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An “event-shape-twist” technique is proposed to study the longitudinal dynamics of harmonic flow, in particular
the effects of rapidity fluctuation and event-plane de-correlation. This technique can distinguish between two
types of rapidity de-correlation effects: a systematic rotation versus a random fluctuation of flow angles along the
rapidity direction. The technique is demonstrated and the magnitude of the two de-correlation effects is predicted
by using a multiphase transport model via a single-particle analysis and a two-particle correlation analysis. An
observed de-correlation can be attributed to a systematic rotation of event-plane angle along the pseudorapidity,
consistent with a collective response to an initial state twist of the fireball proposed by Bozek et al. This rotation
is also observed for several higher-order harmonics with the same sign and similar magnitudes.
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I. INTRODUCTION

High-energy heavy-ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) have created a new form of nuclear matter composed
of deconfined and yet strongly interacting quarks and glu-
ons. This matter exhibits significant azimuthal anisotropy in
its particle production in the transverse plane [1–5]. Such
anisotropy is the result of a collective response of the system
to the asymmetric collision geometry in the initial state and
is well described by relativistic viscous hydrodynamic models
[6]. The particle distribution in azimuthal angle φ is usually
expressed in terms of a Fourier series:

dN

dφ
∝ 1 + 2

∞∑

n=1

vn cos n (φ − �n) , (1)

where vn and �n (event-plane angle, EP, or flow angle)
represent the magnitude and phase of the nth-order flow
harmonic. Initially, these flow harmonics were attributed to
various shape components of the initial geometry, whose
magnitudes and directions can fluctuate strongly event by
event (EbyE), leading to large EbyE fluctuation of vn and �n

[7,8]. However, recent measurement of event-plane correlation
[9,10] and theoretical calculations [11–15] show that the flow
harmonics are also strongly modified by nonlinear mode-
mixing effects in the final state. A central focus of current
research is to understand various types of fluctuations in the
initial state and later time and how these fluctuations influence
the hydrodynamic evolution of the matter in the final state.

Experimentally, the flow coefficients vn are also obtained
by assuming a factorization of the Fourier coefficients of two-
particle angular correlation (2PC) into the product of single-
particle flow coefficients vn [4,5,16,17]:

vn,n

(
pa

T,ηa,pb
T,ηb) = vn

(
pa

T,ηa) vn

(
pb

T,ηb) , (2)
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where coefficients vn,n are obtained by 2PC analysis in relative
azimuthal angle �φ = φa − φb for particle “a” at pa

T and ηa

and particle “b” at pb
T and ηb:

dNpairs

d�φ
∝ 1 + 2

∞∑

n=1

vn,n

(
pa

T,ηa,pb
T,ηb

)
cos n (�φ) . (3)

The factorization relation works as long as flow angles �n are
independent of pT and η.

The information of the EbyE fluctuations is generally
described by the full probability density distribution in terms
of vn and �n [18]:

p(vn,vm, . . . ,�n,�m, . . .) = 1

Nevts

dNevts

dvndvm · · · d�nd�m · · · .
(4)

Initial measurements of a subset of these flow observ-
ables, namely, p(vn) [19] and event-plane correlations
p(�n,�m, . . .) [9,10], have been performed by the LHC exper-
iments. The measured event-plane correlations are reproduced
by EbyE hydrodynamics [15,20] and a multiphase transport
(AMPT) model [21] calculation, providing valuable insights
on the linear and nonlinear effects in the collective evolution.
Additional observables, such as the correlation between vn

and vm [p(vn,vm)], can be further explored [18] by using the
event-shape selection technique [18,22] or cumulant method
[23].

