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Excitation of atomic nuclei in hot plasma through resonance inverse electron bridge
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A process of nucleus excitation by photons under the mechanism of the inverse electron bridge (IEB) is
examined provided the energies of atomic and nuclear transitions coincide. It is shown that in this case, the
excitation of nuclei with EL [ML] transition with the energy ωN � 10 keV is strengthened relative to the process
of photoabsorption by nucleus by a factor of 1/(ωNr0)2(L+2) [e4/(ωNr0)2(L+2)], where r0 is a typical size of
domain in the ion shell for accumulation of electronic integrals. In the 84Rb nuclei the IEB cross section for
the 3.4 keV M1 transition 6−(463.59 keV) ↔ 5−(463.59 keV) can exceed even a photoexcitation cross section
for the 3.4 keV E1 transition with the reduced probability in the Weisskopf model BW.u.(E1) = 1. This result
can be important for understanding the mechanisms of atomic nucleus excitation in hot plasma. In particular,
the considered process is capable to provide the existence of so called gamma luminescence wave or a nuclear
isomer “burning” wave—an analog of self-maintaining process of triggered depopulation of nuclear isomer.
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I. INTRODUCTION

Experimental studies of atomic nuclei excitation in hot
dense laser plasma [1–6] demand a detailed analysis of the
mechanisms leading to transition of nuclei to isomeric state
under the impact of plasma photons and electrons. The basic
processes of nuclear excitation are well known, namely: the
photoexcitation of nuclei by plasma thermal radiation [7,8];
inelastic scattering of plasma electrons at nuclei [9]; nuclear
excitation by electronic transition (NEET) [10,11]; inverse
electronic conversion (IEC) [12] which is better known in
the modern literature under the name of nuclear excitation
by electron capture (NEEC) [13]; multiphoton excitation of
nuclei [14]; inverse electron bridge (IEB) [15], etc. The
detailed review and classification of all these mechanisms
in the frameworks of the perturbation theory for quantum
electrodynamics is given in [16]. In recent years, a number of
the most effective processes, such as photoexcitation, inelastic
scattering of electrons, inverse electronic conversion, and
NEET have been used in numerical calculations of excitation
and deexcitation of nuclei in plasma and single atom or ion
(see, for example, [6,13,17–26] and references therein).

Nuclear excitation in high-temperature dense plasma is
mainly interesting from the possible applications point of
view. Of them, the most essential, in our opinion, are the
creation of inverse population in a matrix containing isomeric
nuclei and observation: (a) of triggered depopulation of nuclear
isomer, with accompanying γ emission [27]; or (b) even
of γ -radiation wave (“combustion” wave—a self-maintaining
process of triggered depopulation) in the system of isomeric
nuclei with a short-living intermediate state that is close to the
isomeric state [28]. In order to implement these processes in
the experiment, the transition from the isomeric state (where a
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significant amount of nuclei can preliminary be accumulated)
to the close short-living level (from which a working transition,
say, to the basic nuclear state will be occurred later) should be
an electric dipole transition [28]. Moreover, it is desirable that
reduction of this E1 transition would be minimal, or, in other
words, that its reduced transition probability in Weisskopf units
would be close to unity.

Unfortunately, the last requirement contradicts the available
experimental data on intensities of electric dipole transitions.
In the low-energy part of the nuclear excitation spectrum, E1
transitions are usually suppressed because of structural factors.
Although the number of known nuclides is large enough now,
there is no possibility to find a nucleus satisfying all necessary
criteria. Therefore, without the strengthening mechanism that
could essentially increase the nuclear excitation cross section,
in particular, for electric dipole transitions, it will be extremely
difficult to have the processes such as the γ -radiation wave.

In the present work we will analyze in detail the pho-
toexcitation of atomic nuclei through an atomic shell by the
mechanism of inverse electron bridge. This process that was
studied for the first time in [15] is interesting, because in
the case of a resonance coincidence of atomic and nuclear
transitions its cross section can significantly surpass the cross
sections of all other mechanisms of nuclear excitation by
photons and electrons of plasma. This basically solves the
mentioned problem of small cross sections of excitation and
opens certain prospects for the experimental study of the
“combustion” process in the system of nuclear isomers with
a close short-living intermediate state that was proposed in
[28,29]. In the present work, we use the following system of
units: � = c = k = 1.

