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Novel mechanism for J/ψ disintegration in relativistic heavy ion collisions
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In this paper we discuss the possibility of J/ψ disintegration due to Z(3) domain walls that are expected to
form in a QGP medium. These domain walls give rise to a localized color electric field, which disintegrates J/ψ ,
on interaction, by changing its color composition and simultaneously exciting it to higher states of cc̄ system.

DOI: 10.1103/PhysRevC.90.034912 PACS number(s): 25.75.−q, 11.27.+d, 12.38.Mh

I. INTRODUCTION

The ongoing relativistic heavy ion collision experiments
at the Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) have provided very valuable insight
in the search for quark-gluon plasma (QGP), a new phase
of matter. QGP is essentially the deconfined phase of QCD,
where free quarks and gluons exist in thermal equilibrium.
Matsui and Satz [1] proposed that due to the presence of this
medium, potential between qq̄ is Debye screened, resulting in
the swelling of quarkonia. If the Debye screening length of
the medium is less than the radius of quarkonia, then qq̄ may
not form bound states. This is the conventional mechanism
of quarkonia disintegration. Due to this melting, the yield of
quarkonia will be suppressed. This was proposed as a signature
of QGP and has been observed experimentally [1,2]. However,
there are other factors too that can lead to the suppression of
J/ψ , which has made it impossible to use J/ψ suppression
as a clean signal for QGP.

In this paper, we propose a novel mechanism of quarkonia
disintegration via QCD Z(3) domain walls. These walls appear
as topological defects due to spontaneous breaking of Z(3)
symmetry in QGP [3–5]. The thermal expectation value of
Wilson loop (Polyakov loop) acts as the order parameter
for confinement-deconfinement phase transition, taking zero
value in the confining phase (corresponding to infinite free
energy of a test quark) and a nonzero value in the QGP
phase (with finite free energy of a test quark). Polyakov loop
transforms nontrivially under Z(3) transformations, and hence
its nonzero expectation value leads to spontaneous breaking of
Z(3) symmetry in the QGP phase [6,7]. With the possibility of
realization of the QGP phase in RHIC and LHC experiments,
we have the real opportunity to study topological domain walls,
resulting from this spontaneous Z(3) symmetry breaking, in
the laboratory. The formation and evolution of these walls have
been discussed in the context of RHIC experiments [8,9]. The
associated QGP string formation [10] has also been discussed
by some of us. It is important to mention here that such
topological defects invariably form during a phase transition.
The formation process of topological defects is governed
by formation of a sort of domain structure during a phase
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transition and is usually known as the Kibble mechanism [11].
The network of defects formed depends on the details of phase
transition only through the correlation length. In fact defect
distribution, e.g., defect density, per correlation volume is
universal and depends only on the symmetry-breaking pattern
and space dimensions.

Questions have been raised about the reality of these
Z(3) domains. The existence of these Z(3) vacua becomes
especially a nontrivial issue when considering the presence of
dynamical quarks. The effect of quarks on Z(3) symmetry
and Z(3) interfaces, etc., has been discussed in detail in
the literature [12,13]. It has also been argued that the Z(3)
symmetry becomes meaningless in the presence of quarks
[12]. Another viewpoint, as advocated in many papers, asserts
that one can take the effect of quarks in terms of explicit
breaking of Z(3) symmetry [13–15]. We follow this approach
and assume that the effects of dynamical quarks can be
incorporated by introducing explicit symmetry-breaking terms
in the effective potential for the Polyakov loop. This makes
the Z(3) domain wall dynamical with the pressure difference
between the two different vacua being nonzero. This will lead
to asymmetric profile of the Polyakov loop. In the present
paper, we ignore these asymmetry effects due to dynamical
quarks and will continue using Z(3) interfaces without any
explicit symmetry-breaking term. In a future work we come
back to include the effects of explicit symmetry breaking.

We mention recent lattice results in Ref. [16], which
indicate the strong possibility of the existence of these Z(3)
domains at high temperatures in the presence of dynamical
quarks. These results suggest that (metastable) Z(3) domains
appear at temperatures above about 700 MeV. However, we
stress that it does not look appropriate to take these results as
conclusive, especially the quantitative part. Thus one would
like to consider the possibility that Z(3) vacua may persist for
somewhat lower temperatures, as discussed in this paper. In
any case, the mechanism discussed here provides an additional
source of disintegration for J/ψ even at high temperature.
It is important to note that our mechanism will lead to
disintegration of ϒ also, which will be relevant even at 700
MeV. We will present this study in a future work.

