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Comparison of statistical model calculations for stable isotope neutron capture
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It is a well-observed result that different nuclear input models sensitively affect Hauser-Feshbach (HF) cross-
section calculations. Less well-known, however, are the effects on calculations originating from nonmodel
aspects, such as experimental data truncation and transmission function energy binning, as well as code-dependent
aspects, such as the definition of level-density matching energy and the inclusion of shell correction terms in
the level-density parameter. To investigate these aspects, Maxwellian-averaged neutron capture cross sections
(MACS) at 30 keV have been calculated using the well-established statistical Hauser-Feshbach model codes
TALYS and NON-SMOKER for approximately 340 nuclei. For the same nuclei, MACS predictions have also been
obtained using two new HF codes, CIGAR and SAPPHIRE. Details of these two codes, which have been developed to
contain an overlapping set of identically implemented nuclear physics input models, are presented. It is generally
accepted that HF calculations are valid to within a factor of 3. It was found that this factor is dependent on
both model and nonmodel details, such as the coarseness of the transmission function energy binning and data
truncation, as well as variances in details regarding the implementation of level-density parameter, backshift,
matching energy, and giant dipole strength function parameters.
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I. INTRODUCTION

Information about nuclear reactions is of huge value for a
myriad of applications. At present, transmutation via neutron
reactions is one of the leading avenues of research in the
disposal of long-lived isotopes, produced during nuclear-
reactor fuel cycles. In this context, several new facilities
at neutron sources have been developed, including the γ -
calorimeter DANCE at the Los Alamos Neutron Science
Center [1], n_TOF at CERN [2], GELINA at Institute for
Reference Materials and Measurements [3], and the nELBE
at Helmholtz-Zentrum Dresden-Rossendorf [4]. In addition,
nuclear reactions are an essential input into the production of
isotopes for both medical and fundamental research purposes.
Within this framework, radiative neutron capture on stable
nuclei can be used to produce short-lived products that can
be purposed as tracers and γ -ray sources for targeted medical
therapy and for industrial applications. Nuclear reaction rates
are also the primary ingredient in nucleosynthesis studies.
Neutron capture is of particular importance because it is by
far the most dominant method for synthesizing nuclei heavier
than iron. Indeed, virtually all of the heavy nuclei above iron in
the solar system were produced via either the s(low) or r(apid)
capture of neutrons [5].

Understanding nucleosynthesis processes requires the
knowledge of a vast amount of cross-section information, the
overwhelming majority of which is not experimentally known.
In an attempt to bolster the dearth of experimental data, theo-
retical techniques must be employed to fill in the missing cross
sections. Of crucial importance to the success of theoretical
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efforts, is the development of sound nuclear reaction models.
The Hauser-Feshbach (HF) statistical model [6,7] is one such
approach and has been widely used in nucleosynthesis studies.
The central requirement for the reliable application of the
statistical model is a high level density, usually estimated to be
between five and ten resonances per MeV [8], so that resonance
spacing overlaps and the reaction can be considered in terms
of averaged quantities. There are some limitations to the HF
approach, however. For instance, the level-density criteria may
not be satisfied in light nuclei or for reactions involving nuclei
near closed shells or close to driplines, where the lower Q
values typically mean that compound nuclei are produced with
low excitation energy. To obtain the cross section in these
instances nonstatistical, single-resonance or direct capture
models must be utilized [9]. Cross-section calculations from
HF can, however, be complemented by including a component
from direct capture to bound states. In principle, a full
treatment of the direct capture component should include
calculating the overlap of entrance channel wave function,
the bound-state wave function, and the multipole transition
operator. For s-wave neutron capture, however, it is possible
to take advantage of the 1/

√
E dependence of the cross section

to construct a simple model which can provide an estimate of
the cross section at low energies in the compound nucleus.
The HF picture is also invalid if the incident particle energy is
sufficiently large so that the newly formed compound nucleus
does not fully equilibrate before breaking apart. Reactions
occurring before complete thermodynamic equilibrium are
known as preequilibrium reactions, and must be treated by
other methods [10,11]. For the majority of astrophysical
applications however, preequilibrium contributions to the cross
section can be neglected.

A statistical model calculation requires a number of nuclear
physics inputs, including ground-state properties, such as
masses and deformations, level-density descriptions, particle
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optical potential models, and γ -strength functions, which
characterize the emission and absorption of photons. It is
the various details of these numerous input parameters that
really determine the success of a statistical model calculation.
In principle, it would be possible to tailor each required
input to yield the absolutely best HF description of a specific
reaction. This approach can work well when limited to only
a handful of individual reactions. However, there is a long
tradition of using the HF model as a workhorse for generating
large databases of cross sections and reaction rates for use in
nucleosynthesis studies [12–15], and, provided that the criteria
on level density and reaction energy are met, it is well suited
for this application. The downside, however, is that when
generating a library of reactions, it is simply not feasible to tune
nuclear inputs from reaction to reaction. Instead global models
that reliably describe the requisite nuclear models, preferably
from stability to the driplines, are an outright necessity.

The HF model has become integral to numerous applica-
tions, including nuclear reactor and medical technologies and
nucleosynthesis studies. As a result of the high demand for
good-quality calculations, there is a long legacy of statistical
model codes in the literature. Some of the most prominent
codes used for nucleosynthesis applications today include
SMOKER [14], NON-SMOKER [15,16], TALYS [17], EMPIRE [18],
MOST [19], and SMARAGD [20,21]. In each case, a user
performs a calculation by choosing between various models
for the required nuclear inputs. Though each of these codes
employs the same basic mathematical picture to calculate
cross sections, it is often the case that different code packages
present the user with a different selection of nuclear input
models to choose from. Coupled with this, even where there
is a common component, i.e., the backshifted Fermi gas
model for predicting the level density, it is often the case
that model-specific details, such as the backshift or level-
density parameter, are at variance. An additional complication
stems from the fact that, presumably because of historical
computing considerations, not all codes use the same quantity
of experimental data to perform a calculation. The combination
of these factors make it exceedingly challenging to directly,
and reliably, compare calculations from different HF code
packages. However, because statistical model calculations are
so intrinsic to nuclear applications, a comparative evaluation
of the major aspects of some of the most commonly used
HF codes is worthwhile.