II. INVERSE ELECTRON BRIDGE

The electron bridge is a process of decay of the excited
nuclear state through the atomic shell described by the diagram
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FIG. 1. Diagrams of nucleus excitation by photons through the
atomic shell under the mechanism of inverse electron bridge: (a)
direct diagram, (b) exchange diagram. (c) Scheme of the process
corresponding to the direct diagram.

of the third order of the constant of electromagnetic interaction
e [30]. Accordingly, the inverse process, i.e., excitation of a
nucleus through the atomic shell [see Figs. 1(a)–1(b)] has
obtained the name of the inverse electron bridge. We will
consider here how the inverse electron bridge works in one
particular but important case—when the energy mismatch
� shown in Fig. 1(c) tends to zero, and the excitation of
the nucleus is reduced to a sequence of the two following
processes: photoexcitation of the ion shell and NEET.

In QED, the cross section, as a rule, decreases with an
increase of the order of the diagram describing the process.
This cannot be true, if the bound electronic states, whose
wave functions are localized at an atom or an ion, are
involved in the process. In this case, the domain of the
accumulation of integrals in electronic matrix elements r0 is
limited by the size of the atom or the electronic shell of the
ion. There is a spherical Hankel function of the first kind
of electronic coordinate r and nuclear transition energy ωN

in the multipole expansion [31] of the photon propagator
in the frequency-coordinate presentation Dμν(ωN ; r − R) =
−gμν exp(iωN |r − R|)/|r − R|:

Dμν(ωN ; r − R) ∝
∑
L,M

h
(1)
L (ωNr)YLM (�r )jL(ωNR)Y ∗

LM (�R)

[jL(ωNR) are the spherical Bessel function of nuclear coor-
dinate R [32], YLM (�) are the spherical harmonics]. If the
nuclear transition energy (here ωN = EF − EI , where EI,F

are the energies of the initial and final nuclear states in Fig. 1)
does not exceed some kiloelectronvolts, the argument of h

(1)
L

satisfies the condition ωNr � 1 if the electron coordinate
r � r0, and in the area of the effective accumulation of
integral, the Hankel function is large, since it has a pole
h

(1)
L (ωNr) ∼ −i(2L − 1)!!/(ωNr)L+1. The specified behavior

of the Hankel function compensates the smallness defined by

the additional electron-photon vertexes to the amplitude and
the process cross section.

In the case of nuclear transitions with energy ωN � 1 keV,
the condition ωNr0 � 1 is always true even in atoms, since
r0 < aB , where aB is the Bohr radius. Atoms in plasma with
temperature 1 < T � 10 keV turn into multicharge ions with
Zpl � 30. For such ions, the condition ωNr0 � 1 will be valid
for transitions with energy ωN � T . This is connected to the
fact that in ions of atoms with A � 150–200, transitions of
the given energy occur between L and M subshells, where the
vacancies are formed in hot plasma. In the electronic matrix
element, the effective domain of the accumulation of integrals
will be defined, mainly, by the sizes of a subshell of the “lower”
state (in this case the L state), characteristic sizes of which
are much less than Bohr radius aB . Besides, for multicharge
ions, the binding energies increase at internal L and M shells.
This leads to a reduction of their sizes as well as promotes
observation of the condition ωNr0 � 1.

Note that the mechanism of amplification considered above
and long lifetime of the plasma (and as a consequence the
interaction time available for the plasma electrons to excite the
nuclei) explain in particular the numerical result obtained in
Ref. [26]. In this work it was shown that the number of the 93Mo
nucleus excited in the E2(4.85 keV)21/2+(2424.95 keV) →
(17/2)+(2429.80 keV) transition by electrons in the IEC-
NEEC process in plasma, produced by an x-ray free-electron
laser beam interacted with solid state target, exceeds the
number of the nucleus excited directly by the laser x rays.

For our problem, the cross section of nucleus excitation
through the inverse electron bridge can be estimated in a
single-level approach [16]. Really, at the second stage of the
process—the nucleus excitation in electronic transition—not
only the closeness of electronic and nuclear transition energies
is required, but their multipolarities should also coincide.
This reduces essentially the number of intermediate states.
In practice, generally, we can leave only one level with the
dominating contribution to the amplitude of the process (a
single-level approach). At that, the direct diagram [that is
shown in Fig. 1(a)] plays the dominant role in the excitation
process, and the cross-section formula factorizes [33] and
can be written in the form of two-factor product. One of
them corresponds to the excitation of atom to an intermediate
state by a plasma photon, and another to the subsequent
process of nucleus excitation during the transition of atom
from intermediate to the final state [see Fig. 1(c)].