Flow fluctuations not only occur across different events, but
also occur within the same event [24,25]. Due to the presence
of quantum fluctuations, nonlinear effects and initial flow, flow
angles �n can fluctuate as a function of transverse momentum
pT or pseudorapidity η. These intra-event fluctuations can
break the factorization relation (2). The flow angle fluctuation
and the breaking of the factorization in pT space have been
studied extensively. However, experimental study of flow
fluctuations in the longitudinal direction is limited, since most
experimental methods assume flow angle to be independent of
η. Nevertheless, theoretical studies based on either an EbyE
hydrodynamic model [26,27] or a transport model [28] have
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FIG. 1. (Color online) The two scenarios for the rapidity fluctu-
ation of v2: (a) the fluctuation arises from a systematic rotation as
a function of η [30], (b) the fluctuation is random between different
rapidity ranges.

shown that the correlation between flow angles in two η regions
decreases with their η separation. This de-correlation effect
was also explored by the event-shape selection technique in
Ref. [18]: events selected with smaller or larger vm in very
forward η exhibit a strong forward-backward (FB) asymmetry
of vm near midrapidity, and this asymmetry also feeds to other
flow harmonics vn (n �= m) via nonlinear effects [18].

One possible explanation for the event-plane de-correlation
is based on the “torqued fireball” idea, proposed by Bozek et al.
[26] [see Fig. 1(a)]. The idea can be explained briefly below
(with some generalization): Particles in the forward (back-
ward) rapidity are preferably produced by the participants
in the forward-going (backward-going) nucleus (responsible
also for the FB asymmetry of the multiplicity distribution
in p + A collisions). Since the shape and the orientation of
the participating part of the two colliding nuclei fluctuate
semi-independently, the shape of the fireball in forward η
should be more similar to that of the participants in the
forward-going nucleus and vice versa. In other words, if one
calculates the eccentricity εm and participant-plane angle �∗

m

separately for the two nuclei (labeled by the subscript F and
B), then we expect the orientation of the initial fireball along η
to interpolate between (�∗

m)F and (�∗
m)B. The hydrodynamic

expansion of this torqued fireball leads to a torqued collective
flow, resulting in the systematic rotation of the flow angle. This
is a generic initial-state long-range effect, which is naturally
included in the AMPT model [29]. The authors also proposed
a cumulant method to measure this rotation, but the expected
signal is rather small once averaged over many events.

In this paper, we propose an experimental method with
increased sensitivity to the longitudinal flow fluctuation and
de-correlation effects. This method can distinguish between a
continuous rotation of the flow angle with η from a random
fluctuation from one η region to the next region [see Fig. 1(b)].
Our method is based on a simple procedure called “event-shape
twist.” A twist of the mth-order EP angle between the forward
and backward reference pseudorapidity regions, ��m, is
calculated EbyE. Events are then divided in ranges of ��m,
and within each class, the nth-order flow angle �n is then
calculated as a function of η. If the process contributing
to Fig. 1(a) is significant, one expects to observe a gradual
rotation of �n with η in the same direction as ��m. This
procedure preferably selects events with large twist angle
in a particular direction, so the resulting signal is easier
to measure. We show two implementations of the method,
based on either the single-particle distribution or two-particle

FIG. 2. (Color online) The η ranges of the subevents for the
event-shape twist (SB and SF) and for calculating the reference
event-plane angles via Eqs. (7)–(9) (A, B, and C). Note that subevent
SB (A) or SF (C) contains half (a quarter) of the particles randomly
selected from −6 < η < −3 or 3 < η < 6, and subevent B contains
half of the particles randomly selected from −1 < η < 1. The
subevents SB and SF together are also denoted as subevent S.

correlations. The AMPT model [29] is used to validate these
implementations, as well as to provide predictions that can be
compared to experimental data.

II. SINGLE-PARTICLE METHOD

The AMPT model [29] has been used to study the harmonic
flow [31–33]. It combines the initial fluctuating geometry
based on the Glauber model from HIJING and final-state
interaction via a parton and hadron transport model, with the
collective flow generated mainly by the partonic transport.
The initial condition of the AMPT model contains significant
longitudinal fluctuations that can influence the collective
dynamics [18,34–36]. The model simulation is performed
with string-melting mode with a total partonic cross section
of 1.5 mb and a strong coupling constant of αs = 0.33 [32].
This setup has been shown to reproduce the experimental pT

spectra and vn data at RHIC and the LHC [32,37].
The AMPT data used in this study are generated for

b = 8 fm Pb + Pb collisions at the LHC energy of
√

sNN =
2.76 TeV, corresponding to ∼30% centrality. The particles in
each event are divided into subevents along η as shown in
Fig. 2. Five independent subevents labeled SB, SF, A, B, and
C, together with subevent S obtained by combining SB and SF,
are used in the analysis. Note that one half or one quarter of the
particles in −6 < η < −3 (3 < η < 6) are randomly selected
for subevents SB (SF) or A (C), respectively. Furthermore, the
particles in subevents SB and SF are used only for event-shape
selection and are excluded for the vn calculation. This choice
of subevents and analysis scheme ensures that the event-shape
selection does not introduce nonphysical biases to the vn

measurements.
The flow vector in each subevent is calculated as:

