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Analysis of a low-energy correction to the eikonal approximation
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(Received 27 January 2014; revised manuscript received 29 July 2014; published 22 September 2014)

Extensions of the eikonal approximation to low energy (20 MeV/nucleon typically) are studied. The relation
between the dynamical eikonal approximation (DEA) and the continuum-discretized coupled-channels method
with the eikonal approximation (E-CDCC) is discussed. When Coulomb interaction is artificially turned off,
DEA and E-CDCC are shown to give the same breakup cross section, within 3% error, of 15C on 208Pb at
20 MeV/nucleon. When the Coulomb interaction is included, the difference is appreciable and none of these
models agrees with full CDCC calculations. An empirical correction significantly reduces this difference. In
addition, E-CDCC has a convergence problem. By including a quantum-mechanical correction to E-CDCC for
lower partial waves between 15C and 208Pb, this problem is resolved and the result perfectly reproduces full
CDCC calculations at a lower computational cost.
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I. INTRODUCTION

The development of radioactive-ion beams in the mid-
1980s has enabled the exploration of the nuclear landscape
far from stability. This technical breakthrough has led to the
discovery of exotic nuclear structures, like nuclear halos and
shell inversions. Halo nuclei exhibit a very large matter radius
compared to their isobars. This unusual feature is explained by
a strongly clusterized structure: a compact core that contains
most of the nucleons to which one or two neutrons are loosely
bound. Due to quantum tunneling, these valence neutrons
exhibit a large probability of presence at a large distance
from the core, hence increasing significantly the radius of
the nucleus. Examples of one-neutron halo nuclei are 11Be
and 15C, while 6He and 11Li exhibit two neutrons in their
halo. Though less probable, proton halos are also possible.
The exotic halo structure has thus been the subject of many
theoretical and experimental studies for the last 30 years [1,2].

Due to their very short lifetime, halo nuclei must be
studied through indirect techniques, such as reactions. The
most widely used reaction to study halo nuclei is the breakup
reaction, in which the halo dissociates from the core through
the interaction with a target. The extraction of reliable
structure information from measurements requires a good un-
derstanding of the reaction process. Various models have been
developed to describe the breakup of two-body projectiles, i.e.,
one-nucleon halo nuclei (see Ref. [3] for a review).

The continuum-discretized coupled channel method
(CDCC) is a fully quantum model in which the wave function
describing the three-body motion—two-body projectile plus
target—is expanded over the projectile eigenstates [4–6].
For breakup modeling, the core-halo continuum must be
included and hence is discretized and truncated to form an
approximate complete set of states. With such an expansion,
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the corresponding Schrödinger equation translates into a set of
coupled equations [6–8]. This reaction model is very general
and has been successfully used to describe several real and
virtual breakup reactions at both low and intermediate energies
[9–12]. However, it can be very computationally challenging,
especially at high beam energy. This hinders the extension of
CDCC models to reactions beyond the simple usual two-body
description of the projectile. Simplifying approximations, less
computationally demanding, can provide an efficient way to
avoid that limitation of CDCC.

At sufficiently high energy, the eikonal approximation can
be performed. In that approximation, the projectile-target
relative motion is assumed not to deviate significantly from the
asymptotic plane wave [13]. By factorizing that plane wave out
of the three-body wave function, the Schrödinger equation can
be significantly simplified. Both the eikonal CDCC (E-CDCC)
[14,15] and the dynamical eikonal approximation (DEA)
[16,17] are such eikonal models. Note that these models differ
from the usual eikonal approximation in that they do not
include the subsequent adiabatic approximation, in which the
internal dynamics of the projectile is neglected [18].

The E-CDCC model solves the eikonal equation using
the same discretization technique as the full CDCC model.
Thanks to this, E-CDCC can be easily extended to a hybrid
version, in which a quantum-mechanical (QM) correction to
the scattering amplitude can be included for the low orbital
angular momentum L between the projectile and the target.
This helps in obtaining results as accurate as a full CDCC with
a minimal task. In addition, E-CDCC can take the dynamical
relativistic effects into account [19,20], and it has recently been
extended to inclusive breakup processes [21,22].

Within the DEA, the eikonal equation is solved by expand-
ing the projectile wave function upon a three-dimensional
mesh, i.e., without the CDCC partial-wave expansion [16].
This prescription is expected to efficiently include components
of the projectile wave function up to high orbital angular
momentum between its constituents. Moreover, it enables
describing both bound and breakup states on the same footing,
without resorting to continuum discretization. Since DEA
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treats the three-body dynamics explicitly, all coupled-channels
effects are automatically included. Excellent agreement with
the experiment has been obtained at the DEA for the
breakup and elastic scattering of one-nucleon halo nuclei on
both heavy and light targets at intermediate energies (e.g.,
70 MeV/nucleon) [17].

