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The proton elastic scattering of 9,10,11,12Be isotopes at a wide energy range from 3 to 200 MeV/nucleon is
analyzed using the optical model with the partial-wave expansion method. The microscopic optical potential (OP)
is taken within the single-folded model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon (NN )
interaction is used for the real part and the NN -scattering amplitude of the high-energy approximation is used
for the imaginary one. The surface contribution to the imaginary part is included. The analysis reveals that the
partial-wave expansion with this microscopic OP reproduces well the basic scattering observables at energies up to
100 MeV/nucleon. For higher energies, the eikonal approximation with the same OP gives results better than the
partial-wave expansion calculations. The volume integrals of the OP parts have systematic energy dependencies,
and they are parameterized in empirical formulas. In addition, the volume integral’s parametrizations determine
the true energy dependence for the depths of the OP parts. The study of increasing the number of neutrons for a
given isotope shows that the imaginary volume integrals and reaction cross sections depend on the matter radii
of the scattered nuclei. Further, they are found to have larger values for the halo nucleus scattering (11Be + p)
than those for the scattering of their isotopes.
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I. INTRODUCTION

The optical-model potential (OP) has been developed
in phenomenological and microscopic approaches to study
the cross sections and analyzing powers of the scattering
reaction. The phenomenological OP, in which the parameters
are adjusted by fitting to scattering experimental data, is
successful in a wide range of incident energies. However, it
does not include nuclear structure information. In addition,
it cannot give unique values of these parameters [1]. The
ambiguity of the phenomenological OP arises from, in par-
ticular, the existence of a large number of optical potentials
describing equally well a given set of elastic-scattering
data [2].

On the other hand, the microscopic approach considers
the effective potential between the nucleons. A successful
microscopic OP, that is used to study the cross sections
at low and intermediate incident energies, is the folding-
model potential [3]. It is based on the effective nucleon-
nucleon (NN ) interaction and the densities of the scattered
nuclei.

Recently, we studied the angular distributions for elastic-
scattering cross sections and reaction cross sections for the
proton elastic scattering of helium and lithium isotopes at
incident energies below 160 MeV/nucleon using the optical-
model analysis with the partial-wave expansion method [4,5].
The OP parts were constructed only from the single-folded
potentials and their derivatives. Within the folding model, the
density-independent M3Y NN interaction was used for the
real part and the NN -scattering amplitude of the high-energy
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approximation was used for the imaginary part. The OP parts
were renormalized by a few limited fitting factors to fit the
data. This microscopic OP fits well the available data until
100 MeV/nucleon. The volume integrals were found to be
have systematic behaviors with incident energy.

In the present work, the density and isospin dependencies
are taken into consideration in the folding OP calculations
because the exotic nuclei usually have nonzero isospin.
In general, beryllium isotopes are light nuclei and include
examples of stable, exotic, and halo nuclei. Therefore, it is
interesting to study the scattering of beryllium isotopes and
to analyze the effect of the halo structure. Many scattering
observables, namely, reaction cross sections and angular
distributions for elastic-scattering cross sections and analyzing
powers, exist for the p + 9,10,11,12Be elastic scattering over
a wide range of energies from a few MeVs/nucleon up to
200 MeV/nucleon. These basic scattering observables are
calculated numerically solving the Schrödinger equation by
means of the optical model with the partial-wave expansion
method. The real OP is constructed from the single-folded
potential using the energy-, density-, and isospin-dependent
M3Y-Paris NN interaction [6], whereas the so-called high-
energy approximation (HEA) model is used for the imaginary
OP [7–9]. The renormalization factors are chosen according
to the quality of the agreement with available scattering
observables and restricted by the systematic behaviors of the
volume integrals. To test the ability of this OP to reproduce
the data of the high-energy scattering, the cross sections at
E � 50 MeV/nucleon are recalculated by using the eikonal
approximation that based on the Glauber theory. The energy
and mass dependencies of the volume integrals of the OPs
are studied. The theoretical approaches are given in Sec. II,
while the results of the calculations are presented in Sec. III.
Summary and conclusions are given in Sec. IV.
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II. THEORETICAL CALCULATIONS

A. Real OP within the single-folding model

In the first order of the many-body theory, the real proton-
nucleus potential is evaluated as an antisymmetrized Hartree-
Fock-type potential

Vi =
∑
j∈A

[〈ij |vD|ij 〉 + 〈ij |vEX|ji〉], (1)

where vD and vEX are the direct and exchange parts of the
effective NN interaction between the incident proton i and
nucleon j in the target A. The exchange term arises from the
antisymmetrization between the coordinates of the incident
nucleon and those of the target nucleons; see, for example,
Refs. [10,12,14].

The central nucleon-nucleus potential [Eq. (1)] can be
written in terms of the direct and exchange parts of the NN
interaction and the nuclear density of the scattered nuclei as
included in the folding model [3,10,11]. The folding model,
with realistic NN interactions based upon a G matrix, is
discussed by Satchler and Love [3].

