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Description of the simplest photonuclear reactions within the particle-hole dispersive optical model
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A recently developed particle-hole dispersive optical model is applied to describe the cross sections
of photoabsorption, direct + semidirect photoneutron and inverse reactions accompanied by excitation of
the isovector giant dipole and quadrupole resonances in medium–heavy-mass spherical nuclei. The model
is an extension of the standard and nonstandard versions of the continuum-random-phase approximation
by including the spreading effect in a phenomenological way. It contains the following ingredients: the
Landau–Migdal particle-hole interaction and a phenomenological mean field consistent with this interaction,
isovector velocity-dependent forces taken in the simplest form and the imaginary part of an effective single-particle
optical-model potential determining the corresponding dispersive part. All the model parameters are taken from
the other data and from the description of photoabsorption, while the direct + semidirect photoneutron and
inverse reactions are described without the use of specific adjustable parameters. Calculation results obtained for
a few neutron-closed-shell nuclei are compared with the corresponding experimental data.
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I. INTRODUCTION

The isovector giant dipole resonance (IVGDR) predicted
by Migdal [1] and soon after observed experimentally [2]
was intensively studied together with the isovector giant
quadrupole resonance (IVGQR) by means of the simplest
photonuclear reactions. These are photoabsorption, direct +
semidirect (DSD) photonucleon, and inverse reactions (see,
e.g., Ref. [3]). The photoabsorption cross section, which is
mainly proportional to the IVGDR strength function, was
described within quite a few semiclassical and microscopic
approaches. The DSD photonucleon and inverse reactions
accompanied by IVGDR excitation in medium–heavy-mass
nuclei were described, during the last decades, only within the
so-called DSD model proposed by Brown [4] and extended by
the Ljubljana group (see, e.g., Ref. [5] and references therein).
The excitation of the IVGQR was also included in the DSD
model [6]. Within this model a number of phenomenological
quantities are used. One of them, the imaginary part of the
IVGDR form factor (transition potential), has no clear physical
meaning. Also the calculated DSD-reaction cross sections
depend markedly on the choice of the single-particle (s-p)
optical model used for evaluation of the escaped (captured)
nucleon wave function.

As a phenomenon, the DSD reactions induced by an
external s-p field are closely related to direct nucleon de-
cay of high-energy particle–hole-type nuclear excitations,
including giant resonances. Therefore, the most adequate
description of the DSD reactions seems to be possible
within a semimicroscopic model, which provides a good
description of the main relaxation modes of the mentioned
excitations. For medium–heavy-mass “hard” spherical nuclei
(in particular, for singly- and doubly-closed-shell nuclei) these
modes are the following: Landau damping and coupling of
particle–hole-type states to the s-p continuum and to many-

quasiparticle configurations (the spreading effect). Within
the recently developed particle-hole (p-h) dispersive optical
model (PHDOM) [7,8], Landau damping and coupling to
the s-p continuum are considered microscopically, starting
from the standard and nonstandard versions of the continuum-
random-phase approximation (cRPA), while the spreading
effect is described in a phenomenological way in terms of
the energy-dependent imaginary part of the effective s-p
optical-model potential used in the PHDOM equations. The
properly parametrized imaginary part determines also the real
potential added to the nuclear mean field via the corresponding
dispersive relationship. The model is valid at arbitrary (but high
enough) excitation energies.