In a recent work [23], a comparison between CDCC and
DEA was performed. The breakup of the one-neutron halo
nucleus 15C on 208Pb has been chosen as a test case. At
68 MeV/nucleon, the results of the two models agree very well
with each other. At 20 MeV/nucleon, DEA cannot reproduce
the CDCC results because the eikonal approximation is no
longer valid at such low energy. It appears that the problem
is due to the Coulomb deflection, which, at low energy
significantly distorts the projectile-target relative motion from
a pure plane wave. Because of the computational advantage
of the eikonal approximation over the CDCC framework, it
is important to pin down where the difference comes from in
more detail and try to find a way to correct it.

The goal of the present paper is to analyze in detail the QM
correction to E-CDCC in its hybrid version to see if it can be in-
corporated within the DEA to correct the lack of Coulomb de-
flection observed in that reaction model. To do so, we compare
E-CDCC and DEA with a special emphasis upon their treat-
ment of the Coulomb interaction. We focus on the 15C breakup
on 208Pb at 20 MeV/nucleon. First, we compare the results of
DEA and E-CDCC with the Coulomb interaction turned off to
show that both models solve essentially the same Schrödinger
equation. Then we include the Coulomb interaction to confirm
the Coulomb deflection effect observed by the authors of
Ref. [23]. We check that the hybrid version of E-CDCC
reproduces correctly the full CDCC calculations, and analyze
this QM correction to suggest an approximation that can be
implemented within DEA to simulate the Coulomb deflection.

In Sec. II we briefly review DEA and E-CDCC, and clarify
the relation between them. We compare in Sec. III the breakup
cross sections of 15C on 208Pb at 20 MeV/nucleon, with
and without the Coulomb interaction. A summary is given
in Sec. IV.

II. FORMALISM

A. Three-body reaction system

We describe the 15C breakup on 208Pb using the coordinate
system shown in Fig. 1. The coordinate of the center of mass
(c.m.) of 15C relative to 208Pb is denoted by R, and r is the
neutron-14C relative coordinate. Rn and R14 are, respectively,
the coordinates of the neutron n and the c.m. of 14C from 208Pb.
We assume both 14C and 208Pb to be inert nuclei. In this study
we neglect the spin of n. The Hamiltonian describing the 15C
structure therefore reads

h = − �
2

2μn14
�r + UnC(r), (1)

where μn14 is the 14C-n reduced mass and UnC is a phe-
nomenological potential describing the 14C-n interaction (see
Sec. III A). We denote by ϕε�m the eigenstates of Hamiltonian
of Eq. (1) at energy ε in partial wave �m, with � the 14C-n

n

14C

R    14

R    n

R

15C

r

208Pb

FIG. 1. Schematic illustration of the (14C + n) + 208Pb three-
body system.

orbital angular momentum and m its projection. For negative
energies, these states are discrete and describe bound states
of the nucleus. For the present comparison, we consider the
sole ground state ϕ0�0m0 at energy ε0 = −1.218 MeV. The
positive-energy eigenstates correspond to continuum states
that simulate the broken up projectile.

To simulate the interaction between n (14C) and 208Pb, we
adopt the optical potential Un (U14) (see Sec. III A). Within
this framework, the study of 15C-208Pb collision reduces to
solving the three-body Schrödinger equation

H�(R,r) = Etot�(R,r) (2)

with the Hamiltonian

H = − �
2

2μ
�R + h + U14(R14) + Un(Rn), (3)

where μ is the 15C-208Pb reduced mass. Equation (2) has to be
solved with the incoming boundary condition

lim
z→−∞ �(R,r) = eiK0z+···ϕ0�0m0 (r), (4)

where K0 is the wave number for the initial projectile-target
motion, whose direction defines the z axis. That wave number
is related to the total energy Etot = �

2K2
0 /(2μ) + ε0. The “· · · ”

in Eq. (4) indicates that the projectile-target relative motion is
distorted by the Coulomb interaction, even at large distances.

In the eikonal approximation, the three-body wave function
� is assumed not to vary significantly from the incoming plane
wave of Eq. (4). Hence the usual eikonal factorization

�(R,r) = eiK0zψ(b,z,r), (5)

where we have explicitly decomposed R in its longitudinal z
and transverse b components. In the following b is expressed as
b = (b,φR) with b the impact parameter and φR the azimuthal
angle of R.