The motivation of this paper is to compare (n,γ ) HF cross
section calculations from four code packages to highlight and
evaluate uncertainties originating from model implementation
details, as well as from nonmodel sources. This is done
in the following sections through the context of radiative
neutron capture reactions, predominantly on stable isotopes.
It is stressed that the aim of this paper is not to produce
an extensive set of neutron capture reactions for use in
nucleosynthesis studies, but rather to provide an evaluation of
cross-section uncertainties arising from model implementation
and nonmodel sources. To this aim the code packages
considered in the present study are: (1) TALYS (version 1.6);
(2) NON-SMOKER; (3) CIGAR (Capture Induced Gamma-ray
Reactions); (4) SAPPHIRE (Statistical Analysis for Particle and
Photon Capture and Decay of High Energy Resonances) [22].

Of these, code packages TALYS and NON-SMOKER have been
used to generate theoretical contributions for some of the
most influential thermonuclear reaction rate libraries in nuclear
astrophysics, BRUSLIB [23] and REACLIB [24]. CIGAR is
based on the well-known SMOKER code [14] and includes an
updated treatment of both the level density and the E1, M1,
and E2 γ -strength functions, as well as the implementation
of the latest experimental mass and nuclear excitation level
data. SAPPHIRE is an independent code which can calculate
both radiative capture and inverse cross sections. Both CIGAR

and SAPPHIRE are new codes that have been developed to
contain an identical set of nuclear input models, the intention
being to investigate the impact on calculations arising from
nonmodel aspects, such as the use of a truncated experimental
data set.

It is informative to evaluate the various HF codes examined
in this study by comparing the calculated cross sections
to a “standard” result. It is advantageous to require an
experimental value as the standard, because this removes any
code-dependent complications that could occur from using
a theoretical value. In practice, the requirement restricts the
present study to nuclei on, or close to, the valley of stability for
which data exist. However, this limitation is not a handicap to
the present aim. Because the present work focuses on radiative
neutron capture, it is natural to use the experimental neutron
capture data contained in the KADoNiS database [25] as the
standard. KADoNiS is a library of Maxwellian-averaged cross
sections, compiled for approximately 350 isotopes, on and
close to the valley of stability, for temperatures ranging from
T = 0.058 GK to T = 1.16 GK. Because it is well known
that HF calculations are not valid for light nuclei, the present
study has focused on nuclei with neutron number N � 20,
comparing the reaction rate to the KADoNiS Maxwellian-
averaged cross sections at 30 keV.

The paper is organized as follows. In Sec. II the general
method for calculating HF cross sections is described, and
the major ingredients for a statistical model calculation are
summarized. Maxwellian-averaged cross sections are also
discussed. Details of the CIGAR and SAPPHIRE codes are
presented in Sec. III. A comparative discussion of the results
from TALYS, NON-SMOKER, CIGAR, and SAPPHIRE are presented
in Sec. IV. Finally, conclusions are summarized in Sec. V.

II. STATISTICAL MODEL

The HF model is centered on the formation of a compound
nucleus, which decays into energetically open channels after
all of the reaction energy been fully shared out among the
compound nucleons. It is generally accepted that over an
energy range of 10 keV–10 MeV, the HF model is valid to
within a factor of about 3 [12,15]. For energies less than
this, not enough levels contribute to the cross section to allow
the calculation of averaged transmission coefficients and so
the validity of the statistical model breaks down. However,
at neutron energies higher than 10 MeV, preequilibrium
reactions, which occur before the compound nucleus has
fully energy equilibrated, begin to contribute to the reaction
cross section. Aside from the energy, angular momentum
and parity, all of the information regarding the formation
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of the compound is lost. The probability that a nuclear
reaction will occur is governed by transmission coefficients:
The transmission coefficient in the entrance channel for the
formation of the compound nucleus and the transmission
function for the corresponding decay into a given exit channel.
The transmission coefficients themselves can be obtained by

solving the Schrödinger equation with an optical nucleon-
nucleus potential, in the case of particles, or a parametrization
of the giant dipole resonance (GDR), in the case of photons
(described in Sec. II B).

In the context of the statistical model, the cross section σij

for the reaction iμ + j → o + mν is given by

σ (iμ(j,o)mν,eij ) = π

k2
ij

(
2J

μ
i + 1

)
(2Jj + 1)

×
∑
J,π

(2J + 1)

×T
μ
j

(
E,J,π ; Eμ

i ,J
μ
i ,π

μ
i ; Ej ,Jj ,πj

)
T ν

o

(
E,J,π ; Eν

m,J ν
m,πν

m; Eo,Jo,πo

)
Ttot(E,J,π )

, (1)

where target nucleus i is in the excited state μ and residual
nucleus m is left in the excited state ν. The spin, parity, and
excitation energy of the compound nucleus are given by J , π ,
and E, respectively. Spin, parity, and energy for a specific state
in i (m) are represented by J

μ
i (J ν

m), π
μ
i (πν

m), and E
μ
i (Eν

m),
respectively, whereas the spin, parity, and energy of j (o) are
denoted by Jj (Jo), πj (πo), and Ej (Eo). kij is the wave number

of the projectile and is equal to kij =
√

2ÂijEc.m./�, where Âij

is the reduced mass and Ec.m. is the center-of-mass energy. The
transmission functions for the formation and decay channels,
as well as the total transmission function for the decay of
the compound nucleus, are represented by T

μ
j , T ν

o , and Ttot,
respectively.