Let us consider this reduction in detail. According to the
QED rules [34] the amplitude of the IEB process can be written
as

S
(3)
f i = i

∫
d4x1d

4x2d
4x3 J

ρ
FI (x3)ψ̄f (x2)eγ ν

×G(x2 − x1)eγ μψi(x1)[Aμ(x1)Dνρ(x3 − x2)

+Aν(x2)Dμρ(x3 − x1)], (1)

where x1,2 = (t1,2,r1,2) and x3 = (t3,R). The first term in
the square brackets corresponds to the direct diagram
[see Fig. 1(a)] and the second term to the exchange diagram
[see Fig. 1(b)].
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In Eq. (1) e is the proton charge, γ μ are the Dirac
matrices, Aμ(x) = e−iωpl tAμ(r; ωpl), where Aμ(r; ωpl) =√

2π/ωplξμ exp (iqplr) describes the plasma photon with the
energy ωpl , momentum qpl , and polarization ξμ, ψi,f (x) =
e−i(Ei,f −i�i,f /2)tψi,f (r; Ei,f ) is the electron wave function,
Ei,f and �i,f are the binding energies and widths of
the initial (i) and final (f ) electron states, Dνρ(x3 − x1,2)
and G(x2 − x1) are the photon and electron propagators,
J

ρ
FI (R,t3) = e�+

F (R,t3)Ĵ ρ�I (R,t3) is the nuclear current be-
tween the long-lived isomeric state I and the final state F
with the energies EI,F and the widths �I,F �I,F (R,t3) =
e−i(EI,F −i�I,F /2)t3�I,F (R), and Ĵ ρ is the operator of the nuclear
electromagnetic transition. We suppose that �I � �F and put
the width �I = 0 in this work.

The photon and electron propagators are calculated accord-
ing to the relations [34]

Dμν(x3 − x1,2) =
∫

dω

2π
eiω(t3−t1,2)Dμν(ω; R − r1,2),

and

G(x2 − x1) = −ψn(r1)ψ̄n(r2)e−�nt1

∫
dE

2π

eiE(t2−t1)

E + En − i�n/2
.

Here En and �n are the electron binding energy and the total
width of the intermediate state n which satisfies the resonance
condition � → 0 in Fig. 1(c). For example, we use the one-
level approximation in the electron propagator and neglect the
others electron states, where the resonance condition is not
fulfilled.

For the time integration in the vertexes of the diagrams we
used the well-known relation [34]

ei(E−iε)t = 1

2πi

∫ ∞

−∞
d�

ei�t

� + E − iε
.

Integration in Eq. (1) over the times t1,t2,t3 and over the
energies of the intermediate states E and ω [these integrals
were evaluated as

∫
dE → 2πiRes(E = −(En − i�n/2)] and∫

dω → 2πiRes(ω = En − Ef − i(�n + �f )/2) for the di-
rect diagram and

∫
dω → 2πiRes(ω = −(En − Ei + i(�n +

�i)/2) for the exchange diagram) gives

S
(3)
f i = i

∫
d3r1d

3r2d
3R J

ρ
FI (R)

× ψ̄f (r2)eγ νψn(r2)ψ̄n(r1)eγ μψi(r1)

×
[

Aμ(ωpl,r1)Dνρ(ωnf ; R − r2)(
ωpl − ωni − i �i+�n

2

)(
ωN − ωnf + i

�f +�n+�N

2

)
− Aν(ωpl,r2)Dμρ(ωni ; R − r1)(

ωpl + ωnf − i
�f +�n

2

)(
ωN + ωni + i �i+�n+�N

2

)
]

.

(2)

In Eq. (2) we used the notations ωni = En − Ei and ωnf =
En − Ef for the energies of atomic transitions, and ωN =
EF − EI for the energy of nuclear transition.

The first term in square brackets in Eq. (2) which corre-
sponds to the direct diagram contains two resonance conditions
for the energy of photons ωpl = ωni and ωN = ωnf . The
second term and, as a consequence, the exchange diagram

do not have such resonance conditions and give considerably
smaller contribution to the process near the resonances.
Correspondingly, one can neglect the exchange diagram in
this case and work further only with the direct diagram.