In the case of the early universe, these Z(3) walls can
lead to baryon inhomogeneity generation [17]. It was shown
in Ref. [18] that background gauge field A0 associated
with generalized Z(N ) interfaces can lead to spontaneous
CP violation in the Standard Model (SM), Minimal Super-
symmetric Standard Model (MSSM), and Supersymmetry
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(SUSY) models, which, in turn, can lead to baryogenesis
in the early universe. A detailed quantitative analysis of this
spontaneous CP violation was done in Ref. [19], in the context
of quark-antiquark scattering from Z(3) walls in the QGP
phase. The main approach followed in Refs. [18,19] was based
on the assumption that the profile of the Polyakov loop order
parameter l(x) corresponds to a sort of condensate of the
background gauge field A0 (in accordance with the definition
of the Polyakov loop). This profile of the background gauge
field can be calculated from the profile of l(x). Such a gauge
field configuration in the Dirac equation leads to different
potentials for quarks and antiquarks, leading to spontaneous
CP violation in the interaction of quarks and antiquarks
from the Z(3) wall. This spontaneous CP violation was first
discussed by Altes et al. [18,20] in the context of the universe
and in Ref. [21] for the case of QCD. In Ref. [19], the
profile of Polyakov loop l(x) between different Z(3) vacua
was used (which was obtained by using specific effective
potential for l(x) as discussed in Refs. [14,15]) to obtain the
profile of A0. This background A0 configuration acts as a
potential for quarks and antiquarks. It was shown in Ref. [19]
that the quarks have significantly different reflection coeffi-
cients than antiquarks and the effect is stronger for heavier
quarks. For a discussion of calculation of A0 profile, see
Ref. [19].

In this paper, we discuss the effect of this spontaneous CP
violation on the propagation of quarkonia in the QGP medium,
in particular, the J/ψ meson. J/ψ are produced in the initial
stages of relativistic heavy ion collisions. As these are heavy
mesons (m ∼ 3 GeV), they are never in equilibrium with the
QGP medium produced in the present heavy ion collision
experiments. However, there are finite T effects (like Debye
screening, etc.) affecting its motion in a thermal bath. We
ignore these effects initially and comment on them towards
the end. Note that if the Debye length is larger, then the
conventional mechanism of J/ψ melting does not work. As
we will argue, for large Debye screening, our mechanism of
J/ψ disintegration works better as any possible screening of
the domain wall over the relevant length scale of J/ψ will
be small. If a domain wall is present in the QGP, then a J/ψ
moving through the wall will have a nontrivial interaction with
it. Due to the CP-violating effect of the interface on quark
scattering, c and c̄ in J/ψ experience different color forces
depending on the color of the quark and the color composition
of the wall. This not only changes the color composition of cc̄
bound state (from color singlet to color octet state) but also
facilitates its transition to higher excited states (for example χ
states). Color octet quarkonium states are unbound (also, the χ
state has larger size than J/ψ and the Debye length), and hence
they will dissociate in the QGP medium. This summarizes
the basic physics of our model discussed in this paper for
quarkonia disintegration due to Z(3) walls.

The paper is organized in the following manner. In Sec. II
we discuss the interaction of J/ψ with the background
gauge field A0 arising from the profile of l(x) and discuss
its color excitations. Subsequently we consider spatial exci-
tations of J/ψ and calculate the disintegration probability.
Section III discusses results, and conclusions are presented in
Sec. IV.

II. INTERACTION OF J/ψ WITH A Z(3) WALL

In our model, J/ψ interacts with the gauge field A0

corresponding to the l(x) profile of the Z(3) wall. This allows
for the possibility of color excitations of J/ψ as well as
the spatial excitations of its wave function. First we discuss
the possibility of color excitations of J/ψ . Subsequently, we
discuss spatial excitations of J/ψ .