For astrophysical applications, the total cross section
σ (iμ(j,o)m), i.e., summed over all possible residual excitation
states ν, is frequently of more interest than cross sections to
specific J ν

m, πν
m, Eν

m states. In this case, To replaces T ν
o in

Eq. (1), where

To(E,J,π ; Eo,Jo,πo)

=
∑

ν

To

(
E,J,π ; Eν

m,J ν
m,πν

m; Eo,Jo,πo

)
, (2)

and the sum ν is performed over all excited states in m. In
practice, the sum over ν in Eq. (2) can involve a huge number
of terms. Whenever excitation states at energies greater than
Emax

m , the maximum experimentally known energy, spin and
parity become important; the sum must be replaced with an
integral over the level density, ρ(Em,Jm,πm):

To(E,J,π ; Eo,Jo,πo)

=
Eν

m<Emax
m∑

ν

T ν
o

(
E,J,π ; Eν

m,J ν
m,πν

m; Eo,Jo,πo

)

+
∑

Jm,πm

∫ E−E0
m

Emax
m

To(E,J,π ; Em,Jm,πm; Eo,Jo,πo)

×ρ(Em,Jm,πm)dEm. (3)

In addition to considering a range of energetically possible
states for the residual nucleus ν, in astrophysical environments
thermal population of the target nucleus i, e.g., iμ, must also
be considered. In this case Eq. (1) must be modified to also
include a sum over μ. In the laboratory, however, where target

nuclei occupy their respective ground states, the sum over μ
can be discounted. Consequently, it is the laboratory cross
section, σ lab

ij = ∑
ν σ (iμ=0 + j → o + mν), which is actually

measured. It is understood that in the context of the present
study the term “cross section” refers to σ lab

ij , and not the cross
section which is obtained by considering the various thermally
populated states of i.

For nuclear astrophysics studies, the reaction rate is a more
useful quantity than the cross section because it accounts for
the velocity distribution of the interacting particles in the
stellar plasma. By folding the Maxwell-Boltzmann velocity
distribution v of reactants i and j with σ lab

ij , the reaction rate
can be expressed as 〈σ lab

ij v〉, the ground-state reaction rate per
particle pair. For neutron capture reactions, however, which
are the subject of the present work, it is customary to express
〈σ lab

ij v〉 in terms of the Maxwellian-averaged cross section
(MACS), defined by

〈
σ lab

ij

〉
T

=
〈
σ lab

ij v
〉

√
2kBT /Âij

, (4)

where kB is the Boltzmann constant and T the temperature. The
quantity under the square root in Eq. (4) is actually the mean
thermal velocity vT at T . For a given temperature, the MACS
differs from 〈σ lab

ij v〉 by a factor of thermal velocity. Typically, it
is the ground-state MACS that is published in literature. There
have been several attempts over the past decades to tabulate
MACS values [26–29]. This has culminated in a collection
of 356 recommended semiempirical and experimental MACS
known collectively as the KADoNiS database [25].

A. Level density

Two descriptions of level density ρ are frequently used, of-
ten in combination and matched at some energy. The first is the
well-known backshifted Fermi gas (BSFG) formula [30]. The
“backshifted” part of the model considers the effect on
the excitation energy E of breaking apart a pair of nucleons, a
phenomena which must occur before individual nucleons can
be excited in the nucleus. Assuming an equiparity of negative
and positive parities, the BSFG level density is determined
from

ρ(U,J,π ) = ρ(U )BSFGS(U,J )

2
, (5)
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where U = E − δ is an effective excitation energy, dependent
on the backshift parameter δ. By including the backshift in the
definition of U and according δ some mass dependence, it can
be used to simulate the odd-even effects in nuclei. The spin
dependence factor is denoted by S(U,J ), and is equal to

S(U,J ) = 2J + 1

2σ
e−J (J+1)/2σ 2

(6)

and

ρ(U )BSFG = 1

12
√

2σ (aU 5)1/4
e2

√
aU , (7)

in which a is a crucial aspect of the level density, known
as the “level-density parameter,” and σ is the spin cutoff
parameter. For the BSFG model, the description of σ includes
a dependence on atomic mass number and excitation energy.
It was demonstrated in Ref. [31] that the current descriptions
of σ agree well where discrete level data is available, but
agreement between predictions strongly deteriorates with
increasing excitation energy. One commonly used description
is based on the assumption of the nucleus as a rigid rotating
spherical body and is given by

σ 2 = 0.0145A5/3

√
U

a
. (8)

Equation (5) is essentially dependent on two quantities,
a and δ. Both parameters can be obtained from fitting
experimental resonance spacing data.

One drawback of the BSFG model, however, is that as
U → 0,ρ → ∞. As a result, the BSFG model is unphysical
for E = δ. A second commonly used model, known as the
constant temperature (CT) model [30], does not suffer from
this limitation. The CT model is based on the observation that
at low energy the number of excitation levels in the nucleus
scales exponentially according to

N (E) = exp

[
E − E0

T

]
, (9)

where E0 is a free parameter and T is the nuclear temperature.
The level density is given by

ρ(U )CT = 1

T
e(E−E0)/T . (10)

In practice, statistical model codes frequently use a composite
of CT and BSFG models. In this approach the CT is used for
excitation energies up to some matching point energy, while
the BSFG model is used for higher energies.

Aside for the BSFG and CT level-density models, there
are a large number of other frameworks for determining level
density on the market. These include the generalized superfluid
model (GSM) [32,33], which takes into account the effects of
superconducting pairs, as well as microscopic and shell-model
Monte Carlo approaches [34–37]. On and close to stability,
good agreement has been found between predictions from
BSFG and microscopic level-density models compared to Do

data [38]. However, for nuclei far from stability, it has been
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FIG. 1. (Color online) E1 107Ag strength function for three com-
monly used models, GLO [42], SLO [40,41], and DLO [43]. For the
depicted GLO curve the initial excitation energy was 7.27 MeV.

shown that strong differences between BSFG and microscopic
level-density predictions can occur [39].