Let us introduce two new amplitudes Hex and Hint in Eq. (2).
The amplitude Hex corresponds to the interaction between the
electronic current jμ

ni(r1) = −eψ̄n(r1)γ μψi(r1) and the plasma
photon Aμ(ωpl ; r1) in the process of excitation of the atomic
shell:

Hex =
∫

d3r1j
μ
ni(r1)Aμ(r1; ωpl) .

The amplitude Hint describes the interaction between the elec-
tronic current jν

f n(r2) = −eψ̄f (r2)γ νψn(r2) and the nuclear
current J

ρ
F,I (R) in the NEET process [see Figs. 1(a) and 1(c)]:

Hint =
∫

d3r2d
3R jν

f n(r2)Dνρ(ωnf ; R − r2)J ρ
F,I (R) .

Now the square modulus of the amplitude (2) can be written
as ∣∣S(3)

f i

∣∣2 = |Hex |2
(ωpl − ωni)2 + (�i + �n)2/4

× |Hint|2
(ωN − ωnf )2 + (�f + �n + �N )2/4

. (3)

It is evident that the cross section of the IEB process which
is obtained by averaging of the amplitude in Eq. (3) over
the initial states and summation over the final ones can be
presented as a product of the cross section of the excitation of
atom and the probability of the NEET process.

Really, the excitation cross section of the atomic level n has
the form [34]

σex(ωpl) = δ(ωpl − ωni)
λ2

pl

4
�rad

A (ωpl ; i → n), (4)

where λpl = 2π/ωpl and �rad
A (ωpl ; i → n) is the radiative

width or probability of the atomic transition i → n

�rad
A (ωpl ; i → n) = 2

π
ω2

pl

1

2

1

2ji + 1

∑
mi,mn

|Hex |2 (5)

(ji,n,f ,mi,n,f are the total angular momentum and its projection
for the electronic states). We can generalize the expression in
Eq. (4) to the case, when the atomic levels i and n have finite
widths. Using the relation [35]

δ(ω) = lim
ε→0

1

2π

ε

(ω2 + ε2)
, (6)

the cross section (4) near the resonance can be written as

σex(ωpl) = λ2
pl

4
�rad

A (ωpl ; i → n)

× 1

2π

(�i + �n)/2

(ωpl − ωni)2 + ((�i + �n)/2)2
. (7)

If we substitute into this formula the width of the radiation
transition �rad

A (ωpl ; i → n) from Eq. (5), we get in fact the
first factor in the formula (3).
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As for the second factor in Eq. (3), it is equivalent to the
relative probability of the NEET process, PNEET, which can be
calculated by the expression [11]:

PNEET � E2
int(L; ωN ; n → f,I → F )

(ωnf − ωN )2 + (�n + �f + �N )2/4
, (8)

where Eint is the energy of nuclear and electron current
interaction in the electron transition n → f with multipolarity
L, coinciding with the multipolarity of nuclear transition
I → F :

E2
int = 1

2jn + 1

1

2JI + 1

∑
mn,mf

∑
mI ,mF

|Hint|2 . (9)

Here JI,F ,mI,F are the total angular momentum and its
projection for the nuclear states.

Comparing the expressions in Eqs. (3)–(9) it is easy to
obtain the formula for the cross section of the IEB process

σ
(3)
IEB(ωpl) = 1

2

1

2ji + 1

1

2JI + 1

∑
ξμ

∑
mi,mf

∑
mI ,mF

∣∣S(3)
f i

∣∣2

T

= λ2
pl

4
�rad

A (ωpl ; i → n)PNEETδ(ωni − ωpl), (10)

where the process progresses in the time interval T � 1/∑
�i,n,f,N .

III. EFFICIENCY OF EXCITATION PROCESSES

Let us compare the efficiency of excitation under the
mechanism of the inverse electron bridge with the efficiency
of the photo-excitation process of nuclei by plasma radiation.