Further, the symmetry (isospin dependence) term of the OP
can be included in the calculation of the optical potential by
considering the difference between proton (ρp) and neutron
(ρn) matter densities [10,12]. Therefore, one can represent the
the direct and exchange parts of the proton-nucleus potential
in terms of isoscalar (VIS) and isovector (VIV) contributions
as [6,13]

VF (r) = V D(r) + V EX(r)

= V D
IS (r) + V D

IV(r) + V EX
IS (r) + V EX

IV (r), (2)

V D
IS(IV)(r) =

∫
[ρp(r′) ± ρn(r′)]vD

00(01)(ρ,E,s)d3r ′, (3)

V EX
IS(IV)(r) =

∫
[ρp(r,r′) ± ρn(r,r′)]vEX

00(01)(ρ,E,s)

× j0(k(E,r)s)d3r ′, (4)

where the + sign is related to the isoscalar and − sign to
the isovector. The isovector part of the folding OP is also
known as symmetry potential. s = |r′ − r| is the distance
between the proton and the nucleon in the target and r is
the vector joining the center-of-mass of the incident proton
and the target. ρp(n)(r,r′) is the one-body density matrix for
the protons(neutrons) in the target nucleus with ρp(n)(r) ≡
ρp(n)(r,r). k(E,r) is the local momentum of the relative motion
determined as [10,14]

k2(E,r) = 2μ

�2
[Ec.m. − VF (r) − VC(r)], (5)

where μ is the nucleon reduced mass, Ec.m. is the center-of-
mass energy, and VF (r) and VC(r) are the total nuclear and
Coulomb potentials, respectively.

A popular NN interaction that has been used in the folding
potential is the M3Y effective NN interaction, based on the
G-matrix calculations, which has two different kinds, namely
the Paris [15] and the Reid NN interactions [16]. For the direct
and exchange parts of NN interaction, the radial strengths of
isoscalar and isovector components, v

D(EX)
00 and v

D(EX)
01 , are

defined in terms of three yukawas [15,16]. Furthermore, they
are listed in simple forms in Ref. [13]. In the present work, the
M3Y-Paris interaction is used.

To reproduce the basic nuclear matter properties as well as
the density and energy dependencies of the nucleon OP, the
NN interaction considers the energy and density dependencies
as [17]

vD(EX)(ρ,E,s) = g(E)F (ρ)vD(EX)(s). (6)

In the present study, we use the explicit energy and density
dependencies that were introduced in Ref. [18] for the
CDM3Y6 effective Paris potential as

g(E) = 1 − 0.003E, andF (ρ) = C[1 + αe−βρ(r) − γρ(r)],

(7)

where C = 0.2658, α = 3.8033, β = 1.4099 fm3, and γ =
4.0 fm3.

For the density matrix, the realistic local approximation
proposed in Refs. [14,19] is used:

ρq(r,r + s) � ρq

(
r + s

2

)
ĵ1

[
k

q
F

(∣∣∣∣r + s
2

∣∣∣∣
)

s

]

≡ fq

(
r + s

2

)
, q ≡ p,n, (8)

where ĵ1(x) = 3j1(x)/x = 3(sin x − x cos x)/x3. The local
Fermi momentum kF (r) is defined as [19,20]

k
q
F (r) =

{
5

3ρq(r)

[
τq(r) − 1

4
∇2ρq(r)

]}1/2

. (9)

The kinetic energy density τ (r) can be approximated by the
extended Thomas-Fermi approximation [9,21,22] as

τ (ρ)

2
� τq(ρq) = 3

5
(3π2)2/3[ρq(r)]5/3

+ CS |∇ρq(r)|2
ρq(r)

+ ∇2ρq(r)

3
, (10)

valid for each kind of particle q = n,p. CS is the strength
of the so-called Weizsäcker term representing the sur-
face contribution to τ . For a finite fermionic system,
the commonly accepted value of the Weizsäcker term
is CS = 1/36 [21].

The local Fermi momentum kF (r) then can be written as

k
q
F (r) =

{
[3π2ρq(r)]2/3 + 5CS |∇ρq(r)|2

3ρ2
q (r)

+ 5∇2ρq(r)

36ρq(r)

}1/2

.

(11)

Then, the direct and exchange parts of the proton-nucleus
potential [Eqs. (3) and (4)] can be obtained as

V D
IS(IV)(r) = g(E)

∫
[ρp(r′) ± ρn(r′)]F (ρ(r′))vD

00(01)(s)d3s

(12)
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and

V EX
IS(IV)(r) = g(E)

∫ [
fp

(
r + s

2

)
± fn

(
r + s

2

)]

×F

(
ρ

(
r + s

2

))
vEX

00(01)(s)j0(k(E,r)s)d3s.