B. Photon-transmission coefficient

The total photon-transmission coefficient is primarily com-
posed of the sum of electric (E1) and magnetic (M1) dipole
terms. Typically, TE1 is described phenomenologically in
terms of the γ -strength function (gSF), where the gSF is a
parametrized Lorentzian representation of the GDR. There
are a few phenomenological descriptions of the GDR that
are commonly used for practical purposes. These include the
Brink-Axel single Lorentzian [40,41] (SLO), the Kopecky-
Uhl generalized, energy-damped Lorentzian [42] (GLO), and
the energy-damped double Lorentzian [43] (DLO). Strength
functions for these three models are shown in Fig. 1 for
the nucleus 107Ag. All three approaches require parametrized
information about the GDR, most frequently the energy EGDR,
cross section σGDR, and width �GDR of the GDR.

Aside from the GDR parameters, the GLO representation
also requires the nuclear temperature of the final state reached
after the emission, or absorption, of a photon. In the GLO
formalism TE1 is expressed as a function of γ -ray energy
according to

TE1(Eγ ) = 2πEγ

σGDR�GDR

3π2�2c2

[
Eγ �(Eγ )(

E2
γ − E2

GDR

)2 + E2
γ �(Eγ )2

+ 0.7�GDR4π2T 2

E5
GDR

]
. (11)

The inclusion of a temperature-dependent term prevents the
γ -strength function from approaching zero in the limit of zero
energy, but finite temperature. One disadvantage of using a
Lorentzian to represent the γ -strength function is that the
parametrization overestimates the strength below the neutron
threshold. To account for the overestimate, the tail of the
Lorentzian is usually damped at low energy [44]. For the GLO
model this is achieved through the use of an energy-dependent
width,

�(Eγ ) = �GDR
E2

γ + 4π2T 2

E2
GDR

. (12)
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In the DLO formalism, TE1(Eγ ) is obtained from

TE1(Eγ ) = 2π
σGDR�GDR

3π2�2c2

1 + χ

3

× E4
γ �(Eγ )(

E2
γ − E2

GDR

)2 + E2
γ �(Eγ )2

, (13)

where χ = 0.2 is the neutron-proton exchange term. Energy
damping in the DLO model is facilitated by the term

�(Eγ ) =
√

Eγ

EGDR
. (14)

GDR parameters required for Eqs. (11) and (13) can be
obtained from experimental or theoretical databases, e.g.,
RIPL-3 [45]. If no data exist, estimates can be obtained from
models or systematic relations.

Though computationally less expensive, the use of phe-
nomenological descriptions for TE1 does have limitations.
Specifically, deviations from the smooth Lorentzian curve
arising, for instance, from pygmy dipoles, cannot be predicted
from this approach. It has been argued that, for neutron-rich
nuclei, strong pygmy resonances located below the neutron
threshold could have an effect the neutron capture rate [46]. For
a review on pygmy resonances, see Ref. [47], and references
therein. Improved predictive power of microscopic gSF models
far from stability may have the answer to this problem
for reactions on exotic nuclei. However, for the reactions
on or close to the valley of stability considered here, the
shortcomings of phenomenological TE1 must be balanced
against the major simplifying advantage of using an analytic
global relation that can be easily applied to generating large
sets of calculations.

Usually the E1 contribution is considered to be the most
dominant term; however, this assumption may break down
for nuclei located in regions of the chart of the nuclides
for which magnetic rotation has also been observed [48].
Experiments have shown that these nuclei, which tend to be
located in the vicinity of closed shells, exhibit enhanced dipole
strength for γ -ray energies less than 3 MeV [49–52]. Recent
shell-model calculations for the isotopes 94–96Mo indicate that
the additional dipole strength is M1 in nature [53]. As yet,
however, a physical mechanism for understanding the origin
of the additional M1 strength has not been fully established.
Consequently, the implementation of a more reliable M1
strength model into HF codes has yet to be realized. In the
absence of a more complete model, for practical applications
TM1 is normally described in terms of systematics. This
can be done by either (1) normalizing TM1 to TE1 as a
function of atomic mass number, or (2) assuming a simple TM1

∝ E3
γ dependence. Higher terms, e.g., E2, maybe included in

the total photon-transmission coefficient calculation as well;
however, they contribute a trivial amount to the total γ -strength
function.

C. Neutron transmission coefficients

Particle-transmission functions are normally obtained from
solving the Schrödinger equation with an optical model

potential (OMP) for the nucleon-nucleus interaction. His-
torically, the nuclear potential has been described by the
Woods-Saxon shape; however, a Woods-Saxon equivalent
square well (ESqW) has long been used in cross-section calcu-
lations as a convenient way of parametrizing the transmission
function [12,13,54–57].

As a response to the need for an improved approach
to OMP, especially for nuclei far from stability [38], a
semimicroscopic optical model was proposed by [58]. Known
as the JLM semimicroscopic optical model, it is based on
the Brueckner theory of infinite nuclear matter and Reid’s
hard core nucleon-nucleon interaction, folded with the radial
nuclear-matter density of the target. The nuclear-matter density
itself can be obtained from various calculations, provided,
for instance, in Refs. [59–61]. For radiative capture reactions,
however, the cross sections are not very sensitive to the choice
of matter density model.

III. THE CIGAR AND SAPPHIRE STATISTICAL
MODEL CODES

Aside from the HF nuclear input models discussed in the
previous section, HF code packages contain model imple-
mentation details and nonmodel aspects, both of which can
potentially affect the calculations. To investigate the latter,
two statistical model codes have recently been developed
at the University of Notre Dame. SAPPHIRE is a new code,
written in C++, designed primarily to simulate the decay
of excited nuclei via the Monte Carlo technique. SAPPHIRE

generates realistic particle and γ -ray distributions resulting
from the statistical decay of a compound nucleus having a
predefined excitation energy, with decay probabilities based on
the most recent experimental data compilations and state-of-
the-art theoretical models. The code is designed for large-scale
multiprocessing and therefore is ideal for the generation of
the large theoretical data sets often needed to determine
experimental response functions without the need of excessive
approximations. The transmission functions needed to form
the probability distribution functions for Monte Carlo are iden-
tical to those required to calculate HF cross sections; therefore,
the code can be used to calculate astrophysical reaction rates.