If the density of plasma photons as a function of their energy
is n(ω)dω in the energy interval dω, and τ is time of plasma
existence, a fraction of the excited nuclei, or efficiency of the
excitation process under the mechanism of the inverse electron
bridge can be calculated from the relation

ζ
(3)
IEB =

∫ ∞

0
dωplσ

(3)
IEB(ωpl)τn(ωpl)

≈ λ2
in

4
�rad

A (ωin; i → n)PNEET τn(ωin). (11)

The photoexcitation cross section for nuclei can be easily
calculated according to the standard QED rules. The cross
section features a strong resonance [16]:

σ (1)
γ (ωpl) = λ2

4
�rad

N (ωpl ; I → F )δ(ωN − ωpl),

where �rad
N (ω; I → F ) is the radiation width of nuclear

transition. The efficiency of the photo-excitation pro-
cess can be calculated similar to Eq. (11) using the

expression

ζ (1)
γ ≈ λ2

N

4
�rad

N (ωN ; I → F )τn(ωN ). (12)

For further calculations, we shall use the following expres-
sion for the interaction energy in Eq. (8) [11]:

E2
int = 1

4
�rad

A (E[M]L; ωN ; n → f )

×�rad
N (E[M]L; ωN ; I → F )

(
1 + 1

δ2

)
.

This expression binds E2
int with radiation widths of atomic

(�rad
A ) and nuclear (�rad

N ) transitions by the factor δ ≡
Re[ME[M]

L (ωN )]/Im[ME[M]
L (ωN )] that is well known from the

theory of internal electron conversion. This factor is the ratio of
the real and imaginary parts of the matrix elementME[M]

L (ωN ).
For the electric and magnetic types of transitions, the electron
matrix elements are calculated using the equations [11]

ME
L (ωN ) =

∫ ∞

0
drr2

(
h

(1)
L (ωNr)[gn(r)gf (r) + fn(r)ff (r)]

− h
(1)
L−1(ωNr)

L
[(κn − κf − L)gn(r)ff (r)

+ (κn − κf + L)gf (r)fn(r)]

)
,

MM
L (ωN ) = κn + κf

L

∫ ∞

0
drr2h

(1)
L (ωNr)

×[gn(r)ff (r) + gf (r)fn(r)] ,

where g(r) and f (r) are, correspondingly, large and small
components of the Dirac wave functions of electron in atomic
shell, κ = (l − j )(2j + 1), where l is the orbital angular
momentum quantum number of the electronic state.

From Eq. (11) one can conclude that at excitation of
nuclei by the mechanism of the inverse electron bridge,
the width of the part of the spectrum responsible for the
resonance transition to the intermediate state in atomic shell
near ωpl = ωin equals to �rad

A (ωin; i → n). Thus, the density
of the resonance photons is n(ωin)�rad

A (ωin; i → n). This is
essentially higher (especially for the atomic transition E1) than
the similar value n(ωN )�rad

N (E[M]L; ωN ; I → F ) in Eq. (12),
characterizing the density of the resonance plasma photons
causing the nucleus excitation in the first-order process—
direct photoabsorption. Denoting by � the value of mismatch
between the energy of atomic transition n → f and ωN in
the NEET process [� ≡ (En − Ef ) − ωN , see in Fig. 1], we
shall obtain the following expression for the ratio of excitation
efficiencies:

ζ
(3)
IEB

ζ
(1)
γ

≈ 1

4δ2

�rad
A (E1; ωin; i → n)

�rad
N (E[M]L; ωN ; I → F )

×�rad
A (E[M]L; ωN ; n→f )�rad

N (E[M]L; ωN ; I→F )

�2 + �2
n/4

.

(13)
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Assume that for experimental studies we managed to select
an ideal object with so small mismatch value, that the
following condition is satisfied: � � �n. (Such examples,
though uncommon, are known. The NEET process close
to resonance takes place in 197Au and 193Ir [33]. We shall
discuss this situation in greater detail below.) It is clear,
that the radiation width �rad

A (E1; ωin; n → i) gives the basic
contribution to the width of the intermediate state �n (Auger
process in the upper shells of a highly ionized atom is unlikely).
The formula (13) for the ratio of excitation efficiencies is
simplified, and under the condition ωin ≈ ωnf ≈ ωN has the
following form:

ζ
(3)
IEB

ζ
(1)
γ

≈
(

Im
[ME[M]

L (ωN ; n → f )
]

Re
[ME

1 (ωN ; n → i)
]

)2

. (14)

The small parameter ωNr0 � 1 expansion of the atomic
matrix elements in Eq. (14) gives |Im[ME[M]

L (ωNr0)]| �
1/(ωNr0)L+1 for the EL transition, and � e2/(ωNr0)L+1 for
the ML transition (we took into account here that by an
order of magnitude the small component of the Dirac bispinor
can be estimated using the equation f (x) � e2g(x) [34]),
and Re[ME

1 (ωNr0)] � (ωNr0)1. It allows writing the ratio of
efficiencies in the form

ζ
(3)
IEB

ζ
(1)
γ

≈
{

1/(ωNr0)2(L+2), for EL nuclear transition
e4/(ωNr0)2(L+2) , for ML nuclear transition

.