In this work we present a detailed application of the PH-
DOM to a description of the simplest photonuclear reactions
accompanied by excitation of the IVGDR and IVGQR in a few
neutron-closed-shell nuclei. The work is a direct continuation
of our previous study of Ref. [9], where the semimicro-
scopic approach [7,10], corresponding to the PHDOM “pole”
version (valid in a vicinity of the given giant resonance),
has been exploited. For both approaches the input quantities
(Landau–Migdal p-h interaction consistent with the adopted
phenomenological mean field, isovector velocity-dependent
forces, and an imaginary part of the effective optical-model
potential) are the same. The unique feature of the PHDOM
and its “pole” version is the description of the DSD reactions
without the use of specific adjustable parameters. All the
model parameters are taken from the independent data and
from the description of the giant resonance strength function.
Some results concerned with the applications of the PHDOM
to the description of the fast-neutron radiative capture are
briefly discussed in Ref. [11]. In the present work we use a
somewhat different mean field than that assumed in Ref. [11]
to better describe the integrated photoabsorption cross
section.
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The paper is organized as follows: In Sec. II the PHDOM
relationships for the energy-averaged dipole and quadrupole
strength functions, DSD E1- and E2-reaction amplitudes
are given together with the description of input quantities
and the choice of model parameters. The expressions for
observable quantities, calculation results in comparison with
the corresponding experimental data, and discussions of the
results are presented in Sec. III. Conclusive remarks are given
in Sec. IV.

II. BASIC RELATIONSHIPS

A. Equations of the standard and nonstandard versions of cRPA

We start the description of PHDOM basic relationships
from the corresponding equations of the standard and nonstan-
dard versions of the cRPA. These equations can be formulated
in terms of the effective energy-dependent fields related to the
corresponding s-p external fields (see, e.g., Refs. [7,8]). When
applied to the description of p-h excitations in the neutral
channel, the system of the integral equations for the neutron
(n) and proton (p) effective fields can be schematically written
in the form

V α = V α
0 +

∑
β

F αβAβV β. (1)

Here, α(β) = n,p are the isobaric indexes relating to both the
external and effective fields V α

0 and V β(ω), respectively, Fαβ

is the interaction in the p-h channel, Aβ(ω) is the free p-h
propagator for the subsystem β, and ω is the excitation energy.
The effective fields determine the corresponding strength
function as follows:

SV0 = − 1

π
Im

∑
α

(
V α

0

)∗
AαV α. (2)

Equations (1) and (2) correspond to the standard cRPA version,
which can be also formulated in terms of the effective p-h
propagator (see, e.g., Refs. [7,8]). The nonstandard cRPA
version is formulated with the use of the effective-field method
and based on the alternative representation of the strength
function of Eq. (2). This representation follows from Eqs. (1)
and (2) and in the continuum region (ω > BN,BN is the
nucleon separation energy) can be presented in the following
form [7,8]:

SV0 =
∑
α,c

∣∣Mα
V0,c

∣∣2
. (3)

Being a proper matrix element of the effective field V α , the
quantity Mα

V0,c
is the amplitude of the DSD reaction induced

by the external field V0 (c is a set of the reaction-channel
quantum numbers). Actually, Eq. (3) represents a kind of the
optical theorem.

Bearing in mind excitations of the IVGDR and
IVGQR in photonuclear reactions [generally the isovector
dipole (L = 1) and isovector + isoscalar quadrupole (L = 2)
(p-h)-type excitations in the neutral channel], we sim-
plify the isobaric structure of the corresponding external
and effective fields [1 � (N − Z) � A]: V

p
0,1 = −V n

0,1 =
(1/2)Q1M, V

p
0,2 = Q2M, V n

0,2 = 0, where QLM = rLYLM is

the multipole operator. To define the model parameters we
use Q00 = r2Y00 as the external field for description of the
isoscalar giant monopole resonance excitation. Using these
definitions and also the substitution Aα → A = 1

2 (An + Ap),
one gets from Eq. (1) two uncoupled equations for the effective
fields V

(∓)
L = V

p
L ∓ V n

L :

V
(∓)
L = V

(∓)
0,L + F (∓)AV

(∓)
L . (4)

Here V
(−)

0,1 = Q1M,V
(+)

0,1 = 0, V
(∓)

0,2 = Q2M and F (∓) =
1
2 (Fpp ∓ Fpn) (Fpp = Fnn, F np = Fpn). The signs (−) and
(+) in Eq. (4) and in the following equations for the strength
functions:

S
(∓)
L = − 1

2π
Im((V (∓)

0,L )∗AV
(∓)
L ), (5)

are related to the isovector and isoscalar excitations, respec-
tively. It is noteworthy that the neutron effective fields V n

1 =
− 1

2V
(−)

1 and V n
2 = 1

2 (V (+)
2 − V

(−)
2 ) determine, respectively,

the E1- and E2-photoneutron DSD-reaction amplitudes Mn
L,c

of Eq. (3). The E2 amplitude exists only due to the p-h
interaction.