CIGAR is a new generation of the well-known SMOKER [14]
code and is written in FORTRAN. CIGAR is tailored specifi-
cally for the large-scale calculation of astrophysical reaction
rates using the statistical model. Both CIGAR and SAPPHIRE

consider a range of projectile nuclei, and include four exit
channels, namely: (particle,n), (particle,p), (particle,α), and
(particle,γ ). SAPPHIRE has the additional ability to calculate
cross sections for photon induced reactions. CIGAR and
SAPPHIRE, when used for cross-section calculations, do not
include preequilibrium reactions, which makes them well
suited to astrophysical studies because in these environments
incident particles have energies that are typically less than
approximately 10 MeV.

Detailed information concerning the numerous requisite
nuclear physics input models used by CIGAR and SAPPHIRE are
available in full elsewhere in the literature. However, salient
aspects regarding the various nuclear model input options are
briefly recapped in the following subsections.
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A. Masses

For the nuclei considered here, masses are from the
Ame2012 atomic mass evaluation [62]. For calculations
involving nuclei further from the valley of stability, if a
required mass is not in the experimental compilation then it
is determined via the finite-range droplet model (FRDM) [63]
mass model. Data for the spins and parities of the relevant
nuclei are supplied by the RIPL-3 database [45]. Whereas
SAPPHIRE utilizes all experimentally known complete level
data before invoking a level-density model, CIGAR truncates the
available data to a maximum of 20 levels before considering
the level scheme complete.

B. Level density

The level-density model included in the CIGAR and SAP-
PHIRE code packages is based on the BSFG model, matched to
the CT formalism at some matching point energy. The CT is
found from the relation

T =
√

aEm

ã(1 + δWe−γEm )
− 2Em

3
, (15)

where ã is defined below, and the matching energy can be
solved from the systematic relation

Em = 2.5 + 150/A. (16)

The level-density model implemented in CIGAR and SAP-
PHIRE is common to the NON-SMOKER statistical model
code. In this model, an excitation-energy-dependent form of
a [32,64] is adopted. The definition of a is given in Eq. (17).
Following the arguments set out in Ref. [8], Eq. (17) has been
implemented in CIGAR and SAPPHIRE using δW , which is the
microscopic energy correction obtained from FRDM [63]. The
parameters α, β, and γ can be constrained by fitting calculated
a to experimental level-density data for a range of nuclei. This
task was performed in Ref. [8]. The backshift is defined as
the average of the neutron and proton pairing gaps, which are
represented in Eq. (17) by �neut and �prot, respectively. The
pairing gaps are obtained from the various binding energies,
BE. The expressions for a and δ are

a = ã

(
1 + δW

1 − e−γU

U

)
,

ã = αA + βA2/3,

δ = 1

2
[�neut(Z,N ) + �prot(Z,N )],

�neut(Z,N ) = 1

2
[2BE(Z,N ) − BE(Z,N − 1) (17)

−BE(Z,N + 1)],

�prot(Z,N ) = 1

2
[2BE(Z,N )

−BE(Z − 1,N ) − BE(Z + 1,N )].

C. Photon-transmission coefficient

There are two shared possibilities for γ -strength function
model which can be invoked in CIGAR and SAPPHIRE. The first

of these is the DLO model, detailed in Ref. [43] and outlined
in Eq. (13). The GDR input parameters are obtained from
the methods detailed in Ref. [43]. The second model is the
GLO representation, described in Ref. [42] and summarized
by Eq. (11). When the GLO model is selected, GDR parameters
are taken from the RIPL-3 [45] database. If no data are
available (as is the case, for instance, for Z < 14), required
parameters are calculated as they would be for the DLO
model. For deformed nuclei, the formalism to obtain TE1

[either Eq. (13) or Eq. (11)] is invoked for both sets of GDR
parameters. The total transmission function is then given by
the sum of the two vibrational components, where the sum is
performed by according the higher energy contribution twice
the weight of the other.

The main difference between the two photon-transmission
models is the prediction of the strength close to Sn, as well
as how steeply the strength is predicted to drop off below the
threshold. In general, the DLO model tends to predict more
strength than the GLO model around Sn, but also predicts a
more rapid decline in strength as Eγ → 0 (see Fig. 1).

D. Neutron transmission coefficient

Finally, the semimicroscopic JLM model is included in
CIGAR and SAPPHIRE for the particle optical model (see
Sec. II C). The JLM potential needs to make use of a
radial nuclear-matter density model. In the CIGAR and SAP-
PHIRE calculations, the matter density is obtained from
Ref. [60].

IV. RESULTS AND DISCUSSION

To optimize the accessibility of the present section, it has
been split into two subsections. The first examines the impact
on the MACS arising from nonmodel aspects such as energy
binning and level data truncation. The CIGAR and SAPPHIRE

codes have been used to perform this investigation. The second
section examines the impact on the calculations arising from
model implementation details, such as level-density parameter,
backshift, and GDR parameters and uses the CIGAR and TALYS

codes and results from the NON-SMOKER code.

A. Nonmodel aspects

To investigate numerical effects arising from nonmodel
aspects, the CIGAR and SAPPHIRE codes were used to calculate
MACS at kT = 30 keV for ≈345 isotopes in the KADoNiS
library [25]. Both sets of calculations were performed using the
identically implemented nuclear input models: BSFG + CT
level density, the JLM OMP, and the GLO γ -strength function.
Only the ground-state cross sections (i.e., σ lab

ij ) were used in
the calculation of the MACS. Shown in Fig. 2 in red and
blue, respectively, are the SAPPHIRE and CIGAR MACS as
a percentage difference to the KADoNiS values (〈σv〉calc −
〈σv〉exp/〈σv〉exp) × 100. Plotting the percentage difference to
the experimental values, rather than the absolute ratio, displays
the results on a clearer, linear scale. Overall, both SAPPHIRE

and CIGAR reproduce the data well; calculations are typically
within a factor of 3 of the experimental MACS, which is in line
with currently accepted HF uncertainties. Results from both
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FIG. 2. (Color online) Red and blue points correspond to the per-
centage difference of kT = 30 keV MACS, calculated with SAPPHIRE

and CIGAR, respectively, to the KADoNiS database. Calculations
were performed using the γ -strength function from Ref. [42], the
CT + BSFG level density with parameters from Ref. [8], and the
optical model from Ref. [58].

codes show that the largest deviations with the experimental
values is around closed shells. Near closed shells, where
Q values are low, the assumption of many closely spaced
resonances in the compound nucleus is called into question.
Consequently, the statistical model is not wholly applicable
and performs poorly in those regions.