(13)

For the elastic scattering, the spherical potential is radial.
Therefore, the direct part of the central elastic potential
[Eq. (12)] can be obtained in the following form:

V D
IS(IV)(r) = g(E)

2π2

∫ ∞

0
AIS(IV)(q)vD

00(01)(q)j0(qr)q2dq, (14)

where vD
00(01)(q) is the Fourier transform of the direct inter-

action vD
00(01)(s) and AIS(IV)(q) is the Fourier transform of the

density profile. They are given by

vD
00(01)(q) = 4π

∫ ∞

0
vD

00(01)(r)j0(qr)r2dr, (15)

AIS(IV)(q) = 4π

∫ ∞

0
[ρp(r) ± ρn(r)]F (ρ(r))j0(qr)r2dr.

(16)

Similarly, the exchange part of the elastic potential
[Eq. (13)] can be evaluated as

V EX
IS(IV)(r) = 2πg(E)

∫ ∞

0
GIS(IV)(r,s)vEX

00(01)(s)

× j0(k(E,r)s)s2ds, (17)

where

GIS(IV)(r,s) =
∫ 1

−1
[fp(y(x),s) ± fn(y(x),s)]F (ρ(y(x))dx,

(18)

where fq(y,s) = ρq(y)ĵ1(kq
F (y)s) with q ≡ p,n and y(x) =√

r2 + s2

4 + rsx. V EX(r) includes k(E,r), which is expressed

by VF = V D + V EX as in Eq. (5). So, the self-consistent (local)
exchange potential is calculated by an iterative procedure [22].

B. Imaginary optical potential within the high-energy
approximation

The imaginary part of the OP can be calculated within the
HEA model that was derived in Refs. [7,8] on the basis of
the eikonal phase inherent in the optical limit of the Glauber
theory. It is considered a folding potential which folds the NN -
scattering amplitude and the density of the scattered nucleus.
Recently, the HEA imaginary potential is used instantaneously
with the real folding potential VF to study the proton elastic
scattering of light nuclei. This hybrid potential succeeds in
fitting the cross-sectional experimental data at energies below
100 MeV/nucleon; see, for example, Refs. [4,5,9,23]. The
imaginary OP within the HEA model is expressed as [7–9]

WH (r) = − �v

(2π )2
σ̄NN

∫ ∞

0
dqq2j0(qr)ρ(q)fNN (q), (19)

where v is the velocity of the nucleon-nucleus relative motion,
ρ(q) is the form factor corresponding to the pointlike nucleon
density distribution of the nucleus, and fNN (q) is the amplitude
of the NN scattering which can be specified in the form of a
Gaussian function [7,24],

fNN (q) = exp
(−q2r2

0

/
4
)
, (20)

where r2
0 = 0.439 fm2 [24] is the range parameter. σ̄NN is

the average over isospin total NN cross section. It has been
parameterized in Refs. [24,25] as a function of energy,

σ̄NN = NP NT σnn + ZP ZT σpp + (ZP NT + NP ZT )σnp

AP AT

.

(21)

The pp and nn cross sections are given in (fm2) by

σpp = σnn = (1.373 − 1.504β−1 + 0.876β−2 + 6.867β2),

(22)

where

β = υ

c
=

√
1 −

(
m

EN + m

)2

(23)

is the ratio of the relative to the light velocities, EN = E/A
is the incident energy per nucleon (in MeV), and m =
931.494 MeV. For the np cross section, σnp is expressed in
two forms as

σnp = −7.067 − 1.818β−1 + 2.526β−2 + 11.35β (24)

for the energy per nucleon EN > 10 MeV.
For EN < 10 MeV, the following expression that is given

by Enge [25,26] is used:

σnp = 273

(1 − 0.0553EN )2 + 0.35EN

+ 1763

(1 + 0.334EN )2 + 6.8EN

. (25)

C. The total optical potential

The present scattering problem considers a proton with an
energy E incident upon a target with a mass number A and
scattered by a central spherical optical potential UOP(r) which
can be generally written as

UOP(r) = V (r) + iW (r) + VSO(r)L.S + VC(r), (26)

where V , W , and VSO are the real, imaginary, and spin-orbit
parts of the OP, respectively. VC(r) is the Coulomb potential of
a uniformly charged sphere of radius 1.2A1/3. The imaginary
OP consists of volume and surface absorption components
[W (r) = Wv(r) + Ws(r)]. At low incident energy, the surface
absorption is too strong and Ws(r) is dominant. On the other
hand, the absorption is completely dominated by Wv(r) at
higher energies [27]. In the present calculations, the real part
of the OP is constructed with the single-folded model using the
density- and isospin-dependent M3Y-Paris NN interaction,
whereas the volume imaginary part is taken with the HEA
model. The derivative of the volume imaginary potential is
added as a surface imaginary potential and the derivative of
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TABLE I. dσ/d
 and Ay(θ ) data for proton elastic scattering of 9,10,11,12Be nuclei.