⇀
q n = (qx,n,qy,n) = 1

	w
(	(w cos nφ), 	(w sin nφ)),

tan n
n = qy,n

qx,n
, (5)

where the weight w is chosen as the pT of each particle and

n is the measured event-plane angle. Due to finite-number
effects, 
n smears around the true event-plane angle �n. In the
limit of infinite particle multiplicity, the magnitude of the flow
vector defined this way is equal to the weighted average of
vn: (vn)w = 	wvn/	w. In this study, each subevent in Fig. 2
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FIG. 3. (Color online) The 
cut
m distribution in ten qS

m bins with
equal statistics for m = 2 (left panel) and m = 3 (right panel). The
hashed area represents the 10% of the events with largest 
cut

m in each
qS

m bin, and only these events are used in this paper.

has 1000 to 2000 particles, so qn is expected to follow closely
(vn)w.

For each generated event, the qn and 
n with n = 2 to 5
are calculated for the five independent subevents and subevent
S; a total of 48 quantities. For clarity, we use subscript “m”
to denote the mth-order flow vectors from subevent S and
use subscript “n” to denote the nth-order harmonic flow
calculated in the rest of the event. The event-shape selections
are performed for m = 2 and 3 by dividing the generated events
into 10 bins in qS

m with equal statistics. Events in each qS
m bin

is further divided into 10 bins with equal statistics based on
the relative EP angles between SB and SF (hence the word
“twist”):


cut
m = m [
m (SF) − 
m (SB)] . (6)

A significant part of the relative spread between 
m(SB) and

m(SF) reflects the random smearing due to finite multiplicity
in SB and SF. This random smearing effect is expected to be
particularly larger for small qS

m bin, where the corresponding
vm signal is small. Hence it is necessary to select both qS

m and

cut

m .
Figure 3 shows the performance of the event-shape selec-

tion on qS
m and 
cut

m for m = 2 (left) and 3 (right). In general,
the 
cut

m distribution in small qS
m bin is broader as expected.

The 
cut
m distribution is also tighter for m = 2 than that for

m = 3, reflecting the fact that v2 > v3 and hence a smaller
random smearing effect for m = 2. The hashed area selects,
in each qS

m bin, the 10% of the events with largest 
cut
m values.

The results in this paper are obtained entirely from these ten
event classes. Hence they are conveniently referred to by their
bin number in qS

m, with the understanding that each refers to
events with top 10% of 
cut

m values in each qS
m bin.

To investigate the rapidity fluctuation, Fourier coefficients
for particles at η relative to the EP angle in a reference subevent
R ∈ {A,B,C} can be expressed as

vc
n(η) = 〈cos n[φ(η) − �n(ηR)]〉,

(7)
vs

n(η) = 〈sin n[φ(η) − �n(ηR)]〉,
where the average is over all particles at η, then over the
events. If the true event-plane angle �n is independent of η,
then vs

n = 0 and vc
n = vn. However, if the �n angle rotates

along η, then vs
n may not be zero. The change of the EP angle

at η relative to that in R, ��rot
n , can be expressed as

tan
(
n��rot

n

) = 〈sin n[�n(η) − �n(ηR)]〉
〈cos n[�n(η) − �n(ηR)]〉 = vs

n

vc
n

, (8)

where the average is performed over the events. This relation
can also be obtained from the raw EP angle and raw Fourier
coefficients:

tan
(
n��rot

n

) = 〈sin n[φ(η) − �n(ηR)]〉
〈cos n[φ(η) − �n(ηR)]〉

= 〈sin n[φ(η) − 
n(ηR)]〉
〈cos n[φ(η) − 
n(ηR)]〉 = vs,raw

n

v
c,raw
n

, (9)

where we have used the fact that the smearing of 
n around �n

cancels out in the ratio, and hence no EP resolution correction
is needed in calculating the rotation angle n��rot

n . The next
section presents result of n��rot

n (n = 2 to 5) for each event
class selected by the qS

m and 
cut
m (m = 2 and 3) in the hashed

regions of Fig. 3.