A. Color excitation of J/ψ

We work in the rest frame of J/ψ and consider the domain
wall coming and hitting the J/ψ with a velocity v along z axis.
The gauge potential and coordinates are appropriately Lorentz
transformed as

A0(z) → A′
0(z′) = γ [A0(z) − vA3(z)] , (1a)

A3(z) → A′
3(z′) = γ [A3(z) − vA0(z)] , (1b)

z = γ (z′ + vt ′). (1c)

We assume that there is no background vector potential,
Ai(z) = 0; i = 1,2,3. A′

3 obtained from Eq. (1b) has only
z′ dependence, so it does not produce any color magnetic
field. Further, using the nonrelativistic approximation of the
Dirac equation one can see that the perturbation terms in
the Hamiltonian [say, H 1(A′

3)] involving A′
3 are suppressed

compared to the perturbation term [H 1(A′
0)] involving A′

0 at
least by a factor

H 1(A′
3)

H 1(A′
0)

∼ v

c

1

mcrJ/ψ

, (2)

where rJ/ψ is the size of the J/ψ wave function and mc

is the charm quark mass. As we will see, the largest value
of v/c we consider is 0.20–0.24 (above which transition
amplitude becomes too large to trust first-order perturbation
approximation). With rJ/ψ � 0.4 fm, the suppression factor in
Eq. (2) is of order 10%. Thus we neglect perturbation due to A′

3
and only consider perturbation due to A0 as given by Eq. (1a).
We use first-order time-dependent perturbation theory to study
the excitation of J/ψ due to the background A0 profile and
consider the transition of J/ψ from initial energy eigenstate
ψi with energy Ei to the final state ψj with energy Ej . The
transition amplitude is given by

Aij = δij − i

∫ tf

ti

〈ψj |Hint|ψi〉ei(Ej −Ei )t dt. (3)

We take incoming quarkonia to be a color singlet state. The
interaction of the quarkonia with the wall is written as

Hint = V q(z′
1) ⊗ 1q̄ + 1q ⊗ V q̄(z′

2) (4a)

with V q,q̄(z′
1,2) = gA

′q,q̄
0 (z′

1,2), (4b)

where A
′q,q̄
0 (z′

1,2) is the background field configuration in the
rest frame of J/ψ . z′

1 and z′
2 are the coordinates of q and q̄

in quarkonia and g is the gauge coupling. The gauge potential
A0 is taken in the diagonal gauge as

A0 = 2πT

g
(aλ3 + bλ8) , (5)
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where λ3 and λ8 are the Gell-Mann matrices. Under CP, A0 →
−A0, and hence A

q̄
0 = −A

q
0 . Now, both the initial and the

final states have spatial, spin, and color parts. The incoming
quarkonia is a color singlet while outgoing state could be a
singlet or an octet. Using Eqs. (4) and (5) and extracting only
the color part of interaction, we get

〈ψout|Hint|ψsinglet〉 = 〈ψout|gA
′q
0 (z′

1) ⊗ 1q̄ |ψsinglet〉
+ 〈ψout|1q ⊗ gA

′q̄
0 (z′

2)|ψsinglet〉.
(6)

The color singlet state of J/ψ is written as

|ψsinglet〉 = 1√
3

⎡
⎣

⎛
⎝1

0
0

⎞
⎠

q

⊗
⎛
⎝1

0
0

⎞
⎠

q̄

+
⎛
⎝0

1
0

⎞
⎠

q

⊗
⎛
⎝0

1
0

⎞
⎠

q̄

+
⎛
⎝0

0
1

⎞
⎠

q

⊗
⎛
⎝0

0
1

⎞
⎠

q̄⎤
⎦ . (7)

If the outgoing state is also a singlet then, each term on the
right-hand side of Eq. (6) is zero due to the traceless nature of
A0. Equation (3) gives Aij = 1 for ground state (i = j ). (One
will then need to resort to second-order perturbation theory
for consistency.) For higher orbital states (i 
= j ), amplitude is
identically zero. A color octet state like |rḡ〉 can be written as

|rḡ〉 =
⎛
⎝1

0
0

⎞
⎠

q

⊗
⎛
⎝0

0
1

⎞
⎠

q̄

. (8)