However, some minor differences in individual calculations
can be observed between results from the two codes. Because
the input models were the same, these variations can be
attributed to computational differences between the codes.
The differences are (i) the number of experimental levels J ,
with definite parity π , that are adopted for use in Eq. (2)
before invoking a level-density model; and (ii) the coarseness
of the transmission function energy grids. Statistical model
Monte Carlo requires fine energy grids, whereas CIGAR has an
energy binning optimized for the speed of calculation, which
may not be ideal for all transmission function shapes. The
impact of the coarser energy binning in CIGAR is particularly
visible for nuclei with neutron numbers less than 40, where
large differences between SAPPHIRE and CIGAR calculations are
evident. In these cases, where it may not be wholly appropriate
to use CIGAR with the GLO γ -strength function, SAPPHIRE may
produce more accurate results owing to a better approximation
of the integrated transmission function.

To estimate the uncertainty in calculations arising from
using a truncated Jπ scheme, two sets of identical calculations
were performed using SAPPHIRE. In the first set of calculations,
the truncation on Jπ was dictated by the total amount of
experimental data; i.e., all of the data in the RIPL-3 data
base [45] was used. In the second set of calculations, the Jπ

data was truncated at 20 levels. The results from these two
sets of calculations are compared in Fig. 3. The impact of the
truncation is particularly evident for reactions involving low
level densities, located around closed shells and N < 40. For
these cases, where the statistical model is known to be less
reliable, restricting the amount of Jπ data used in calculations
can affect the value of the theoretical MACS by almost 20%.
That identical models, when used in different codes, can yield
different results indicates that the current HF uncertainties are
not strictly limited to the uncertainties associated with nuclear
physics alone: Numerical effects inherent to a given code can
also have an impact.
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FIG. 3. (Color online) MACS calculated with SAPPHIRE obtained
using truncated J π data, compared to identical calculations performed
using nontruncated J π data. The level data are from RIPL-3 [45].

B. Model implementation

To investigate the impact on the calculation arising from
model implementation details, identical calculations were
performed with the code TALYS [17]. There are a large number
of default nuclear input parameter settings in TALYS, all
of which can be modified. To ensure that the comparison
to Fig. 2 was as fair as possible, the same models were
selected for the TALYS calculations, where available. With
this in mind, the MACS were obtained using the CT + BSFG
level-density formalism, as outlined in Sec. II A, as well as
the GLO γ -strength function. By default, TALYS normalizes
the γ -ray transmission coefficients to the average radiative
capture width at the neutron threshold. This setting was
initially disabled for the calculations presented here, so that
the γ -strength function came directly from GDR parameters.
Also by default, TALYS uses an experimentally derived level-
density parameter a, if available. In the spirit of focusing the
investigation on theoretical inputs only, this default was also
initially disabled so that systematic formulas were used to
obtain the requisite level-density input parameters (e.g., a,
δ). Last, the particle-transmission functions were calculated
using the semimicroscopic JLM optical potential, outlined in
Sec. II C. In TALYS, the radial matter densities required by
JLM are calculated with either the HFB-Skyrme or the HFB-
Gogny interactions. TALYS uses only microscopic spherical
contributions in the optical model calculation, but coupling
to collective states, where such information exists, is also
included by default in the total optical potential. For nuclei
that have a coupling scheme, the inclusion of collective
effects in the OMP increases the MACS by an amount which
depends on the additional contribution to the transmission
coefficient.

Plotted in solid blue circles in Fig. 4 are the TALYS MACS
as a percentage difference to KADoNiS data. Comparing these
points to those in Fig. 2 indicate that there are a number
of differences between results from CIGAR (SAPPHIRE) and
TALYS. Though all codes were operated using the CT + BSFG
formalism, there are still deviations concerning precisely how
the level density model has been applied; implementation of
the matching energy between CT and BSFG, as well as the
formalism for the spin cutoff parameter, the level-density
parameter a and the backshift are not identical between
the code packages. The sources and impact of the model
implementation details are now discussed. For each difference
investigated and presented below, the parameter of interest
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FIG. 4. (Color online) Percentage difference of kT = 30 keV
MACS calculated with TALYS, compared to the KADoNiS database.
For solid circles, calculations have been performed using the γ -
strength function from Ref. [42], the CT + BSFG level density with
parameters from Ref. [17], and the optical model from Ref. [58]. Open
circles represent identical calculations; however, the TALYS default to
use experimental level-density data has been adopted.

(i.e., matching energy, a, etc.) was first calculated for all of the
nuclei using the TALYS code. The values of these parameters
were then input directly in to the CIGAR code and used in new
MACS calculations. The new CIGAR calculations were then
compared to the original, “base” ones presented in Fig. 2. For
optimum accessibility, listed below are each of the parameters
investigated, along with a brief discussion of the respective
impact. The convention adopted for Figs. 5, 6, 8, and 9 is as fol-
lows: Blue points refer to the ratio TALYSparameter/CIGARparameter

and are plotted on the left axis, whereas red points indicate the
ratio of MACSCIGAR+TALYSparameter/MACSCIGAR and plotted on
the right axis. For Fig. 7, the absolute value of the parameter is
plotted on the left axis, the ratio of the MACS to the KADoNiS
MACS are plotted on the right.