III. RESULTS FROM SINGLE-PARTICLE METHOD

The left column of Fig. 4 shows the v
c,raw
2 (η) and v

s,raw
2 (η)

values as well as the rotation angle 2��rot
2 relative to the

EP calculated in subevent A, B, or C. They are obtained
via Eq. (9) for events in the largest qs

2 bin and with largest

cut

2 values. A significant nonzero v
s,raw
2 (η) is observed, which

varies linearly with η; this suggests a systematic rotation of the
EP angle as a function of η for the selected events. The general
trends of ��rot

2 (η) are nearly identical for the three reference
subevents. Similar behavior is also observed for v

s,raw
3 (η) for

events selected with largest qs
3 and 
cut

3 , as shown in the right
column of Fig. 4.

The behavior of vs,raw
n shown in Fig. 4 suggests that the

previously observed rapidity de-correlation of v2 or v3 can be
attributed, at least partially, to a systematic rotation of their
EP angles in η. Clearly, this rotation would also break the
factorization of the 2PC vn,n to the single particle vn in different
rapidity, i.e., vn,n(ηa,ηb) �= vn(ηa)vn(ηb). In this case the vc

n

calculated from the EP method no longer correctly represents
the true flow coefficient. Instead, the raw vn signal can be
estimated by vraw

n = [(vc,raw
n )2 + (vs,raw

n )2]1/2. The results of
this estimate are plotted in the bottom row of Fig. 4, which
shows a much smaller forward-backward asymmetry than the
vc,raw

n (η). The small residual asymmetry, more obvious for
n = 3, may reflect the contribution of the random component
of the rapidity fluctuation [see Fig. 1(b)].

One important issue in the study of flow is the final-state
nonlinear effects, which mixes between harmonics of different
order. Previous event-plane correlation [21] and event-shape
selection studies [18] revealed a strong nonlinear coupling
between harmonics of different order in the AMPT model.
It is natural to ask whether the event-plane rotation effects
shown in Fig. 4 also feed into the higher-order harmonics via
these nonlinear coupling effects. In order to check this, the
vc,raw

n (η), vs,raw
n (η), and n��rot

n for higher-order harmonics are
calculated for events used in Fig. 4. The results obtained with
reference subevent B via Eq. (9) (results from subevents A and
C are similar) are shown in Fig. 5 for m = 2 (left column) and
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FIG. 4. (Color online) The vc,raw
n (η) (top row), vs,raw

n (η) (second
row), rotation angle n��rot

n (third row), and [(vc,raw
n )2 + (vs,raw

n )2]1/2

(bottom row) relative to reference EP angle calculated in subevents
A, B, and C in Eqs. (7)–(9). They are obtained via Eq. (9) for events
selected with largest 
cut

m in the tenth qS
m bin for m = 2 (left column)

and m = 3 (right column).

m = 3 (right column). Clear nonzero, rapidity-odd vs,raw
n (η)

distributions are observed for several higher-order harmonics
with n > m. The magnitudes of vc,raw

n (η) and vs,raw
n (η) both

drop rapidly with increasing n, resulting in n��rot
n values

[from Eq. (8)] that change more slowly with n. Systematic
rotations are also observed for several higher-order harmonics:
For the event-shape twist based on elliptic flow (m = 2),
significant rotations are observed for n = 4 and 5 with a
magnitude similar to that for n = 2, reflecting a nonlinear
coupling of higher-order harmonics to the lower-order har-
monics. Similarly for event-shape twist based on triangular
flow (m = 3), the rotation for n = 5 is coupled to n = 3.