Using factorization Eq. (5) in Eq. (2) and taking into account
that ψ varies smoothly with R, we obtain equations simpler to
solve than the full three-body Schrödinger equation (2). In the
following subsections, we specify the equations solved within
the E-CDCC (Sec. II B) and the DEA (Sec. II C).
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B. Continuum-discretized coupled-channels method with the
eikonal approximation

E-CDCC expresses the three-body wave function � as
[14,15]

�(R,r) =
∑
i�m

ξ̄i�m(b,z)ϕi�m(r)eiKizei(m0−m)φRφC
i (R), (6)

where {ϕi�m} are square-integrable states that describe the
eigenstates of Hamiltonian h Eq. (1). The subscript i labels the
eigenenergy of 15C. The ground state corresponds to i = 0 and
the corresponding wave function ϕ0�0m0 is the exact eigentstate
of h. The values i > 0 correspond to discrete states simulating
15C continuum. They are obtained by the binning technique
[24], viz by averaging exact continuum states over small
positive-energy intervals, or bins. The set {ϕi�m} satisfying

〈ϕi ′�′m′ |h|ϕi�m〉r = εiδi ′iδ�′�δm′m (7)

is assumed to form an approximate complete set for the
projectile internal coordinate r . The plane wave eiKiz contains
the dominant part of the projectile-target motion as explained
above. The corresponding wave number varies with the energy
of the eigenstate of 15C respecting the conservation of energy
Etot = �

2K2
i /2μ + εi . In Eq. (6), φC

i is the approximate
Coulomb incident wave function given by

φC
i (R) = eiηi ln[KiR−Kiz], (8)

where ηi is the Sommerfeld parameter corresponding to the
ith state of 15C

ηi = ZCZTe2μ

�2Ki

, (9)

with ZCe (ZTe) the charge of the projectile (target). The
functions ξ̄ are the coefficients of the expansion Eq. (6) that
have to be evaluated numerically.

Inserting Eq. (6) into Eq. (2), multiplied by ϕi ′�′m′ on the
left, and integrating over r , one gets [14,15]

∂

∂z
ξ̄c(b,z)

= 1

i�vi(R)

∑
c′

Fcc′ (b,z)ξ̄c′(b,z)ei(Ki′ −Ki )zRii ′(b,z), (10)

where the index c denotes i, �, and m together. In E-CDCC,
the projectile-target velocity vi depends on both the projectile
excitation energy and its position following

vi(R) = 1

μ

√
�2K2

i − 2μVC(R), (11)

where

VC(R) = ZCZTe2

R
(12)

is the projectile-target potential that slows down the projectile
as it approaches the target. The coupling potential Fcc′ is
defined by

Fcc′ (b,z) = 〈ϕc|U14 + Un − VC|ϕc′ 〉re
i(m−m′)φR , (13)

and

Rii ′ (b,z) = (Ki ′R − Ki ′z)iηi′

(KiR − Kiz)iηi
. (14)

Within the E-CDCC framework, the boundary condition
Eq. (4) translates into

lim
z→−∞ ξ̄i�m(b,z) = δi0δ��0δmm0 . (15)

C. Dynamical eikonal approximation

In the DEA, the three-body wave function is factorized
following [16,17]

�(R,r) = ψ(b,z,r)eiK0zeiχC(b,z)eiε0z/(�v0), (16)

where χC is the Coulomb phase that accounts for the Coulomb
projectile-target scattering

χC(b,z) = − 1

�v0

∫ z

−∞
VC(R) dz′, (17)

where v0 = �K0/μ is the initial velocity of the projectile. Note
that the phase exp [ε0z/(i�v0)] can be ignored as it has no effect
on physical observables [17].

From the factorization in Eq. (16), we obtain the DEA
equation [16,17]

i�v0
∂

∂z
ψ(b,z,r) = [h + U14 + Un − ε0 − VC]ψ(b,z,r).

(18)

The initial condition of Eq. (4) translates into

lim
z→−∞ ψ(b,z,r) = ϕ0�0m0 (r). (19)

The DEA equation (18) is solved for all b with respect to z
and r expanding the wave function ψ on a three-dimensional
mesh. This allows to include naturally all relevant states of 15C,
i.e., eigenenergies ε up to high values in the n-14C continuum,
and large angular momentum �, and its z-component m. This
resolution is performed assuming a constant projectile-target
relative velocity v = v0. It should be noted that this does not
mean the adiabatic approximation, because in Eq. (18) the
internal Hamiltonian h is explicitly included. The DEA thus
treats properly the change in the eigenenergy of 15C during the
scattering process. However, it does not change the 15C-208Pb
velocity accordingly. This gives a violation of the conservation
of the total energy of the three-body system. However, even
at 20 MeV/nucleon, its effect is expected to be only a few
percent as discussed below.

The calculation of physical observables requires the wave
function � of Eq. (16) at z → ∞ [16,17]. The corresponding
Coulomb phase χC reads [25]

lim
z→∞ χC = 2η0 ln(K0b), (20)

where η0 is the Sommerfeld parameter for the entrance channel
[see Eq. (9)].