(1) Temperature. Shown in Fig. 5 is the ratio of the TALYS

to CIGAR/SAPPHIRE CT. The TALYS CT is typically
between ≈80% and 120% of the CIGAR/SAPPHIRE

values, with larger deviations visible around closed
shells. The ratio of the rates plotted on the right-hand
axis shows that the rates are very insensitive to the CT:
Even the largest temperature deviations result in no
more than 5%–10% change in the MACS.

(2) CT-BSFG matching point energy. The ratio of the
TALYS CT-BSFG matching energies to those used in
CIGAR/SAPPHIRE are shown in Fig. 6. In general, TALYS

does not obtain Em systematically; instead, an iterative
procedure is used to solve for matching energy [17].
Aside from a handful of examples, the matching point
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FIG. 5. (Color online) Left axis: Ratio of CT T calculated by
TALYS to those calculated by CIGAR/SAPPHIRE using Eq. (15). Right
axis: Ratio of CIGAR MACS using TALYS T to base CIGAR calculations.
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FIG. 6. (Color online) Left axis: Ratio of matching energies Em

calculated by TALYS to those calculated by CIGAR/SAPPHIRE using
Eq. (16). Right axis: Ratio of CIGAR MACS using TALYS Em to base
CIGAR calculations.

energies used in TALYS are on average 50% larger
than those obtained from Eq. (16). Compared to the
CIGAR base MACS, calculations using TALYS Em are,
on average, 13% smaller.

(3) Backshift. For the CT option in TALYS, δ is found from
the systematic formula

δ = χ
12

A1/2
, (18)

where χ = 0, 1 or 2, for odd-odd, odd-even, or even-
even isotopes, respectively. In CIGAR (SAPPHIRE), δ is
determined from mass differences between neighbor-
ing nuclei [8]. As shown on the left axis in Fig. 7, the
backshift obtained by these two different models varies
from nucleus to nucleus, but can be a few MeV. The
right axis of the figure shows the ratio of the MACSs
obtained with each of the backshift models to the
KADoNiS data: Open blue circles show the ratio of the
cigar calculations using Eq. (17), open red circles show
the ratio using cigar with Eq. (18) instead. Roughly, δ
obtained from Eq. (18) result in MACSs that are 50%
smaller than those calculated using Eq. (17).

(4) Level-density parameter. First, TALYS uses different
values to CIGAR (SAPPHIRE) for the global parame-
ters α, β, and γ required to find a from Eq. (17).
Second, TALYS determines δW from differences be-
tween experimental and liquid drop masses, not the
FRDM microscopic energy corrections used by CIGAR

(SAPPHIRE). As shown on the left axis in Fig. 8,
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FIG. 7. (Color online) Left axis: Backshift as calculated in
cigar(sapphire) using Eq. (17) (solid blue circles), and talys using
Eq. (18) (solid red circles). Right axis: Ratio of CIGAR MACS to
KADoNiS values. Open blue circles were obtained using Eq. (17);
open red circles were obtained using Eq. (18).
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FIG. 8. (Color online) Left axis: Ratio of level-density parameter
a at Sn calculated by TALYS to those calculated by CIGAR/SAPPHIRE

using Eq. (17). Right axis: Red points show ratio of CIGAR MACS
using TALYS a to base CIGAR calculations.

a(Sn)TALYS > a(Sn)CIGAR(SAPPHIRE). The right axis of the
figure shows how sensitive the MACS calculations
are to a, particularly between shells, where rate
enhancements of up to a factor of 3 are observed.

(5) Spin cutoff parameter. The default model for σ 2 in
TALYS is given by

σ 2 = 0.013 89A5/3

ã

√
aU, (19)

whereas in CIGAR/SAPPHIRE it is given by Eq. (8).
Around closed shells, the spin cutoff parameter from
Eq. (19) is lower than that from Eq. (8), which, through
Eq. (7), results in higher capture cross sections. The
opposite is true between magic numbers. As shown in
Fig. 9, the difference in the MACS from using either
Eq. (19) or Eq. (8) can be up to 30%.

An additional source of difference between CIGAR (SAP-
PHIRE), on one hand, and TALYS, on the other, concerns the
parameters that enter into the GDR calculation. TALYS uses a
combination of experimental, where possible, and systematic
data for GDR widths and energies. CIGAR and SAPPHIRE, how-
ever, use the theoretical compilation of Ref. [45]. Typically,
the parameters used by CIGAR and SAPPHIRE are less than those
used in TALYS calculations: EGDR can be up to approximately
20% smaller, whereas �GDR maybe within a factor of 2. Shown
as open blue circles in Fig. 10 are the percentage difference to
KADoNiS for MACSs calculated using the CIGAR code with
the TALYS parameters. For comparison, the solid blue circles
reproduce the original CIGAR calculations, shown in Fig. 2. In
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FIG. 9. (Color online) Left axis: Ratio of the spin cutoff param-
eter σ calculated by TALYS to those calculated by CIGAR/SAPPHIRE

using Eq. (8). Right axis: Red points show ratio of CIGAR MACS
using TALYS σ 2 to base CIGAR calculations.
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FIG. 10. (Color online) Percentage difference of kT = 30 keV
MACS calculated with CIGAR, compared to the KADoNiS database.
Solid blue circles have been calculated with GDR parameters from
the theoretical compilation of Ref. [45]; open blue circles are identical
calculations obtained using the experimental GDR parameters from
Ref. [45].

general, the different GDR parameter sources result in only a
few percent difference for any given nucleus.