In the following implementations of the PHDOM we use the
spinless part of the Landau–Migdal p-h interaction, [F (r) +
F ′ττ ′]δ(r − r′), and isovector velocity-dependent forces. The
necessity to include a momentum-dependent p-h interaction in
the description of IVGDR properties was noted in Ref. [12].
Taking this interaction as a sum of separable terms allows us to
get the corresponding cRPA equations in a closed form [13].
The expressions for the p-h interaction in the isoscalar (L = 2)
and isovector (L = 1,2) channels with multipolarity L equal
1 or 2 can be presented as follows:

F
(+)
L = F (r)

δ(r − r ′)
rr ′

∑
M

(−1)MYL−MYLM,

F
(−)
L = F ′ δ(r − r ′)

rr ′
∑
M

(−1)MYL−MYLM

+ 4πmk′
L

(2L + 1)AR2(L−1)

∑
M

(−1)MQ̇L−MQ̇LM. (6)

Here, m is the nucleon mass, A is the number of nucleons, R is
the nuclear radius, k′

L are the dimensionless intensities of the
isovector velocity-dependent forces; Q̇LM = (i/�)[H0,QLM ],
where H0 is the s-p Hamiltonian. [For the choice of the
intensities F (r) = Cf (r), F ′ = Cf ′ (C = 300 MeV fm3) and
the nuclear mean field see Sec. II C.]

Assuming that the external and corresponding effective
fields have the same angular symmetry and taking into account
the choice of the p-h interaction according to Eq. (6), we seek
the solutions to Eqs. (4) in the form

V
(+)
LM (r,ω) = V (+)(r,ω)YLM (r/r) (L = 2), (7)

V
(−)
L (r,ω) = ṼL(r,ω)YLM (r/r) + �L(ω)Q̇LM (r) (L = 1,2).

(8)

After separation of the spin-angular variables we get from
Eqs. (4) the following integral equations for the radial parts of
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the isoscalar and isovector effective fields:

V
(+)

2 (r,ω) = r2 + 2F (r)

r2

∫
AL(r,r1; ω)V (+)

2 (r1,ω)dr1, (9)

V
(−)
L (r,ω) = ṼL(r,ω) + Ṽ ′

L(r,ω), (10)

ṼL(r,ω) = rL + 2F ′

r2

∫
[AL(r,r1; ω) + A′

L(r,r1; ω)]

×ṼL(r1,ω)dr1, (11)

where

A′
L(r,r1; ω) = k̃′

Lω2B−1
L (ω)

∫
AL(r,r2; ω)rL

2 dr2

×
∫

rL
3 AL(r3,r1; ω)dr3, (12)

and

Ṽ ′
L(r,ω) = k̃′

Lω2B−1
L (ω)rL

∫
rL

1 AL(r1,r2; ω)ṼL(r2,ω)dr1dr2.

(13)

Here, (rr1)−2AL(r,r1,ω) is the radial part of the free p-h
propagator, corresponding to the excitations with angular
momentum L (see, e.g., Ref. [7]),

BL(ω) = 1 +
(

2r2

R2

)(L−1)

k′
L − ω2k̃′

L

∫
rL

1 AL(r1,r2; ω)

× rL
2 dr1dr2,

where r2 is the mean-squared radius and k̃′
L = 8πmk′

L/[(2L +
1)�2AR2(L−1)].