D. Comparison between E-CDCC and DEA

To ease the comparison between the DEA and the E-CDCC,
we rewrite the formulas given in Sec. II C in a coupled-channel
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representation. We expand ψ as

ψ(b,z,r) =
∑
i�m

ξi�m(b,z)ϕi�m(r)eεiz/(i�v0)ei(m0−m)φR . (21)

Inserting Eq. (21) into Eq. (18), multiplied by ϕi ′�′m′ from
the left, and integrating over r , one gets

∂

∂z
ξc(b,z) = 1

i�v0

∑
c′

Fcc′ (b,z)ξc′(b,z)e(εi′ −εi )z/(i�v0), (22)

which is nothing but the DEA equation (18) in its coupled-
channel representation.

The boundary condition Eq. (19) thus reads

lim
z→−∞ ξi�m(b,z) = δi0δ��0δmm0 . (23)

Considering the expansion Eq. (21) in the DEA factorization
Eq. (16), the total wave function reads

�(R,r) =
∑

c

ξc(b,z)ϕc(r)e(εi−ε0)z/(i�v0)

× ei(m0−m)φReiK0zeiχC(b,z). (24)

One may summarize the difference between Eqs. (22) and
(10) as follows. First, the DEA uses the constant and channel-
independent 15C-208Pb relative velocity v0, whereas E-CDCC
uses the velocity depending on both R and the channel i that
ensures the total-energy conservation.

Second, whereas the right-hand side of Eq. (22) involves the
phase exp [(εi ′ − εi)z/(i�v0)], the E-CDCC Eq. (10) includes
the phase exp [i(Ki ′ − Ki)z]. The former can be rewritten as

εi ′ − εi

i�v0
z = �

2
(
K2

i − K2
i ′
)

μz

2μ i�2K0
= Ki ′ + Ki

2K0
i(Ki ′ − Ki)z.

(25)

If we can assume the semi-adiabatic approximation

Ki ′ + Ki

2K0
≈ 1, (26)

the exponent Eq. (25) becomes the same as in E-CDCC. In the
model space taken in the present study, Eq. (26) holds within
1.5% error at 20 MeV/nucleon of incident energy.

Third, E-CDCC equation containsRii ′ taking account of the
channel dependence of the 15C-208Pb Coulomb wave function,
which DEA neglects. Nevertheless, it should be noted that,
as shown in Refs. [14,15], the Coulomb wave functions in
the initial and final channels involved in the transition matrix
(T matrix) of E-CDCC eventually give a phase 2ηj ln(Kjb),
with j the energy index in the final channel. Thus, if Eq. (26)
holds, the role of the Coulomb wave function in the evaluation
of the T matrix in E-CDCC is expected to be the same as
in DEA, since DEA explicitly includes the Coulomb eikonal
phase, Eq. (20).

When the Coulomb interaction is absent, we have
Rii ′ (b,z) = 1 and no R dependence of the velocity. Therefore,
it will be interesting to compare the results of DEA and
E-CDCC with and without the Coulomb interaction separately.

TABLE I. Potential parameters for the pair interactions UnC, U14,
and Un [23].

V0 R0 a0 Wv Ws Rw aw RC

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (fm)

UnC 63.02 2.651 0.600 - - - - -
U14 50.00 9.844 0.682 50.00 - 9.544 0.682 10.84
Un 44.82 6.932 0.750 2.840 21.85 7.466 0.580 -

III. RESULTS AND DISCUSSION

A. Model setting

We calculate the energy spectrum dσ/dε and the angular
distribution dσ/d� of the breakup cross section of 15C on
208Pb at 20 MeV/nucleon, where ε is the relative energy
between n and 14C after breakup, and � is the scattering
angle of the c.m. of the n-14C system. We use the potential
parameters shown in Table I for UnC (the n-14C interaction),
U14, and Un [23]; the depth of UnC for the d-wave is changed
to 69.43 MeV to avoid a nonphysical d resonance. The spin
of the neutron is disregarded as mentioned earlier. We adopt
Woods-Saxon potentials for the interactions

Ux(Rx) = −V0f (Rx,R0,a0) − iWvf (Rx,Rw,aw)

+ iWs

d

dRx

f (Rx,Rw,aw), (27)

with f (Rx,α,β) = (1 + exp[(Rx − α)/β])−1; Rx = r , R14,
and Rn for x = nC, 14, and n, respectively. The Coulomb
interaction between 14C and 208Pb is described by assuming a
uniformly charged sphere of radius RC.