Data Scattering Incident energy (in MeV/nucleon) [reference]

dσ/d
 p + 9Be 3 [31], 6.0, 10.0 [32], 13 [33], 17, 25 [34], 30.3 [33], 35.2 [35], 49.4 [36],
54.7, 74.7 [37], 100.6 [38], 160 [39], 179.9 [40], and 201.4 [41]

10Be + p 6, 9 [42], 12, 15 [43], 39.1 [44], and 59.3 [45]
11,12 Be + p 38.4 [44] and 49.3 [45] for 11Be + p and 55 [46] for 12Be + p

Ay(θ ) p + 9Be 8.5 [47], 11.4 [48], 13 [33], 17.8 [49], 30.3 [50], 42 [51], 74.7 [37], 100.6 [38]

the folding potential is added as a spin-orbit potential. The
renormalization factors, NR , NI , NIS, and NSO, are introduced
to fit the data. They are considered as strengths of the real,
volume imaginary, surface imaginary, and spin-orbit terms
of the microscopic OP, respectively. The introducing of the
renormalization factors to the folding potential may be due to
the dynamic polarization contributions [18]. Furthermore, the
energy dependence of these renormalization factors indicates
the opening of inelastic channels as the energy increases [2].
One of the aims of this work is to present energy-dependent
renormalization factors.

The total microscopic optical potential can be rewritten
as [5]

UOP (r) = NRVF (r) + i

[
NIWH (r) − NISr

d

dr
WH (r)

]

− 2λ2
πNSO

1

r

d

dr
VF (r)L.S + VC(r), (27)

where VF [Eq. (2)] is the real OP using the single-folded model
and WH [Eq. (19)] is the volume imaginary potential using the
high-energy approximation model.

In the past decade, the microscopic density distributions for
some light nuclei have been obtained using the Green’s func-
tion Monte Carlo (GFMC) method. The GFMC calculation of
the ground and low-lying excited states of these nuclei uses a
realistic Hamiltonian containing the Argonne v18 (AV18) two-
nucleon potential alone or with Illinois models (IL1-IL5) [28].
In the present work, we use the GFMC density that is based
on AV18+IL2 model for 9,10Be [28]. In addition, the densities
of 11,12Be are chosen in the form of Gaussian-oscillator (GO)
distributions [29]. The parameters of the GO density are given
by Ref. [4] for 11Be and Ref. [30] for 12Be.

Generally, the volume integral per nucleon of the spherical
potential, U (r), can be given by

J (U ) = 1

A

∫
U (r)d3r = 4π

A

∫
U (r)r2dr. (28)

The values of the volume integrals are actually negative
because the corresponding OP parts are attractive (negative).
As usually used, the negative sign is neglected. The volume
integrals of the real, imaginary, and spin-orbit parts of the OP
are denoted correspondingly by JR , JI , and JSO. They are
defined as

JR = 4π

A

∫
[NRVF (r)]r2dr, (29)

JI = 4π

A

∫ [
NIWH (r) − NISr

d

dr
WH (r)

]
r2dr, (30)

and

JSO = 4π

A

∫ [
−2λ2

πNSO
1

r

d

dr
VF (r)

]
r2dr. (31)

D. Method of calculations

A lot of experimental cross-sectional and analyzing-power
data for p + 9,10,11,12Be elastic scattering exist over a wide
range of energies. Some of these data in an energy range from
3 to 201.4 MeV/nucleon are considered in the present work
and are listed with their references in Table I. In addition,
there are several experimental values of the reaction cross
sections for p + 9Be reaction [52,53] and unique values for
10,11Be + p [53].

The microscopic optical model potential [Eq. (27)] is used
in the calculations of the cross sections. The calculations of
the cross sections are performed by numerical solution of the
Shrödinger equation, by means of the code DWUCK4 [54], using
the partial-wave expansion method. More details about these
calculations can be found, for example, in Refs. [55–58].

The renormalization factors of the OP are determined by
a fitting procedure of the scattering observables, which is
carried out to achieve minimum χ2. Furthermore, they must
be smooth regarding energy and are chosen according to the
standard behaviors of the corresponding volume integrals. The
following definition of χ2 is used:

χ2 = 1

N

N∑
k=1

[
σth(θk) − σex(θk)

�σex(θk)

]2

, (32)

where σth(θk) and σex(θk) are the theoretical and experimental
cross sections at the angle θk , respectively. �σex(θk) is the
experimental error and N is the number of data points. The
errors of the experimental data are not provided for most of the
considered experimental data, so these errors can be taken as
10% of the corresponding experimental data. In addition, the
visual fit must be noted by eye because the minimum χ2 does
not necessarily mean a better visual result in some cases [27].

III. RESULTS AND DISCUSSION

A. Partial-wave expansion

The calculated differential cross sections of p + 9Be elastic
scattering are presented in Figs. 1(a) and 1(b), whereas those
of 10,11,12Be + p elastic scattering are presented in Figs. 1(c)
and 1(d). The best-fit renormalization factors, the total reaction
cross sections σR , and the best χ2 values are listed in Table II.