For such an outgoing state, each term on the right-hand side
of Eq. (6) again vanishes identically because of the diagonal
form of A0, resulting in zero transition probability. The same
argument leads to zero transition probability to all other octet
states with similar color content, viz. bḡ,br̄,gr̄,gb̄,rb̄. There
are only two states with nonzero color contribution to transition
probability. They are

|rr̄ − bb̄〉 = 1√
2

⎡
⎢⎣

⎛
⎝1

0
0

⎞
⎠

q

⊗
⎛
⎝1

0
0

⎞
⎠

q̄

−
⎛
⎝0

1
0

⎞
⎠

q

⊗
⎛
⎝0

1
0

⎞
⎠

q̄
⎤
⎥⎦ (9)

and

|rr̄ + bb̄ − 2gḡ〉 = 1√
6

⎡
⎣

⎛
⎝1

0
0

⎞
⎠

q

⊗
⎛
⎝1

0
0

⎞
⎠

q̄

+
⎛
⎝0

1
0

⎞
⎠

q

⊗
⎛
⎝0

1
0

⎞
⎠

q̄

− 2

⎛
⎝0

0
1

⎞
⎠

q

⊗
⎛
⎝0

0
1

⎞
⎠

q̄⎤
⎦ . (10)

Using Eqs. (9) and (10) in conjunction with Eqs. (5), (1),
and (6), we get the color part of transition probability as

〈rr̄ − bb̄|Hint|ψsinglet〉 = 1√
6

(
Ar

0 − Ab
0

)
and (11a)

〈rr̄ + bb̄ − 2gḡ|Hint|ψsinglet〉 = 1√
18

(
Ar

0 + Ab
0 − 2A

g
0

)
,

(11b)

where Ar
0,A

b
0, and A

g
0 are the diagonal components of the

matrix A′
0(z′

1) − A′
0(z′

2). Equations (11a) and (11b) are the
effective interactions that lead to the excitations of incoming
J/ψ (in the color singlet state of cc̄) to the corresponding
octet state. Due to repulsive Coulombic interaction of q and
q̄ in the octet representation, one may expect that J/ψ may
disintegrate while traversing through a Z(3) wall purely by
color excitation. However, we will see in the next section that
this is not so, and one needs to also consider spatial excitation
of J/ψ due to Z(3) wall.

B. Spatial excitations of J/ψ

We now consider the spatial excitations. The spatial part of
the states is decided by the potential between cc̄ in J/ψ which
is taken as

V (|�r1 − �r2|) = − αsCF

|�r1 − �r2| + Ccnf σ |�r1 − �r2|, (12)

where αs is the strong coupling constant and σ is the string
tension. For J/ψ , we use charm quark mass mc = 1.28 GeV,
αs = π/12, and σ = 0.16 GeV2 [22,23]. CF is the color factor
depending on the representation of the cc̄ state. CF = 4/3 for
singlet state, while CF = −1/6 for the octet states, showing
the repulsive nature of the Coulombic part of the interaction for
the octet states. Ccnf denotes the representation dependence
of the confining part of the potential. For general sources, this
factor follows Casimir scaling [24] for the string tension. For
J/ψ in singlet representation, Ccnf = 1 with the value of σ
used here [22,23]. It is not clear what should be the value of
Ccnf if cc̄ are in the octet representation. As the Coulombic
part of the potential is repulsive for the octet state of cc̄ (with
CF = −1/6), it is not clear if there should be a confining part of
the potential at all in this case for large distances. Early lattice
simulations had indicated some possibility of mildly rising
potential for the confining part for qq̄ in octet representation
[25]. However, recent simulations do not show any such
possibility. At large distances, the net potential between a
q and q̄ in color octet state appears to be independent of
distance [26]. With the repulsive Coulombic part, this implies
a very small value for Ccnf for the confining part. For our
purpose it suffices to assume that in the octet representation,
J/ψ becomes unbound, having repulsive interaction at short
distances.