Unless stated otherwise, the model spaces chosen for our
calculations give a confidence level better than 3% on the cross
sections presented in Secs. III B and III C. In E-CDCC, we take
the maximum value of r to be 800 fm with the increment of 0.2
fm. When the Coulomb interaction is turned off, we take the
n-14C partial waves up to �max = 10. For each � the continuum
state is truncated at kmax = 1.4 fm−1 and discretized into 35
states with the equal spacing of �k = 0.04 fm−1; k is the
relative wave number between n and 14C. The resulting number
of coupled channels, Nch, is 2311. The maximum values of
z and b, zmax and bmax, respectively, are both set to 50 fm.
When the Coulomb interaction is included, we use �max =
6, kmax = 0.84 fm−1, �k = 0.04 fm−1, zmax = 1000 fm, and
bmax = 150 fm. We have Nch = 589 in this case.

In the DEA calculations, we use the same numerical
parameters as in Ref. [23]. In the purely nuclear case, the
wave function ψ is expanded over an angular mesh containing
up to Nθ × Nϕ = 14 × 27 points, a quasi-uniform radial mesh
that extends up to 200 fm with 200 points, bmax = 50 fm,
and zmax = 200 fm (see Ref. [26] for details). In the charged
case, the angular mesh contains up to Nθ × Nϕ = 12 × 23
points, the radial mesh extends up to 800 fm with 800 points,
bmax = 300 fm, and zmax = 800 fm.
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FIG. 2. (Color online) Energy spectrum of the 15C breakup cross
section on 208Pb at 20 MeV/nucleon with the Coulomb interaction
turned off. The solid and dashed lines show the results obtained by
DEA and E-CDCC, respectively. The result of E-CDCC with �max = 6
is denoted by the dotted line.

B. Comparison without Coulomb interaction

The goal of the present work being to study the difference in
the treatment of the Coulomb breakup between the E-CDCC
and DEA, we first check that both models agree when the
Coulomb interaction is switched off. We show in Fig. 2 the
results of dσ/dε calculated by DEA (solid line) and E-CDCC
(dashed line); dσ/dε is obtained by integrating the double-
differential breakup cross section d2σ/(dεd�) over � in the
whole variable region. The two results agree very well with
each other; the difference around the peak is below 3%.

In Fig. 3 the comparison in dσ/d�, i.e., d2σ/(dεd�)
integrated over ε up to 10 MeV, is shown. The agreement
between the two models is excellent confirming that, when
the Coulomb interaction is turned off, the DEA and E-CDCC
solve the same equation and give the same result, as expected
from the discussion at the end of Sec. II D. In particular
this comparison shows that Eq. (26) turns out to be satisfied
with very high accuracy. It should be noted that the good
agreement between the DEA and E-CDCC is obtained only
when a very large model space is taken. In fact, if we put
�max = 6 in E-CDCC, we have 30% smaller dσ/dε (dotted
line) than the converged value and, more seriously, even the

FIG. 3. (Color online) Same as Fig. 2 but for the angular
distribution.

FIG. 4. (Color online) Energy spectrum of the 15C breakup cross
section on 208Pb at 20 MeV/nucleon including the Coulomb interac-
tion. The solid, dashed, and thin solid lines show the results obtained
by DEA, E-CDCC, and full (QM) CDCC, respectively. The results
obtained with the correction (28) are displayed with a dash-dotted
line for DEA and a dotted line for E-CDCC. The calculation using
the QM correction of E-CDCC, i.e., the hybrid calculation, is shown
by the light-green thin dashed line (superimposed onto the thin solid
line).

shape cannot be reproduced. This result shows the importance
of the higher partial waves of n-14C for the nuclear breakup at
20 MeV/nucleon.

C. Comparison to Coulomb interaction

When the Coulomb interaction is switched on, DEA and
E-CDCC no longer agree with each other. As seen in Fig. 4,
the DEA energy spectrum (solid line) is much larger than the
E-CDCC one (dashed line). Moreover none of them agrees
with the full CDCC calculation (thin solid line): DEA is too
high while E-CDCC is too low. The discrepancy of both models
with the fully quantal calculation manifests itself even more
clearly in the angular distribution. In Fig. 5 we see that not only
do the DEA and E-CDCC cross sections differ in magnitude,
but—as already seen in Ref. [23]—their oscillatory pattern is
shifted to forward angle compared to the CDCC calculation.
To understand where the problem comes from we analyze
in Fig. 6 the contribution to the total breakup cross section

FIG. 5. (Color online) Same as Fig. 4 but for the angular
distribution.
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FIG. 6. (Color online) Contribution to the total breakup cross
section per projectile-target angular momentum L. Neglecting the
Coulomb deflection, DEA and E-CDCC are shifted to large L

compared to the full CDCC. The correction Eq. (28) significantly
reduces this shift for both models.

of each projectile-target relative angular momentum L. As
expected from Figs. 4 and 5, the DEA calculation is larger
than the E-CDCC one, and this is observed over the whole
L range. However, the most striking feature is to see that
both models seem to be shifted to larger L compared to the
full CDCC calculation. To correct this, we replace in our
calculations the transverse component of the projectile-target
relative coordinate b by the empirical value [25,27,28]

b′ = η0

K0
+

√
η2

0

K2
0

+ b2. (28)

The corresponding results are displayed in Figs. 4, 5, and 6 as
dash-dotted lines for DEA and dotted lines for E-CDCC.