The effective fields found from Eqs. (9)–(13) determine
the corresponding strength functions and photoneutron DSD-
reaction amplitudes in accordance with the relationships (5)
and (3), respectively:

S
(∓)
L (ω) = − 1

2π
Im

∫
rLAL(r,r ′; ω)V (∓)

L (r ′,ω)drdr ′

(L = 1,2), (14)

and

M
(n)
1, c(ω) = −1

2

(
n(n)

μ

)1/2
t

(1)
(λ)(μ)

∫
χ

(+)(n)
ε=εμ+ω,(λ)(r)V (−)

1 (r,ω)

×χ (n)
μ (r)dr, (15)

M
(n)
2, c(ω) = 1

2

(
n(n)

μ

)1/2
t

(2)
(λ)(μ)

∫
χ

(+)(n)
ε=εμ+ω, (λ)(r)(V (+)

2 (r,ω)

−V
(−)

2 (r,ω))χ (n)
μ (r)dr. (16)

Here, r−1χ
(+)(n)
ε,(λ) (r) is the single-neutron continuum-state

radial wave function normalized to the δ function of the energy
ε, r−1χ (n)

μ (r) is the single-neutron bound-state radial wave
function, (λ) = jλ, lλ are the quantum numbers of the s-p
total and orbital angular momenta, nμ = Nμ/(2jμ + 1) is the
occupation factor (Nμ is the number of neutrons filling the s-p
level μ), and

√
2L + 1t

(L)
(λ)(μ) = 〈(λ)||YL||(μ)〉 is the reduced

matrix element. The set μ,(λ) = c together with the L value
are the quantum numbers of the (γ,n)-reaction channel.

B. PHDOM equations

Within the cRPA, only Landau damping of p-h-type states
and coupling of these states to the s-p continuum are taken into
account. As mentioned in the introduction, the PHDOM is an
extension of the cRPA versions by accounting for the spreading
effect. Within this model, Landau damping of (p-h)-type states
and coupling of these states to the s-p continuum are described
microscopically, while the coupling of (p-h)-type states to
many-quasiparticle configurations (chaotic states) is treated
phenomenologically on average over the energy with the use
of a statistical assumption. The latter means that, after energy
averaging, the different p-h states having the same angular
momentum and parity decay into chaotic states independently
of one another. This assumption is exploited in transformation
of the energy-averaged equation for the nonlocal p-h Green
function (effective p-h propagator) to the equation for the
energy-averaged local p-h effective propagator [7,8]. Formally,
the result looks like the corresponding cRPA equations, in
which the “free” energy-averaged p-h propagator Aα

L(r,r ′,ω)
is used. Hereafter, for the ω-dependent energy-averaged
quantities we use the same notations as those used for the
corresponding cRPA quantities in the previous section. The
PHDOM being a basic quantity, this propagator enters in
Eqs. (10)–(13) for the energy-averaged effective fields and in
Eqs. (14) for the energy-averaged strength functions. Starting
from a rather general consideration of Refs. [7,8], we give
below the explicit expression for the “free” energy-averaged
p-h propagator in the form, which is further directly used in
calculations:

AL = A(1)
L + A(2)

L + A(3)
L ,

A(1)
L =

∑
μ,(λ)

nμ

(
tL(λ)(μ)

)2
χμ(r)χμ(r ′)g(λ)(r,r

′,εμ + ω),

A(2)
L =

∑
λ,(μ)

nλ

(
tL(μ)(λ)

)2
χλ(r)χλ(r ′)g(μ)(r

′,r,εμ − ω),

A(3)
L = 2

∑
μ,λ

nμnλ

(
tL(μ)(λ)

)2
χμ(r)χμ(r ′)χλ(r)χλ(r ′)

× [iW (ω) − P (ω)]fμfλ

(ελ − εμ + ω)2 − [iW (ω) − P (ω)]2f 2
μf 2

λ

. (17)

For brevity, the isobaric index was omitted. In Eq. (17),
(rr ′)−1g(λ)(r,r ′,ε) and (rr ′)−1g(μ)(r ′,r,ε) are the optical-model
radial Green functions satisfying the equations

− δ(r − r ′) = (h0,(λ)(r) − {εμ + ω + [iW (ω) − P (ω)]

×fμfWS(r)})g(λ)(r,r
′,εμ + ω), (18)