We have seen above that the form of A0 in Eq. (5) only
allows for transition from color singlet to two of the color
octet states given in Eqs. (9) and (10). As we discussed above,
cc̄ in color octet state is unbound. Thus our task should
be to consider transition from initial color singlet J/ψ to
unbound state of cc̄, say in plane waves. However, this also
does not look correct as the initial J/ψ (in the color singlet
state) transforms to a color octet state only as it traverses
the Z(3) wall [as coefficients a and b in Eq. (5) undergo
spatial variations]. Thus during the early part of the passage
of J/ψ through the wall, it should be dominantly in the
singlet state (which is a bound state) and it will be incorrect
to consider transition to unbound, plane wave states of cc̄ at
this stage. Only at later stages, when the octet component is
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dominant, it may be appropriate to consider repulsive potential
in Eq. (12) and unbound cc̄ states for the transition probability.
This means that the perturbation term should appropriately
account for the growth of octet component for the potential
in Eq. (12), along with a continuing singlet component with
corresponding singlet potential in Eq. (12). This clearly is a
complex issue, and a proper account of appropriate potential
for this type of evolution of J/ψ cannot be carried out in
simple approximation scheme considered here. We make a
simplifying assumption that J/ψ becomes unbound only when
it transforms to the octet representation after its interaction
with the Z(3) wall. Until then it is assumed to be in the color
singlet representation. Thus, in the calculations of the spatial
excitation of the J/ψ state below, we use the cc̄ potential
[Eq. (12)] in the color singlet representation. The underlying
physics is that incoming J/ψ is in the color singlet state,
and it interacts with Z(3) wall, which excites it to higher
state (spatial excitation), still in color singlet potential. While
traversing the Z(3) wall, and undergoing this spatial excitation,
the J/ψ state also transforms to color octet state. The final
state, after traversing the Z(3) wall, is spatially excited state in
color octet representation, and our calculations give probability
for this final state. This final octet state is unbound and
hence such excited J/ψ disintegrates. We emphasize that
at this stage our aim is to point out the new possibilities of
disintegration of J/ψ with Z(3) walls and this simplifying
assumption should not affect our qualitative considerations
and approximate estimates. We hope to give a more complete
treatment in future. Thus, we continue to use the color singlet
potential in Eq. (12), while considering the spatial excitation
of J/ψ .

Since the potential is central, we perform coordinate
transformations

�Rcm = �r1 + �r2

2
and �r = �r1 − �r2, (13)

where �r is the relative coordinate between q and q̄. �Rcm is the
center of mass of J/ψ . Using Eq. (13) with Eq. (1), we get

Ar
0 = γA11

0 [γ (z′
1 + vt ′)] − γA11

0 [γ (−z′
2 + vt ′)]. (14)

z′
1 and z′

2 are written in terms of �Rcm and �r . Similar
expressions can be obtained for Ab

0 and A
g
0 . In the above

coordinates, the J/ψ wave function is �( �Rcm)ψ(�r). For
simplicity, we assume that the center-of-mass motion re-
mains unaffected by the external perturbation. Then �( �Rcm)
has the plane wave solution, while ψ(�r) can be written
ψ(r,θ,φ) = ψ(r)Ym

l (cos θ,φ). As J/ψ is the l = 0 state, we
have

ψi = ψ(r)Y 0
0 and ψj = ψn(r)Ym

l (cos θ,φ). (15)

The radial part, ψ(r), is obtained by solving radial
part of Schrödinger equation with effective potential given
by

V (r) = −αsCF

r
+ Ccnf σ r + l(l + 1)

2μr2
, (16)

where μ is the reduced mass. When we use Eqs. (11), (14),
and (15) in Eq. (3), we get one of the terms as

∫ ∞

−∞
ψ∗

j Ar
0ψid�r1d�r2

=
∫ ∞

0

∫ 1

−1

∫ 2π

0
ψ∗

n (r)Ym∗
l (cos θ,φ)Ar

0

×Y 0
0 ψ100(r)r2drd(cos θ )dφ. (17)

In the above equation, we have ignored the motion of the
center of mass of charmonium and have considered only the
relative coordinate. Under cos θ → − cos θ,Ar

0 → −Ar
0 and

ψi does not change. So if Ym
l (cos θ,φ) = Ym

l (− cos θ,φ) then
the right-hand side of Eq. (17) is zero. Thus we do not get
any transition to a state which is symmetric under cos θ →
− cos θ . This has very important significance. While the color
part prohibits the transition to singlet final states, the space
dependence of interaction forbids the transition to the l = 0
state (in color octet). Thus we see that purely color excitation
of J/ψ due to A0 field of a domain wall is not possible. The
excitation is possible to the first excited state of an octet (like
an “octet χ” state). As the excited state will have a radius
larger than the l = 0 state it is more prone to melting in the
medium (though with color octet composition, the final state
becomes unbound anyway).

III. RESULTS

We numerically compute the integral given in Eq. (3)
with various parameters given after Eq. (12). The profile
of A0 is calculated from the profile of the Polyakov loop
order parameter for a Z(3) domain wall at a temperature
T = 400 MeV (as a sample value). The details of this are
given in Ref. [19]. As explained there, the resulting profile
is very well fitted by the functional form p tanh(qx + r) + s;
see Fig. 1.