The correction Eq. (28) is very effective. It significantly
reduces the shift observed in the L contributions to the breakup
cross section (see Fig. 6). Accordingly, it brings both DEA
and E-CDCC energy spectra closer to the full CDCC one (see
Fig. 4). Note that for this observable the correction seems
better for E-CDCC than for DEA: even with the shift, the
latter still exhibits a nonnegligible enhancement with respect
to CDCC at low energy E. More spectacular is the correction
of the shift in the angular distribution observed in Ref. [23]
and in Fig. 5. In particular, the shifted DEA cross section
is now very close to the CDCC one, but at forward angles,
where DEA overestimates CDCC. Once shifted, E-CDCC still
underestimates slightly the full CDCC calculation. However,
its oscillatory pattern is now in phase with that of the CDCC
cross section, which is a big achievement in itself. This shows
that the lack of Coulomb deflection observed in Ref. [23] for
eikonal-based calculations can be efficiently corrected by the
simple shift Eq. (28) suggested long ago [25,28].

Albeit efficient, the correction Eq. (28) is not perfect. This
is illustrated by the enhanced (shifted) DEA cross section
observed in the low-energy peak in Fig. 4 and at forward
angles in Fig. 5. Both problems can be related to the same root
because the forward-angle part of the angular distribution is
dominated by low-energy contributions. As shown in Ref. [17],
that part of the cross section is itself dominated by large b’s, at

FIG. 7. (Color online) Convergence problem observed in
(shifted) E-CDCC calculations: cross sections computed with
different bin widths do not converge towards the CDCC calculation.

which the correction Eq. (28) is not fully sufficient. As shown
in Fig. 6, the shifted DEA remains slightly larger than the full
CDCC. Future works may suggest a better way to handle this
shift than the empirical correction Eq. (28). Nevertheless, these
results show that this correction provides a simple, elegant,
and cost-effective way to account for Coulomb deflection in
eikonal-based models.

The underestimation of the full CDCC angular distribution
by E-CDCC comes most likely from a convergence problem
within that reaction model. This is illustrated in Fig. 7, showing
the L contribution to the total breakup cross section. The thin
solid line corresponds to the (converged) CDCC calculation,
whereas the other lines correspond to (shifted) E-CDCC
calculations with bin widths of �k = 0.02 (solid line), 0.03
(dashed line), and 0.04 fm−1 (dotted line). As can be seen,
below L ≈ 500� no convergence can be obtained, although
CDCC has fully converged. We cannot expect this model to
provide accurate breakup cross sections. The results displayed
in Figs. 4 and 5 are therefore unexpectedly good. Note that
the present ill-behavior of E-CDCC occurs only when the
Coulomb interaction involved is strong and the incident energy
is low; no such behavior was observed in previous studies
[6,14,15,19,20]. Interestingly, DEA does not exhibit such a
convergence issue. This is reminiscent of the work of Dasso
et al. [29], where it was observed that reaction calculations
converge faster by expanding the wave function upon a mesh
rather than by discretization of the continuum.

The aforementioned results indicate that the shift Eq. (28)
corrects efficiently for the Coulomb deflection, which is
expected to play a significant role at large L. At small L,
we believe the nuclear projectile-target interaction will induce
significant couplings between various partial waves, which
cannot be accounted for by that simple correction. To include
these couplings, a hybrid solution between E-CDCC and the
full CDCC has been suggested [14,15]. At low L a usual
CDCC calculation is performed, which fully accounts for the
strong coupling expected from the nuclear interaction between
the projectile and the target. At larger L, these couplings
are expected to become negligible, which implies that a
(shifted) E-CDCC calculation should be reliable. As explained
in Refs. [14,15], the transition angular momentum LC above
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which E-CDCC is used is an additional parameter of the model
space that has to be determined in the convergence analysis.
Depending on the beam energy and the system studied, usual
values of LC are in the range 400–1000�. In the present case,
due to the convergence issue observed in E-CDCC, the value
LC = 500� is chosen.

