medium, f ∗

π , are
calculated using constituent quark masses instead of current
quark masses. Keeping this in mind, the GMOR-like relation
in vacuum and in-medium may be written

m2
πf 2

π = −2mq〈qq〉, (41)

m∗2
π f ∗2

π = −2m∗
q〈qq〉∗ . (42)

The ratio of the in-medium to vacuum quark condensates in
the present approach may be estimated as

〈qq〉∗
〈qq〉 = mq

m∗
q

m∗2
π f ∗2

π

m2
πf 2

π

� mq

m∗
q

f ∗2
π

f 2
π

. (43)

At normal nuclear matter density, ρ0 (0.15 fm−3), the ratio
gives � 0.52 using Table II. This implies a larger reduction
in “quark condensate” compared to the value 0.67 ± 0.06
extracted in Ref. [7] at a density 0.17 fm−3 (their value for
the normal nuclear matter density). This feature may also
be understood from the larger reduction in (f ∗

π /fπ )2 in our
approach compared with that obtained in Ref. [7].

VI. SUMMARY AND DISCUSSIONS

We have studied the modifications of the pion properties in
symmetric nuclear matter based on the constituent quark model
of the pion on the light front, where the pion model reproduces
well experimental data in vacuum. In order to incorporate the
nuclear many-body effects on an equal footing, i.e., with the
quark degrees of freedom, we have employed the QMC model.
We have made use of the in-medium quark properties obtained
in the QMC model as input for the constituent up and down
quarks in the pion to study the in-medium modifications of
the pion properties. The in-medium quarks in the pion contain
the information of nuclear many-body dynamics, the nuclear
Fermi momentum and nuclear saturation properties, which are
consistent at the level of the Hartree mean-field approximation.
Although this study is of exploratory nature, we believe that it
constitutes an advance in the treatment of the quarks confined
in the pion in a nuclear medium.

With regard to the pion properties in symmetric nuclear
matter, we have presented the in-medium electromagnetic
form factor, charge radius, and decay constant up to normal
nuclear matter density, based on the plus (light-front time)
component of the corresponding light-front current. Our
results indicate a faster falloff of the elastic form factor with
increasing nuclear density, and consequently an increase of the
pion charge radius.

Moreover, we have computed the in-medium pion decay
constant, which is again associated with the light-front time
component. We have shown that the decay constant decreases
as nuclear density increases, which is consistent with empirical
findings based on the analysis of the pionic-atom data. The
corresponding ratio, f ∗

π /fπ , obtained in the present approach
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is smaller, or equivalently, the reduction of fπ is larger.
However, we should mention that in the empirical extraction
an uncertainty in the in-medium pion-mass shift exists, from
which the value of the pion decay constant reduction is
extracted. (And we stress once again that in our case f ∗

π is
the light-front time component.)

Concerning the valence quark probability in the pion, our
result shows this probability increases with increasing nuclear
density. We interpret this in terms of the decrease in the
effective constituent quark masses in the pion, which allows for
a larger kinematical distribution of the quarks within the pion,
and in turn results in the increase of the valence probability.
The same reasoning holds for the increase of the pion charge
radius.

We have also estimated the in-medium quark condensate
using the Gell-Mann-Oakes-Rener-like relation, and obtained
the reduction of the in-medium quark condensate relative to

that in vacuum. However, the reduction is larger than that from
the pionic-atom data analysis. Most likely, this is due to the
large constituent quark masses used in the pion model.

In the future, the present approach may be extended to the
kaon, D, ρ, and ω mesons. Alternatively, we can treat the
in-medium effects on the quark’s mass function by means of a
Dyson-Schwinger equation with finite density and incorporate
them in the Bethe-Salpeter equation for the bound states.
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