The differential cross-sectional data for energies up
to 100 MeV/nucleon are reproduced well as presented
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FIG. 1. (Color online) Differential cross sections for the proton elastic scattering of beryllium isotopes. The symbols represent the
experimental data at different energies in MeV/nucleon and the lines represent the results of the optical model with the partial-wave expansion
method of calculation. The curves and data points at the top represent true values, while the others are offset by factors of 10, 100, and so on.
The experimental data are listed in Table I.

in Figs. 1(a) and 1(b) for p + 9Be elastic scattering
and in Figs. 1(c) and 1(d) for 10,11,12Be + p elastic
scattering.

For higher energies larger than 100 MeV/nucleon, more
than one valley or minimum are found in the calculated
differential cross sections of p + 9Be elastic scattering, as
shown in Fig. 1(b). At 160 MeV/nucleon, the first minimum
is found at around 45◦ and the second one at about 70◦. The
angular positions of these minima decrease with an increase
in the incident energy. The question is arisen about the limit of
using the partial-wave expansion method with the microscopic
folding OP [Eq. (27)].

Generally, from Table II, the renormalization factors show
systematic behaviors regarding energy, and they can be
parameterized as functions of energy. More details about the
energy and mass dependencies of the OP parts are given in
Sec. III B.

The analyzing powers for p + 9Be elastic scattering are
presented in Fig. 2. The partial-wave expansion method is used
for these calculations. The calculated analyzing powers are
with a reasonable fit of the experimental data as shown in Fig. 2.

The total nuclear reaction cross sections (σR) give informa-
tion about the radii of the scattering nuclei and their structure.
In addition, they are considered important constraints for the
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TABLE II. Best-fit renormalization factors of the OP [Eq. (27)]
and σR , obtained by fit the experimental cross-sectional and
analyzing-power data for p + 9,10,11,12Be elastic scattering at different
energies using the optical model with the partial-wave expansion
method.

Nucleus E/A NR NI NIS NSO χ 2 σR

(MeV) (mb)

9Be 3.0 0.94 0.00 0.0013 0.22 0.98 178.9
6.0 1.00 0.00 0.024 0.29 3.01 692.1

10.0 1.16 0.02 0.05 0.36 6.08 614.4
13.0 1.20 0.04 0.06 0.22 0.42 622.7
17.0 1.28 0.09 0.07 0.15 5.59 606.7
25.0 1.15 0.29 0.04 0.17 5.73 513.6
30.3 1.06 0.35 0.03 0.10 7.94 449.2
35.2 1.01 0.43 0.02 0.15 3.60 412.6
49.4 1.09 0.56 0.00 0.12 6.22 337.1
54.7 1.00 0.67 0.00 0.09 2.28 334.8
74.7 1.03 0.79 0.00 0.08 5.90 290.4

100.6 1.09 0.90 0.00 0.09 5.99 252.5
160.0 1.58 1.00 0.00 0.16 11.49 202.4
179.9 1.70 0.98 0.00 0.12 20.04 188.3
201.4 1.82 0.91 0.00 0.12 20.61 170.4

10Be 6.0 1.02 0.005 0.019 0.20 1.21 661.8
9.0 1.10 0.01 0.034 0.18 1.35 615.1

12.0 1.25 0.015 0.05 0.17 3.84 605.6
15.0 1.23 0.03 0.067 0.17 6.09 615.7
39.1 1.13 0.26 0.05 0.05 4.84 400.1
59.4 1.07 0.41 0.05 0.04 3.02 329.7

11Be 38.4 1.07 0.00 0.21 0.05 3.27 618.0
49.3 1.02 0.18 0.19 0.05 17.03 544.3

12Be 55.0 1.10 0.44 0.08 0.05 0.17 462.3

choice of the optical potential parameters. The calculated
reaction cross sections for the proton elastic scattering of
beryllium isotopes at different energies using the optical model
analysis with the partial-wave expansion are presented in
Fig. 3. The σR values obtained for the considered reactions
are in agreement with the available experimental data. The σR

decreases with an increase of the projectile incident energy
for each reaction. In addition, the calculated values of σR

are slightly greater than the corresponding experimental data
at energies larger than 50 MeV/nucleon for the p + 9Be
scattering.

Furthermore, the calculated σR values for the halo nucleus
scattering (11Be + p) are found to be larger than the calculated
ones for the scattering of their isotopes (p + 9,10,12Be) at
the same energy; see Fig. 3. In addition, σR for the proton
elastic scattering with the 12Be nucleus is larger than that
for the 9,10Be isotopes. It is noted that the 12Be nucleus is
considered as a possible two-neutron halo nucleus. Therefore,
one conclude that the σR values depend on the rms radius of
the scattered nucleus. More explanations about this result are
given in Sec. III B.