The quality of this hybrid solution is illustrated by the
light-green thin dashed lines in Figs. 4 and 5, which are barely
visible as they are superimposed to the full CDCC results. The
coupling of the hybrid solution to the Coulomb shift Eq. (28)
enables us to reproduce exactly the CDCC calculations at a
much lower computational cost since the computational time
for each b with E-CDCC is about 1/60 of that for each L with
full CDCC. In addition, it solves the convergence problem of
E-CDCC.

IV. SUMMARY

With the ultimate goal of understanding the ability of
the hybrid version of the continuum-discretized coupled-
channels method with the eikonal approximation (E-CDCC)
to account for the discrepancy between the dynamical eikonal
approximation (DEA) and the continuum discretized coupled-
channel model (CDCC) observed in Ref. [23], we have
clarified the relation between the DEA and E-CDCC. By
using a coupled-channel representation of DEA equations,
DEA is shown to be formally equivalent to E-CDCC, if the
semi-adiabatic approximation of Eq. (26) is satisfied and the
Coulomb interaction is absent.

We consider the same test case as in Ref. [23], i.e.,
the breakup of 15C on 208Pb at 20 MeV/nucleon. For this
reaction Eq. (26) holds within 1.5% error. When the Coulomb
interaction is artificially turned off, DEA and E-CDCC are
found to give the same result within 3% difference for both the
energy spectrum and the angular distribution. This supports
the equivalence of the two models for describing the breakup
process due purely to nuclear interactions.

Next we make a comparison including the Coulomb interac-
tion. In this case, DEA and E-CDCC no longer agree with each
other and they both disagree with the full CDCC calculation. In

particular, both angular distributions are focused at too forward
an angle, as reported in Ref. [23]. This lack of Coulomb
deflection of the eikonal approximation can be solved using
the empirical shift Eq. (28). Using this shift the agreement
with CDCC improves significantly.

In addition, E-CDCC turns out to have a convergence
problem, which indicates the limit of application of the eikonal
approximation using a discretized continuum to reactions at
such low energies involving a strong Coulomb interaction.
Fortunately, by including a QM correction to E-CDCC for
lower projectile-target partial waves, this convergence problem
is completely resolved. Moreover, the result of this hybrid
calculation perfectly agrees with the result of the full (QM)
CDCC.

The present study confirms the difficulty to properly
describe the Coulomb interaction within the eikonal approx-
imation at low energy. However, it is found that even at
20 MeV/nucleon, the empirical shift Eq. (28) helps correctly
reproducing the Coulomb deflection that was shown to be
missing in the DEA [23]. Including QM corrections within
the E-CDCC leads to a hybrid model that exhibits the same
accuracy as the full CDCC, with a minimal computational cost.
This hybrid calculation will be useful for describing nuclear
and Coulomb breakup processes in a wide range of incident
energies. It could be included in other CDCC programs to
increase their computational efficiency without reducing their
accuracy. This could be an asset to improve the description of
projectiles while keeping reasonable calculation times.
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Moro, I. J. Thompson, and J. A. Tostevin, Phys. Rev. C 80,
051601 (2009).

[13] R. J. Glauber, in High Energy Collision Theory, Lectures in
Theoretical Physics, Vol. 1, edited by W. E. Brittin and L. G.
Dunham (Interscience, New York, 1959), p. 315.

034617-7

http://dx.doi.org/10.1088/0954-3899/22/2/004
http://dx.doi.org/10.1088/0954-3899/22/2/004
http://dx.doi.org/10.1088/0954-3899/22/2/004
http://dx.doi.org/10.1088/0954-3899/22/2/004
http://dx.doi.org/10.1016/j.physrep.2003.07.004
http://dx.doi.org/10.1016/j.physrep.2003.07.004
http://dx.doi.org/10.1016/j.physrep.2003.07.004
http://dx.doi.org/10.1016/j.physrep.2003.07.004
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.65.011602
http://dx.doi.org/10.1103/PhysRevC.65.011602
http://dx.doi.org/10.1103/PhysRevC.65.011602
http://dx.doi.org/10.1103/PhysRevC.65.011602
http://dx.doi.org/10.1103/PhysRevC.68.064607
http://dx.doi.org/10.1103/PhysRevC.68.064607
http://dx.doi.org/10.1103/PhysRevC.68.064607
http://dx.doi.org/10.1103/PhysRevC.68.064607
http://dx.doi.org/10.1103/PhysRevC.70.047604
http://dx.doi.org/10.1103/PhysRevC.70.047604
http://dx.doi.org/10.1103/PhysRevC.70.047604
http://dx.doi.org/10.1103/PhysRevC.70.047604
http://dx.doi.org/10.1103/PhysRevC.80.051601
http://dx.doi.org/10.1103/PhysRevC.80.051601
http://dx.doi.org/10.1103/PhysRevC.80.051601
http://dx.doi.org/10.1103/PhysRevC.80.051601


TOKURO FUKUI, KAZUYUKI OGATA, AND PIERRE CAPEL PHYSICAL REVIEW C 90, 034617 (2014)

[14] K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, and M. Kamimura,
Phys. Rev. C 68, 064609 (2003).