The same procedure is repeated for the other nine qS
m bins

marked in the hashed region of Fig. 3. The vs,raw
n and n��rot

n

are found to vary linearly with η and they all cross zero at
η = 0 similar to what is shown in the middle and third rows
of Fig. 4. The rate of this rotation thus can be quantified by
a linear fit to vs,raw

n and n��rot
n over the region −3 < η < 3

for each qS
m bin. Note that since the rotation angle is small at

midrapidity and vc,raw
n changes slowly with η (see the top row

of Fig. 4), we obtain the following relations for events selected
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FIG. 5. (Color online) The vc,raw
n (top row), vs,raw

n (middle row),
and the rotation angle n��rot

n (bottom row) for events selected with
largest 
cut

m in the tenth qS
m bin, where m = 2 (left column) and m = 3

(right column) and n = 2 to 5. The reference event-plane angle used
in Eqs. (7)–(9) is calculated in subevent B.

on qS
m and 
cut

m :

n��rot
n ≈ tan

(
n��rot

n

) = vs,raw
n (η)

v
c,raw
n (η)

≈ vs,raw
n (η)〈
v

c,raw
n

〉 ,

(10)

κm,n = d
(
n��rot

n

)

dη
≈ d

(
vs,raw

n

)

dη

1〈
v

c,raw
n

〉 ,

where 〈vc,raw
n 〉 is the vc,raw

n value averaged over −3 < η < 3.
Figure 6 shows the values of 〈vc,raw

2 〉, d(vs,raw
n )/dη, and

d(n��rot
n )/dη as a function of qS

2 bin. The value of 〈vc,raw
2 〉

increases continuously for larger qS
2 bin which has a large

v2. The slope of v
s,raw
2 quickly saturates past the fourth qS

2
bin, suggesting that the component responsible for rapidity
de-correlation is nearly independent of the values of qS

2 (or v2)
of the events. Naturally, these behaviors lead to a decreased
rate of rotation d(2��rot

2 )/dη for larger qS
2 bin as shown in

Fig. 6(c).

IV. TWO-PARTICLE CORRELATION METHOD
AND RESULTS

The fact that the amount of rotation is a linear function
of η suggests that this rotation can also be extracted easily
with the two-particle correlation method. In this method, the
definition of the subevents can be simplified as illustrated by
Fig. 7. The partition of qS

m bins is identical to those shown
in Fig. 2, except that the definition of subevent S is different.
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FIG. 6. Left panel shows 〈vc,raw
2 〉, middle panel shows d(vs,raw

2 )/dη, and right panel shows d(2��rot
2 )/dη as a function of the qS

2 bin defined
in the hashed region in the left panel of Fig. 3. The reference event-plane angle used in Eqs. (7)–(9) is calculated in subevent B.

For each event class, the correlation function is obtained as
the ratio of the same-event distribution (S) to the mixed-event
distribution (B) [38]:

C (�φ,�η) = S (�φ,�η)

B (�φ,�η)
, (11)

where the same-event distribution is obtained from pairs of
particles in the same events, and the mixed-event distribution
is obtained by pairing particles from different events to
account for triangle structure in �η due to |ηa,ηb| < 3.

In previous studies, the event-plane angle �n is assumed
to be independent of η, and the Fourier coefficients of the
correlation function can be factorized into vn of the two
particles: C(�φ,�η) ∝ 1 + 	va

nv
b
n cos n�φ. However, if the

event-plane angle rotates linearly in η, then the formula need
to be modified:

C (�φ,�η) ∝ 1 + 2
∑

va
nv

b
n cos

(
n�φ − n��rot

n

)

≈ 1 + 2
∑

va
nv

b
n cos(n�φ − κm,n�η), (12)

where n��rot
n ≈ κm,n�η accounts for the rotation of event-

plane angle for pairs separated by �η in a given qS
m and 
cut

m

event class. A nonzero value of κm,n leads to a phase shift that
increase with |�η|, and the correlation function is no longer
an even function in �φ.

We illustrate the results obtained for event-shape selection
based on m = 2. Figures 8 and 9 summarize the results of 2PC
obtained for the fourth qS

2 bin and the tenth qS
2 bin, respectively.

A clear phase shift is seen in both the two-dimensional (2D)
correlation function and the one-dimensional (1D) correlation

FIG. 7. (Color online) The η range of the subevents for the event-
shape twist (SB and SF over −6 < η < −4 or 4 < η < 6) and the
particles used for two-particle correlation analysis (−3 < η < 3).
The subevents SB and SF together are also denoted as subevent S.

function projected in various �η slice. The rotation [Figs. 8(c)
and 9(c)] is indeed a linear function of �η for all n = 2 to 5,
and rotation for n = 4 and 5 is correlated with that for n = 2.
On the other hand, the rotation for n = 3 is small and slightly
anticorrelated with n = 2. These observations are qualitatively
consistent with the results shown in Fig. 5.