B. The energy and mass dependencies of the volume integrals

The calculated volume integrals of the OPs for p +
9,10,11,12Be elastic scattering using the optical model analysis

FIG. 2. (Color online) Comparisons of the experimental analyz-
ing powers with the calculated values for p + 9Be elastic scattering at
different energies (in MeV/nucleon). The symbols represent the data
and the lines represent the results of the optical model calculation
with the partial-wave expansion method. The curves and data points
at the bottom represent true values, while the others by factors of 2,
4, 6, etc. The experimental data are listed in Table I.

with the partial-wave expansion method are shown in Fig. 4.
The microscopic OP is calculated using Eq. (27) and the
volume integrals are calculated using Eqs. (29)–(31). The
volume integrals are found to have characteristic energy

FIG. 3. (Color online) Calculated σR in comparison with the
experimental ones for the proton elastic scattering of beryllium
isotopes using the optical model with the partial-wave expansion.

034615-6



ANALYSIS OF PROTON-9,10,11,12Be SCATTERING . . . PHYSICAL REVIEW C 90, 034615 (2014)

FIG. 4. (Color online) Dependence of the volume integrals on the
incident energy for the proton elastic scattering of beryllium isotopes.
The symbols represent the calculated volume integrals of the best-fit
OPs and the lines represent the parameterized volume integrals as
functions of energy.

behaviors similar to those found from the study of the proton
elastic scattering of helium and lithium isotopes [5].

The p + 9,10,11,12Be scattering reactions have similar values
of JR . For the JSO, the calculated values for the proton
scattering with the stable 9Be nucleus are slightly larger than
those for their exotic isotopes. Clearly, the JR and the JSO

increase with energy until they reach a maximum at a definite
energy (denoted by ER for JR and ESO for JSO). After that,
they begin to decrease with energy. ER is found at about
15 MeV/nucleon for p + 9,10Be reactions and ESO at about
10 MeV/nucleon for p + 9Be reaction. More experimental
data at low energies are needed to determine these values for
the other reactions.

Different energy parametrizations are used for the real OP
or its JR , namely, a polynomial form [27]; an exponential decay
form of Perey and Buck [59], which was used, for example, in
Refs. [60,61]; a logarithmic formula [62,63]; and a reciprocal
formula [5]. For low energies (E < ER), the rising of the real
volume integral JR was parameterized by a Gaussian formula
as in Refs. [64,65]. In addition, the JSO was parameterized
exponentially for E > ESO as in Refs. [27,60,61,66]. In
Ref. [5], we present a new empirical formula with two
parameters only for JR; it has a reciprocal form and is

successfully applied for the proton elastic scattering of helium
and lithium isotopes. In the present work, this reciprocal
formula is expressed for both JR and JSO. In addition, the
Gaussian parametrization is used for low energies

JR(E) =
{

JR0
1+ηRE

for E � ER

JR1 exp
[ − (E − ER)2/w2

R

]
for E � ER.

(33)

Similarly

JSO(E) =
{

JS0
1+ηSOE

for E � ESO

JS1 exp
[ − (E − ESO)2/w2

SO

]
for E � ESO,

(34)

where Jk1 = Jk0/(1 + ηkEk) with k = R,SO. J0 is the max-
imum value. w is the rise parameter which describes the
increasing of the JR and JSO at low energies. η is the decay
parameter that describes them decreasing after they reach
their maximum values. In some cases, ER and ESO cannot be
determined because there are no further data at low energies.
Then, it can be neglected and the first lines in Eqs. (33) and (34)
are only considered.

The imaginary volume integral, JI , depends strongly on
the energy because many reaction channels open at energies
around the Coulomb barrier [67]. The imaginary OP takes into
account the absorption of the flux in the nonelastic channels.
So, it increases when a new channel is open from JI = 0
below the lowest inelastic channel to a saturation value JI =
JI0 observed at relatively high energies [65,67].

The JI begins small at low energies and then increases
rapidly up to a maximum value (JI0) at a definite energy.
Thereafter, the JI values decrease linearly and slowly with
increasing energy. In previous studies that were done for the
proton scattering with intermediate and heavy nuclei (A �
24), the calculated imaginary volume integrals were saturated
after they reached a maximum, as shown in Refs. [2,60,61].
However, the present study for the proton scattering with light
nuclei (A � 12) shows that the JI values decrease slowly after
they reach a maximum. Clearly, the greatest value for JI is
found for the halo nucleus scattering (11Be + p). In addition,
the JI value obtained for 10Be + p elastic scattering is the
smallest one, as shown in Fig. 4. The behavior of the JI is
shown to be related to the rms radius of the scattered nucleus.

There are different parametrizations for JI : the Fermi-like
parametrization that was first introduced in Ref. [68] and used
in Refs. [65,69] for α scattering; the functional form of Brown
and Rho [70] that was successfully applied in Refs. [27,61,66];
and the Jeukenne-Mahaux formula [71], which was applied in
Ref. [60]. These formulas suggest that the JI saturates at a
maximum value, JI0, at high energies. In the present work,
the results show that the JI decreases slowly and linearly
with energy at high energies after it reaches the maximum.
Therefore, we modify the Fermi parametrization formula to
include the JI decreasing after it reaches the maximum. It can
be expressed as

JI (E) = JI0(1 − ηIE)
1

1 + exp (EI − E)/wI

(35)

with a maximum value JI0 and the global parameters: decreas-
ing slope ηI , rise parameter wI , and EI .
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TABLE III. Energy parametrizations of the volume integrals of the best-fit OPs for p + 9,10Be elastic scattering using the partial-wave
expansion calculations. The parameters E and w are given in MeV, η in MeV−1, and J0 in MeV fm3.