(15)

It follows from Eq. (15) particularly that in the case of
nuclear E1 transition of relatively small energy ωN (some
kiloelectronvolts) in high-temperature plasma, when ωNr0 ≈
1/10, the efficiency of the excitation process through the
electron bridge can surpass by several orders the efficiency of
direct photoexcitation of nuclei by thermal plasma radiation.

Note that Eq. (15) assumes a multipolar exchange in the
process of excitation through the electron bridge. The first
stage—excitation of atom (ion)—always occurs as a result of
E1 transition from the initial to the intermediate state. Thus,
Eq. (15) is true for nucleus excitation through an inelastic
electron bridge. The less probable process—elastic electron
bridge—is not considered in this paper. The exception makes
a case of the nuclear E1 transition, for which Eq. (15) is true
for both types of electron bridge.

It is necessary to understand that the numerical assessments
based on Eq. (15) shall be considered with some caution. The
equations help to understand only the most general qualitative
regularities existing between the various processes of nucleus
excitation. Equation (14) is much more precise, but it requires
the calculation of electron matrix elements that, in turn,
requires the corresponding computer codes.

IV. DE-EXCITATION OF 84RB NUCLEUS

Let us consider, as an example, the induced by the
plasma photons decay of the isomeric state 6−(463.59 keV,
20.26 m) in the 84Rb nucleus (see Fig. 2) through the state
5−(466.64 keV,9 ns). In hot plasma with temperature T �
ωN = 3.4 keV (see Table I), excitation of a short-living state

6
-

5
- 466.64    9 ns

2
-

3
-

463.59    20.26 min

248.06    0.31 ns

Jπ E (keV )   T
1/2

84Rb

0.0          32.82 d 

2 3

4

1

5

FIG. 2. Decay scheme of 84Rb.

5−(466.64 keV) will occur both as a result of photoabsorption
by isomeric nuclei 84Rbm (photoexcitation), and in the course
of an inverse electron bridge through the Rb ion shell.

Parameters of nuclear transitions shown in Fig. 2 are given
in Table I (see Ref. [36]). Note that a clarification is needed for
the energy of transition 6−(463.59 keV) → 5−(466.64 keV)
from [36]. The tabular value 3.4 keV is considerably larger
than the difference of energy levels E6− − E5− = 3.05 keV.

Modern numerical codes do not allow calculating energies
of atomic states with accuracy that would allow making a
conclusion regarding coincidence or discrepancy of energies
of electronic and nuclear transitions within the width of
the atomic line. We have calculated the atomic shells and
multicharge Rb ions using the code RAINE [37]. The obtained
assessments: (i) allow tracking the tendency of electronic
transition energy change as the atomic shell is ionized; and (ii)
indicate a possibility in principal to observe the IEB process
for 84Rb. (Analogous calculations for the L3 → K transition
in the 237Np ions were done in [25].)

We will consider the energies of M1 transitions 5S1/2 →
2S1/2 and 5P1/2 → 2P1/2 in the electronic shell of the Rb ion
as an example. In the Rb atom, the values of these energies are,
correspondingly, 2 keV and 1.8 keV. While degree of atomic
ionisation increases, the energies of the specified transitions
also increase. Figure 3 shows these changes in the Rb25+ −
Rb33+ ions. One can see that the assumed area of nuclear
transition 3.05—3.4 keV overlaps in the Rb28+–Rb32+ ions.

NEET probability and the cross section of nuclear ex-
citation in the IEB process in the Rb32+ ion are estimated
for the typical and not the most optimum case of electronic

transition 2S1/2
E1−→ 5P1/2

M1−→ 2P1/2 given in Fig. 4. (Note
in brackets that, for example, the cross section of the nuclear

TABLE I. Properties of 84Rb transitions. N is a transition number
from Fig. 2.