We calculated the wave functions for various states of
cc̄ with the complete potential given by Eq. (16). For the
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FIG. 1. (Color online) A0 profile across the Z(3) domain wall for
T = 400 MeV. Only (1,1) component is shown. Other components
are similar. See Ref. [19] for details.
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FIG. 2. (Color online) Wave functions for J/ψ(l = 0) and
χ (l = 1) states.

calculation of the wave functions for various states of cc̄
we have used Numerov method for solving the Schrödinger
equation. We have also used energy minimization technique
to get the wave functions and the bound-state energy, and the
results obtained by both the methods match very well. Figure 2
shows the radial part of the wave function for the l = 0,1 states
of charmonium. The bound-state contributions to the energy
(excluding the rest mass of quarks) are found to be E0 =
0.447 GeV for J/ψ and E0 = 0.803 GeV for χ state (l = 1).
We see from Fig. 2 that the radius of J/ψ is about 0.5 fm
while that for χ is about 0.8 fm. Debye length in QGP at T =
200 MeV is rd ∼ 0.6 fm and smaller at higher temperatures.
Thus χ state is unstable and it should melt easily in
the medium (apart from the fact that in color octet state
it also becomes unbound). Figure 3 shows the combined
probability of transition to both the color octet χ states
[Eqs. (9) and (10)] for an incoming J/ψ with different
velocities moving normal to the domain wall. As we see, the

 0

 0.25

 0.5

 0.75

 1

 0.12  0.16  0.2  0.24

p

v

FIG. 3. (Color online) Probability p of transition of J/ψ to color
octet χ states vs its velocity v. Note that the probability rapidly rises
with v.

probability rapidly rises as a function of velocity. However,
for large velocities the probability of transition becomes
large, making first-order perturbation approximation insuf-
ficient, and one needs more reliable estimates. Thus, the
plot in Fig. 3 should be trusted only for small velocities.
Nonetheless, the trend at higher velocities strongly suggests
that most of J/ψ will disintegrate while interacting with
Z(3) walls.

IV. CONCLUSIONS

These results show that on interaction with a Z(3) domain
wall, a J/ψ particle will make an excitation to a higher
orbital state in color octet representation which is unbound and
will readily melt in the surrounding QGP medium. At higher
energies, the transition probability keeps increasing, making
the first-order perturbation theory inapplicable and the results
are not trustworthy. Nonetheless, this implies that at higher
energies, almost all J/ψ are expected to disintegrate in this
manner. This strong PT dependence of J/ψ disintegration
probability is a distinctive signature of our model wherein
the probability of disintegration of J/ψ is enhanced with
higher PT . This can be used to distinguish this mechanism
from the conventional Debey screening suppression. A very
crucial point in the entire discussion is the Debye screening
of the A0 profile of the domain wall itself as it carries color.
At temperature 400 MeV, the domain wall has a thickness
of ∼1.5 fm and the Debye radius for QGP is ∼0.7 fm.
This means that Debye screening will be effective outside
a sphere of diameter ∼1.5 fm. So we do not expect the
domain wall to be significantly Debye screened. In the above
discussion, we have completely ignored the effects of a thermal
bath (QGP medium) on the potential [Eq. (12)] between cc̄
[22,27]. However, as these effects make the potential between
cc̄ weaker, the charmonium state swells, so it will be even
easier for the interaction to break these bound states. These
temperature effects will also be crucial for other heavier qq̄
states like bottomonium as they have large binding energies.
Another important aspect which has been ignored for the
sake of simplicity, in the above calculations, is the question
of the center-of-mass motion. This assumption is correct
only in an average sense as the average force (�V/�z)
acting on c and c̄ vanishes. This averaging is done over
the thickness �z, which is the thickness of the domain wall
itself. However, as the instantaneous force (∂V/∂z) is nonzero,
there is a nonzero instantaneous acceleration of the center of
mass. A more detailed analysis of the problem is required
to incorporate all these details. One also needs to include
the effects of dynamical quarks leading to explicit breaking
of Z(3) symmetry. We mention that such a disintegration of
J/ψ from a color electric field may not necessarily come
from a background domain wall arising in QGP medium. In
a thermal medium there are always statistical fluctuations.
These gluonic fluctuations will have energy of order ∼T .
Depending on the correlation length of the fluctuation, a
J/ψ passing through it may disintegrate via the mechanism
discussed above. It would be interesting to study the effect
of these thermal gluonic fluctuations on the spectrum of
mesons.
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