Reaction JR JI JSO

ER wR JR0 ηR EI wI JI0 ηI ESO wSO JS0 ηSO

p + 9Be 17 30.78 754.9 0.0168 7.51 2.51 243.5 0.0013 10 9.48 369.7 0.1447
p + 10Be 14 18.23 765.0 0.0183 6.88 3.32 210.8 0.0016 213.1 0.100

The parameterized volume integrals as functions of energy
for the OPs of the considered scattering reactions are shown
in Fig. 4 in comparison with the calculated ones. The fitted
parameters obtained for the different parametrizations are
listed in Table III for JR , JI , and JSO. It is shown that these
parametrization formulas fit the calculated volume integrals
well.

To study the effect of increasing the number of neutrons
for a scattered isotope, the dependence of the imaginary
volume integrals and the reaction cross sections on the
mass number of beryllium isotopes are presented in Fig. 5.
They are presented in comparison with the experimental
rms matter radii that are given in Ref. [72]. JI and σR

are presented in two different energy groups (37 ± 2 and
54 ± 5 MeV/nucleon) as shown in Figs. 5(a) and 5(b). The first
group includes p + 9Be at 35.2 MeV/nucleon, 10Be + p at
39.1 MeV/nucleon, and 11Be + p at 38.4 MeV/nucleon. The
second group contains p + 9Be at 54.7 MeV/nucleon, 10Be +
p at 59.4 MeV/nucleon, 11Be + p at 49.3 MeV/nucleon, and

FIG. 5. (Color online) Mass dependence of the imaginary vol-
ume integrals and σR for the proton elastic scattering of beryllium
isotopes. They are compared with the experimental matter rms radii
given in Ref. [72].

12Be + p at 55 MeV/nucleon. It is shown that the behaviors
of the JI and σR are similar for the different energy groups
for p + 9,10,11,12Be elastic scattering. Clearly, the calculated
values of the JI and σR depend strongly on the rms radius of
the isotope. More experimental data are needed to estimate the
mass dependence of the volume integral parametrizations.

From these parameterized volume integrals, one can de-
termine the energy dependence of the renormalization factors
and the local energy-dependent OP as shown in Ref. [73]. The
parameterized renormalization factors as a function in energy
can be calculated from joining Eqs. (33), (34), and (35) with
Eqs. (29), (30), and (31).

C. The eikonal approximation

From the partial-wave expansion calculations, it is found
that the cross-sectional data are not reproduced well at
relatively high energies larger than 100 MeV/nucleon as
shown in Sec. III A. This may be due to the limit of using
the partial-wave expansion method with the single-folded
OP. At these high energies, the wave function will oscillate
rapidly and the calculations of scattering wave functions for
each partial wave become more complicated. Instead of the
partial-wave expansion, a relativistic correction such as the
eikonal approximation is useful.

The eikonal approximation is based on the optical limit
of the Glauber theory [74]. The Glauber model is reasonable
for energies of hundreds MeV and higher. However, at low
energies, the modified Glauber models are used [7,25,75–77].
By use of the eikonal approximation one avoids the calculation
of scattering wave functions by solving numerically the
Shrödinger equation for each partial wave.

Then, the differential cross sections of the elastic scattering
and reaction cross sections of p + 9Be at energies larger
than 50 MeV/nucleon are recalculated using the eikonal
approximation with the DWEIKO code [78]. The microscopic
OP [Eq. (27)] is used in the calculation to test its ability of
reproducing the cross-sectional data at high energies.

The calculated differential cross sections of p + 9Be elastic
scattering using the eikonal approximation are presented in
Fig. 6 in comparison with the results of the optical model code
with the partial-wave expansion method. The renormalization
factors, the total reaction cross sections σR , and the best χ2

values for the eikonal approximation calculations are listed in
Table IV.

It is clear that the eikonal approximation model gives
good agreement with the data at energies larger than
50 MeV/nucleon over all the angular range. The minima or
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FIG. 6. (Color online) Differential cross sections for p + 9Be
elastic scattering. The symbols represent the experimental data at
different energies in MeV/nucleon. The solid lines represent the
results of the partial-wave expansion calculations, whereas the dashed
lines represent the results of the eikonal approximation calculations.
The curves and data points at the top represent true values, while the
others are offset by factors of 10, 100, and so on.

valleys that are shown in the angular distribution using the
partial-wave analysis are disappeared.

The calculated reaction cross sections for p + 9Be elastic
scattering at different energies are presented in Fig. 7. The
calculated values of σR using the eikonal approximation give
good agreement with the experimental data, better than those
results of the partial-wave expansion.