[15] K. Ogata, S. Hashimoto, Y. Iseri, M. Kamimura, and M. Yahiro,
Phys. Rev. C 73, 024605 (2006).

[16] D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502
(2005).

[17] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73, 024602
(2006).

[18] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and
Reactions of Light Exotic Nuclei (Taylor and Francis, London,
2003).

[19] K. Ogata and C. A. Bertulani, Prog. Theor. Phys. 121, 1399
(2009).

[20] K. Ogata and C. A. Bertulani, Prog. Theor. Phys. 123, 701
(2010).

[21] M. Yahiro, K. Ogata, and K. Minomo, Prog. Theor. Phys. 126,
167 (2011).

[22] S. Hashimoto, M. Yahiro, K. Ogata, K. Minomo, and S. Chiba,
Phys. Rev. C 83, 054617 (2011).

[23] P. Capel, H. Esbensen, and F. M. Nunes, Phys. Rev. C 85, 044604
(2012).

[24] M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimurai, and
M. Kawai, Prog. Theor. Phys. Suppl. No. 89, 32 (1986).

[25] C. A. Bertulani and P. Danielewicz, Introduction to Nuclear
Reactions (Institute of Physics, Bristol, England, 2004).

[26] P. Capel, D. Baye, and V. S. Melezhik, Phys. Rev. C 68, 014612
(2003).

[27] C. A. Bertulani, C. M. Campbell, and T. Glasmacher, Comp.
Phys. Comm. 152, 317 (2003).

[28] R. A. Broglia and A. Winther, Heavy Ion Reactions,
Lectures Notes, Vol. 1: Elastic and Inelastic Reactions
(Benjamin/Cummings, Reading, England, 1981).

[29] C. H. Dasso and A. Vitturi, Phys. Rev. C 79, 064620
(2009).

034617-8

http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.73.024605
http://dx.doi.org/10.1103/PhysRevC.73.024605
http://dx.doi.org/10.1103/PhysRevC.73.024605
http://dx.doi.org/10.1103/PhysRevC.73.024605
http://dx.doi.org/10.1103/PhysRevLett.95.082502
http://dx.doi.org/10.1103/PhysRevLett.95.082502
http://dx.doi.org/10.1103/PhysRevLett.95.082502
http://dx.doi.org/10.1103/PhysRevLett.95.082502
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1103/PhysRevC.73.024602
http://dx.doi.org/10.1143/PTP.121.1399
http://dx.doi.org/10.1143/PTP.121.1399
http://dx.doi.org/10.1143/PTP.121.1399
http://dx.doi.org/10.1143/PTP.121.1399
http://dx.doi.org/10.1143/PTP.123.701
http://dx.doi.org/10.1143/PTP.123.701
http://dx.doi.org/10.1143/PTP.123.701
http://dx.doi.org/10.1143/PTP.123.701
http://dx.doi.org/10.1143/PTP.126.167
http://dx.doi.org/10.1143/PTP.126.167
http://dx.doi.org/10.1143/PTP.126.167
http://dx.doi.org/10.1143/PTP.126.167
http://dx.doi.org/10.1103/PhysRevC.83.054617
http://dx.doi.org/10.1103/PhysRevC.83.054617
http://dx.doi.org/10.1103/PhysRevC.83.054617
http://dx.doi.org/10.1103/PhysRevC.83.054617
http://dx.doi.org/10.1103/PhysRevC.85.044604
http://dx.doi.org/10.1103/PhysRevC.85.044604
http://dx.doi.org/10.1103/PhysRevC.85.044604
http://dx.doi.org/10.1103/PhysRevC.85.044604
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1143/PTPS.89.32
http://dx.doi.org/10.1103/PhysRevC.68.014612
http://dx.doi.org/10.1103/PhysRevC.68.014612
http://dx.doi.org/10.1103/PhysRevC.68.014612
http://dx.doi.org/10.1103/PhysRevC.68.014612
http://dx.doi.org/10.1016/S0010-4655(02)00824-X
http://dx.doi.org/10.1016/S0010-4655(02)00824-X
http://dx.doi.org/10.1016/S0010-4655(02)00824-X
http://dx.doi.org/10.1016/S0010-4655(02)00824-X
http://dx.doi.org/10.1103/PhysRevC.79.064620
http://dx.doi.org/10.1103/PhysRevC.79.064620
http://dx.doi.org/10.1103/PhysRevC.79.064620
http://dx.doi.org/10.1103/PhysRevC.79.064620