V. DISCUSSION AND SUMMARY

An experimental method has been developed to elucidate
the longitudinal dynamics of the harmonic flow, in particular
the possible effects of rapidity fluctuation and event-plane
de-correlation. This method selects events based on the angle
difference, 
cut

m , between the mth-order event planes in the
forward and backward rapidity, and then measures the rotation
of the nth-order EP angle �n as a function of η near the
midrapidity. This “event-shape-twist” procedure allows us
to distinguish between two competing mechanisms for the
rapidity de-correlation: a systematic rotation versus a random
fluctuation of event-plane angles along the η direction. The
former mechanism is expected to lead to, on an event-by-event
bases, nonzero η- or �η-dependent sine components in the
single-particle azimuthal distribution or in the two-particle
angular correlations. These nonzero sine components can be
used to determine the rotation angle, whose sign and magnitude
are fixed by the twist procedure.

The robustness of the event-shape twist technique is
demonstrated and the magnitude of the two de-correlation
effects is predicted by using the AMPT model, which is
known to contain significant longitudinal fluctuations and EP
de-correlation effects [28,34,35]. A significant rotation of �n

is observed near midrapidity for events selected to have a large
twist angle 
cut

m for m = 2 and 3, and the rotation in �n is
observed to vary linearly with η. This rotation is observed not
only for n = m but also for n > m. For example, a significant
rotation is observed in �4 and �5 for events selected on the

cut

2 , as well as in �5 for events selected on the 
cut
3 . This

behavior is consistent with the effects of nonlinear coupling
between vn of different order, i.e., the coupling of v4 and v5

to v2 and v5 to v3. Furthermore, a significant fraction of the
observed rapidity de-correlation in the AMPT model is found
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FIG. 8. (Color online) (left panel) The two-dimensional correlation function, (middle panel) the one-dimensional correlation function in
different �η slices, and (right panel) the extracted n�rot

n for n = 2 − −5, for events selected in the fourth qS
2 bin with the largest 
cut

2 values.

to arise from a systematic rotation of EP angles along the η
direction; the remaining fraction is consistent with a random
fluctuation of EP angle in η.

The results obtained in this study are qualitatively consistent
with the hydrodynamic response to the initial-state fireball that
is twisted along rapidity, as proposed in Ref. [26]. Our later
study published in a separate paper [39] traces this twist to
the independent fluctuations of the eccentricity vector for the
projectile nucleus and the eccentricity vector for the target
nucleus. This twist is intrinsically a long-range effect despite
of the apparent breaking of the factorization relation (2), and
it naturally predicts a decrease of the ridge amplitude and
broadening of the ridge width at large �η as shown in Fig. 8(b),
which can be measured experimentally. Furthermore, if the
twist effect dominates the longitudinal flow angle fluctuation,
then one would expect larger signal in p + A collisions and
peripheral A + A collisions where the FB asymmetry is bigger,
as well as in lower collision energy at RHIC where the system
is less boost invariant.

The results in this paper focus on the top 10% of the events
with largest twist. Results in other event classes show smaller
twist and relatively larger random fluctuation contribution.
However, since the average twist can always be extracted for

each event class, we can always statically separate the two
contributions. Note that the random fluctuation component
of EP de-correlation could be related to other initial- and
final-state effects, such as initial flow [34] and hydrodynamic
noise [40]; these effects can and should be investigated more
quantitatively in model calculations.

The event-shape twist technique is a promising tool for
studying the longitudinal dynamics of flow fluctuations, in
particular for understanding the origin of the event-plane
de-correlation and for quantifying the factorization of the
harmonic coefficients of the two-particle angular correlations
into a product of single-particle flow coefficients. The main
advantage of the technique is to select preferably events with
large twist angle, so the signal remain large after the ensemble
average. This method can be easily implemented in the
experimental data analysis, as well as theoretical calculations.
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