Table IV show that the renormalization factors have sys-
tematic behaviors with energy. Figure 8 shows that the volume
integrals of the best-fit OPs using the eikonal approximation
in comparison with their parametrizations [Eqs. (33), (34),
and (35)]. In addition, they are compared with the partial-

TABLE IV. The same as Table II but by use of the eikonal
approximation for p + 9Be elastic scattering at energies E �
50 MeV/nucleon.

E/A NR NI NIS NSO χ 2 σR

(MeV) (mb)

49.4 0.96 0.55 0.07 0.05 18.81 308.6
54.7 0.88 0.60 0.06 0.05 3.72 290.7
74.7 0.80 0.76 0.05 0.07 2.44 257.4
100.6 0.95 0.92 0.05 0.10 5.10 235.0
160.0 1.37 1.12 0.01 0.07 2.77 187.1
179.9 1.24 1.09 0.01 0.02 115.0a 176.3
201.4 1.53 0.95 0.00 0.03 4.26 150.7

aχ 2 value is large but the visual fit is acceptable.

Experimental

FIG. 7. (Color online) Calculated σR for p + 9Be elastic scat-
tering using the optical model with the partial-wave expansion in
comparison with eikonal approximation results for high energies.

wave expansion calculation. Because we use the eikonal
approximation for energies larger than 50 MeV/nucleon, the
first lines in Eqs. (33) and (34) are considered only for JR and
JSO. Also, the linear relation in Eq. (35) that describes the JI

decreasing is only considered.
From the comparison between the partial-wave expansion

and the eikonal approximation in Fig. 8, the two methods
give similar behaviors for the volume integrals, but they have

FIG. 8. (Color online) Dependence of the volume integrals on
the incident energy for p + 9Be elastic scattering. The symbols
represent the calculated volume integrals and the lines represent the
parameterized volume integrals as functions of energy.
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TABLE V. Energy parametrizations of the volume integrals of
the best-fit OPs for p + 9Be elastic scattering using the eikonal
approximation. The parameters η are given in MeV and J0 in MeV
fm3.

JR JI JSO

JR0 ηR JI0 ηI JS0 ηSO

593.2 0.0144 313.0 0.0019 153.8 0.100

different values. The calculated values of the JR and JSO using
the eikonal approximation are found to be less than those use
the partial-wave expansion. For JI , the calculated values by
use of the eikonal approximation are larger than those using
the partial-wave expansion method.

IV. SUMMARY AND CONCLUSIONS

Microscopic analysis was performed for the proton elastic
scattering of beryllium isotopes over a wide energy range from
3 to 201.4 MeV/nucleon. The basic scattering observables
(angular distributions for elastic-scattering cross sections and
analyzing powers, and reaction cross sections) were calculated
using the optical model with the partial-wave expansion. The
OP parts were constructed from the single-folded potential
using the density- and isospin-dependent M3Y-Paris NN
interaction for the real part and the NN -scattering amplitude
within the high-energy approximation model for the imaginary
part. The derivatives of the real and volume imaginary parts of
the OP were added as spin-orbit and surface-imaginary OPs,
respectively.

The partial-wave expansion calculation using this micro-
scopic OP successfully reproduces the experimental observ-
ables at energies until to 100 MeV/nucleon. Above this
energy value, some minima appear in the calculated angular
distribution of the elastic-scattering cross sections. The halo

nuclei scattering has value of σR larger than that for the
scattering of their isotopes, which indicates to the dependence
of σR on the rms radius of the scattering nucleus. The
disagreement of the cross sections at relatively high energies
may need a relativistic correction. Therefore, the eikonal
approximation method was used and the cross sections were
recalculated for energies that greater than 50 MeV/nucleon. It
is used with the same OP and compared with the partial-wave
expansion method. The eikonal approximation reproduces the
differential cross-sectional data well at energies larger than
100 MeV/nucleon, and the minima were disappeared. Further-
more, the σR values obtained using the eikonal approximation
are smaller than those use the partial-wave expansion method
and give the best agreement with the data of the high-energy
scattering.

The volume integrals have systematic behaviors for the
energy and mass dependencies. The JR increases with increas-
ing energy until it reaches a maximum at a definite value of
energy, ER . Thereafter, with increasing incident energy, the
JR decreases reciprocally. The behavior of the JSO is similar
to the JR . On the other hand, the JI increases rapidly up
to the maximum value (JI0). After that, the JI decreases
linearly with a small slope. The JI for the halo nucleus
scattering has a value larger than that for the other isotopes. The
study of increasing the number of neutrons for the scattered
isotope shows a direct relation between the JI and the rms
radius of the isotope. Different energy parametrizations were
applied for the volume integrals. The reciprocal formula was
used for the JR and JSO and the Fermi-like parametrization
was modified and applied for the JI . They successfully
parameterized the calculated volume integrals. From these
parametrization, a local E-dependent OP can be obtained with
parameterized renormalization factors as a function in energy.
More experimental data for the exotic nuclei scattering should
be done at low energies to give the correct energy and mass
dependence of the OPs and their volume integrals.
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