As already mentioned, by default a great deal of ex-
perimental data can be used in a TALYS calculation. This
includes experimental GDR parameters and the normalization
of γ -ray transmission coefficients to average radiative capture
widths, as well as experimental level-density data from s-wave
capture neutron-resonance spacing and discrete levels data.
Though disabled in the present study, for the majority of
TALYS calculations appearing in the literature these defaults
are usually adopted. For the sake of completeness, shown as
open blue circles in Fig. 4 are TALYS MACSs at 30 keV as
a percentage difference to KADoNiS values, obtained using
the various experimental inputs. Because most often TALYS

is used with default settings invoked, the γ -ray transmission
coefficient normalization factor, which was disabled for the
solid blue circles, was also enabled. This means that the
γ -strength function was scaled to the average radiative capture
width at the neutron threshold. The (n,γ ) rate is extremely
sensitive to the γ -ray transmission functions. Enabling this
scaling parameter is the reason why the two sets of calculations
look so different and why, for some nuclei, the agreement with
KADoNiS MACS appears to be poorer with data included.

In addition to TALYS, CIGAR, and SAPPHIRE, calculations
have also been compared to results from the NON-SMOKER

code. Like CIGAR, NON-SMOKER also uses a Jπ level scheme
truncated to a maximum of 20 discreet levels. Depicted in
Fig. 11 are NON-SMOKER MACS as a percentage difference
to values in the KADoNiS database. Unfortunately, because
the NON-SMOKER results are only available in tabulated form,
it is not possible to perform calculations using a variety of
models. However, because the NON-SMOKER database has
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FIG. 11. (Color online) Percentage difference of kT = 30 keV
MACSs calculated by NON-SMOKER. Rate data taken from Ref. [65].
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been generated using the CT + BSFG level density with a
and δ from Eq. (17), as well as the JLM optical model, the
only major difference with CIGAR (SAPPHIRE) calculations is
the γ -strength function. NON-SMOKER uses the DLO model,
Eq. (13), where the required parameters are calculated via the
methods set out in Ref. [43]. At low energies the γ -strength
function is known to deviate from a Lorentzian representation.
The additional energy damping is accounted for through the
energy-dependent width, �(Eγ ), discussed in Sec. II B. As
shown in Fig. 1, around the neutron threshold the DLO model
overestimates the γ -strength function compared to the GLO
representation. As a result, cross sections calculated using the
DLO model tend to be larger.

The choice of γ -strength function has a significant impact
on the MACS. Within the framework of HF theory, σ (n,γ ) ∝
TnTγ

Ttot
, where Ttot represents the transmission to all possible en-

ergetically accessible channels. The transmission coefficients
can be related to the average widths via T = 2πρ〈�〉, so that
σ (n,γ ) ∝ 〈�n〉〈�γ 〉

�tot
. In general, 〈�n〉 > 〈�γ 〉 so that the neutron

width dominates the photon width in the numerator. However,
the neutron width is also the major constituent of the total
transmission, so 〈�n〉 cancels out with �tot in the denominator,
leaving σ (n,γ ) ∝ 〈�γ 〉. Consequently, for the (n,γ ) reactions
considered here, knowledge of the γ -strength function is more
crucial than information on the neutron optical model, and
cross sections tend to be less sensitive to choice of particle
OMP [66]. For nuclei close to and on the valley of stability,
enhancements and structure observed on the low-energy tail
of the γ -strength function can wash out over the entire cross
section [67]. However, for neutron-rich nuclei enhancement
of the dipole strength below 3 MeV could have significant
consequences [68].

V. CONCLUSIONS

It is widely accepted that HF calculations are uncertain
to within a factor of three. That the selection of different
nuclear models sensitively affects the HF calculations is
well known. Presented here are the uncertainties from two
sources, implementation details regarding specific models and
nonmodel aspects. To investigate the latter uncertainties, two

codes were developed, CIGAR, SAPPHIRE. The codes were
designed to contain an identical set of nuclear inputs, e.g.,
level density, γ -ray strength function, and particle optical
model, implemented with identical details, i.e., backshift,
level-density parameter, GDR parameters, etc. By calculating
MACSs for 340 isotopes in the KADoNiS database, variations
between code calculations highlighted the uncertainties stem-
ming from truncated data use and coarse transmission function
energy binning. It was found that truncating the quantity of
excitation level data in the SAPPHIRE calculation could result
in as much as a 20% decrease in the calculated MACS. It was
also observed that the speed-optimized, but coarse, energy
binning can underestimate MACS, particularly for nuclei with
low level densities.

To investigate the uncertainties associated with model
implementation details, MACS calculations from CIGAR,
TALYS, and NON-SMOKER were compared. Though in all cases
MACSs were calculated using the same basic nuclear input
models, there are still major differences regarding how back-
shift, level-density parameter, BSFG-CT matching energy,
spin-cutoff parameter, and GDR parameters are obtained.
Of the differences investigated in the present study, it was
found, somewhat expectantly, that variations in the parameters
entering into the BSFG level-density model were the most
important. Of these, variations in level-density parameter were
the most crucial, affecting the MACS calculations by up to a
factor of three.

In the framework of calculating MACS at 30 keV, the
present paper has attempted to highlight some of the crucial
differences between the commonly used HF codes TALYS and
NON-SMOKER. It is hoped that comparing input models and
calculations from these two code packages will assist future
users in interpreting their results.
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Allmond, M. S. Basunia, J. T. Burke, P. Fallon, R. B. Firestone,
B. L. Goldblum et al., Phys. Rev. Lett. 108, 162503 (2012).

[51] A. Voinov, E. Algin, U. Agvaanluvsan, T. Belgya, R. Chankova,
M. Guttormsen, G. E. Mitchell, J. Rekstad, A. Schiller, and
S. Siem, Phys. Rev. Lett. 93, 142504 (2004).

[52] A. Voinov, S. M. Grimes, C. R. Brune, M. Guttormsen, A. C.
Larsen, T. N. Massey, A. Schiller, and S. Siem, Phys. Rev. C 81,
024319 (2010).

[53] R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys. Rev.
Lett. 111, 232504 (2013).

[54] G. Michaud, L. Scherk, and E. Vogt, Phys. Rev. C 1, 864
(1970).

[55] G. Michaud and W. A. Fowler, Phys. Rev. C 2, 2041 (1970).
[56] G. J. Michaud and E. W. Vogt, Phys. Rev. C 5, 350 (1972).
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