N Energy, Multi- Conversion Reduced probability
keV polarity coefficient of transition

1 248.02 E2 + M1 ≈0.0343 BW.u.(M1) ≈ 0.00020
BW.u.(E2) ≈ 82

2 215.61 M3 + E4 1.08 BW.u.(M3) = 0.00091
BW.u.(E4) = 72

3 463.62 E4 0.0391 BW.u.(E4) = 0.132
4 (3.4) (M1) 361 BW.u.(M1) ≈ 0.08
5 218.3 E2 0.0556 BW.u.(E2) = 3.1
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FIG. 3. (Color online) Energy of M1 transitions 5S1/2 → 2S1/2

and 5P1/2 → 2P1/2 in the Rb ion shell as a function of the ion charge.

excitation appears essentially higher in the electronic transition

2P1/2
E1−→ 5S1/2

M1−→ 2S1/2.) The value of the nuclear transi-
tion energy 6− → 5− ωN = 3.4 keV recommended in [36] is
used in calculations.

Energy of interaction Eint of electronic and nuclear currents
in the course of energy exchange between electronic shell and
the nucleus is calculated using the known equation from [11]:

E2
int = 4πe2 ω

2(L+1)
N

[(2L + 1)!!]2

(
C

jf 1/2
ji1/2L0

)2 ∣∣ME/M
L (ωN )

∣∣2

B(E/ML; Ji → Jf ). (16)

For the scheme shown in Fig. 4, the calculation with
electronic wave functions 2P1/2 and 5P1/2 gives the value
Eint � 2×10−4 eV. The obtained value is comparable with
the radiation widths of electronic E1 transitions with energies
3–4 keV in multicharge Rb ions. For example, the radiation
width of the E1 transition 5S1/2 → 2P1/2 is approximately
equal to 2×10−4 eV, and of the transition 5P1/2 → 2S1/2—to
6×10−3 eV. Therefore, in the resonance condition, when de-
tuning between the energies of atomic and nuclear transitions
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FIG. 4. (Color online) One of possible schemes of the IEB
process in the 84Rb32+ ion.
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FIG. 5. (Color online) Function (λ2
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for the IEB process and functions (λ2
N/4)�rad

N (ωN ; M1,6− → 5−) and
(λ2

N/4)�rad
N (ωN ; E1; W ) for the process of direct photoexcitation of

84Rb nucleus in the M1 transition studied in the present work and E1
transition of the same energy with the reduced transition probability
in the Weisskopf model equal to 1.

� does not exceed 10−3–10−2 eV, the probability PNEET from
Eq. (8) can reach the values of an order of 10−2 in 84Rb32+.

The efficiency ζ of nucleus excitation of Eqs. (11)–(12)
contains “a plasma” part τn(ωin,N ) that is nearly identical for
both mechanisms. Figure 5 shows the ζ function component
that is defined by an atomic-nuclear part of the excitation
process, namely, product of the cross section and the width
of a working section of photon spectrum, that is, actually,
the radiation width of the process. It is clear that, if detuning
� is small, the IEB process will dominate over the direct
photoexcitation.

It is interesting to note that the efficiency of excitation
through IEB in the 84Rb32+ ion can exceed even the efficiency
of the photoexcitation for the E1 transition with energy
ωN = 3.4 keV and reduced probability BW.u.(E1) = 1 (see
Sec. V for explanations), and there is nothing surprising in
this. The mechanism of compensation of additional electron-
photon vertexes in the diagram of the third order, which was
considered at the beginning of Sec. II, is very efficient due
to smallness of the ωNr0 parameter. (At the same time the
radiation width of even such E1 transition remains of course
relatively small, 5.1×10−8 eV, since its energy is only 3.4 keV,
and the radiation width of the E1 transition is proportional
to ω3

N .)

V. DISCUSSION OF RESULTS

The imposed condition � � �n is rigid, but, as it was
already mentioned above, is not contradictory. In hot dense
unstable plasma, there is a permanent exchange of electrons
between plasma and ions. The charge of ions change and,
as a consequence, changes the Coulomb field affected the
bound electrons. The electron binding energies in the ion
shell Ei , En, Ef , and the energy of transition ωnf = En − Ef

change accordingly. The energy of transition ωnf approaches
to or moves away from the resonance value ωN . According
to Eqs. (8)–(10), the cross section of nuclear excitation
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under the mechanism of the inverse electronic bridge depends
quadratically on the mismatch value �. In the resonance, the
cross section σ

(3)
IEB possesses the maximum value, which is

much larger than the cross section of photoexcitation σ (1)
γ .

Therefore, the reduction of � to the values comparable with
�n (even for short time) leads to effective excitation of the
nucleus to the isomeric state. It is not unlikely that inclusion of
the studied mechanism of excitation of nuclei in the theoretical
analysis similar to that one made in [6], will allow making a
more precise prediction of the yield of nuclear isomers in
experiments with hot laser plasma. The required precision
calculation of electronic transition energies in ions is difficult,
but a problem for modern computer codes which can be
overcome.

In conclusion, let us note two important circumstances.
First, the value PNEET is the relative probability of nucleus
excitation in electron transition. It cannot exceed 1 by defini-
tion. Let us make sure that for the nuclear E1 transition, this
condition is valid also in the case ζ

(3)
IEB/ζ (1)

γ ≈ 1/(ωNr0)6 �
1. For this purpose, let us recollect that �rad

N (E1; ω) ∼
ω3R2

NBW.u.(E1) and �rad
A (E1; ω) ∼ ω3r2

0 . Substituting these
relations into Eqs. (11)–(12), we shall obtain the following
expression for the excitation efficiency ratio:

ζ
(3)
IEB

ζ
(1)
γ

≈
(

r0

RN

)2
PNEET

BW.u.(E1)
.

Here BW.u. is a so-called reduced probability in Weisskopf
units that depends on the properties of a particular nuclear
transition. By definition, it is equal to the ratio of the measured
experimentally reduced probability of the nuclear transition
B(E/ML,II → IF ) to the reduced probability in Weisskopf
model B(W ; E/ML). The latter value for the E/ML transition
in a nucleus with atomic number A and radius R0 = 1.2A1/3

fm is calculated using the equations [38]

B(W ; EL) = e2

4π

(
3

3 + L

)2

R2L
0 ,

B(W ; ML) = B(W ; EL)
10

(MP R0)2
,

where MP is the proton mass.
Let us evaluate the value PNEET in the case, when the

formula (15) is valid for ζ
(3)
IEB/ζ (1)

γ . From the relation PNEET ≈

(RN/r0)2BW.u.(E1)/(ωNr0)6 we obtain that PNEET � 10−6 at
the characteristic value BW.u.(E1) � 10−6. Thus, the deduced
above relation (15) does not really contradict the condition
PNEET � 1.

Second, in the resonance mode, which was considered in
the present work, time of the excitation process in a nucleus
is defined by the lifetime of vacancy tv in the ion shell. In the
case of an elastic electron bridge, when initial |i〉 and final
|f 〉 electron states coincide, this is the vacancy lifetime in a
state with Ei energy (see Fig. 1). If the process goes through
inelastic electron bridge, as shown in the right part of Fig. 1, its
duration is defined by the hole lifetime in a state with energy
Ef . When the vacancy decay in the ion shell is slower than
plasma cools down, an additional multiplier τ/tv is to be added
into the equation for the efficiency of the IEB process (11). For
transitions in the optical part of the spectrum (with energies
of some electronvolts), the characteristic time tv � 10−8 s
and the factor τ/tv could reduce essentially the efficiency of
the excitation through the IEB mechanism. However, for the
discussed energies ω � 1–10 keV, the characteristic lifetime
of transitions in the atomic or ionic shell is much less than in the
optical area since the probability of electric dipole transitions is
proportional to ω3. Accordingly, even for the high-temperature
laser plasma, lifetime of which is relatively low (an order of
laser pulse duration), the condition tv < τ will be always true.
In particular, the estimations of E1 transition widths in the Rb
ion, given above, indicate this. Thus, Eq. (11) quite adequately
allows for physical conditions of the nuclear excitation process
in plasma and can be used for qualitative assessment of the IEB
mechanism efficiency.

VI. CONCLUSION

In conclusion, the results of the work can be summarized as
follows. It was shown that in the case of resonance coincidence
of the energies of nuclear and one of atomic transitions,
the process of nuclei excitation by the mechanism of the
inverse electronic bridge can provide a very high efficiency
of excitation of the nuclei, including the excitation to the
short-living state located closely to the isomer state. Adding
such mechanism into corresponding computer codes is of great
interest to the study of excitation of nuclei in high-temperature
dense nonstationary plasma.
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[19] P. Morel, V. Méot, G. Gosselin, D. Gogny, and W. Younes,
Phys. Rev. A 69, 063414 (2004).

[20] G. Gosselin and P. Morel, Phys. Rev. C 70, 064603 (2004).
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