− δ(r ′ − r) = (h0,(μ)(r
′) − {ελ − ω + [iW (ω) − P (ω)]

×fλfWS(r ′)})g(μ)(r
′,r,ελ − ω), (19)

with h0,(λ)(r) and [−iW (ω) + P (ω)]fμfWS(r) being, respec-
tively, the radial part of a s-p Hamiltonian (including the
spin-orbit and centrifugal terms) and the optical-model
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addition to the nuclear mean field, [fWS(r) is the Woods–Saxon
function and fμ = ∫

fWS(r)χ2
μ(r)dr]. The intensity of the

imaginary part of the effective optical-model potential, W (ω),
is considered as a phenomenological quantity, while the real
part P (ω) appearing due to a spreading effect is determined
by W (ω) via a proper dispersive relationship [7,8,14].

Extension of the nonstandard cRPA version consists of
taking into account the spreading effect on the DSD-reaction
amplitudes of Eqs. (15) and (16). Within the PHDOM,
the energy-averaged amplitudes are expressed via energy-
averaged effective fields and also via the optical-model
continuum-state wave function χ

(+)
ε=εμ+ω,(λ)(r,ω), satisfying the

homogeneous equation (18) [8].
The above-described energy-averaged strength functions

and DSD-reaction amplitudes are further used for the evalua-
tion of the energy-averaged photoabsorption, DSD photoneu-
tron, and inverse-reaction cross sections.

C. Input quantities: Choice of model parameters

As mentioned in the introduction, the p-h interaction, a
phenomenological mean field partially consistent with this
interaction, and the imaginary part of the effective optical-
model potential are the input quantities for implementations
of the PHDOM. The p-h interaction used for description of
the simplest photonuclear reactions is presented in Sec. II A.
The phenomenological mean field Uα

λ (r), which enters in the
Schrödinger equations for radial Green and wave functions,
contains the isoscalar (central and spin orbit), the isovector,
and the Coulomb parts (τn = 1, τp = −1):

Uα
(λ)(r) = U0(r) + Uls,(λ)(r) + 1

2v(r)τα + 1
2 (1 − τα)UC(r).

(20)

Here, the isoscalar terms

U0(r) = −U0fWS(r,R,a),

Uls,(λ)(r) = Uls

1

r

dfWS

dr
(ls)(λ), (21)

where fWS(r,R,a) = [1 + exp( r−R
a

)]−1 are considered as
purely phenomenological quantities, while the isovector and
Coulomb parts

v(r) = 2f ′n(−)(r), UC(n(p)) (22)

are calculated self-consistently via the neutron excess and
proton densities, respectively. The above-described mean
field is determined by five adjustable parameters U0, Uls ,
r0 = RA−1/3, a, and f ′. They are chosen from a fit to the
observed single-quasiparticle spectra in doubly-closed-shell
nuclei 48Ca,132Sn, and 208Pb, carried out in Refs. [15,16]. For
other nuclei these parameters are obtained by an interpolation
procedure. Determined in this way, the above-mentioned
parameters for 89Y, 140Ce, and 208Pb are listed in Table I.

Turning to the p-h interaction of Eq. (6), we note the
following: The dimensionless intensity of the isoscalar part of
the Landau–Migdal interaction is parametrized in accordance
with Ref. [12]: f (r) = f ex + (f in − f ex)fWS(r). The main
parameter f ex is found from the condition that the isoscalar
1− spurious state, related to center-of-mass motion, lies at

TABLE I. Values of adjusted mean-field parameters used in the
calculations.

Nucleus U0 (MeV) Uls (MeV fm2) r0 (fm) a (fm) f ′

89Y 55.210 31.885 1.21 0.613 1.052
140Ce 55.815 32.095 1.21 0.625 0.975
208Pb 56.39 33.354 1.21 0.63 0.976

zero energy. For this purpose the strength function S
(+)
1 (ω)

of Eq. (14), corresponding to the isoscalar external field
V

(+)
0,1M = rY1M , is calculated. The small parameter f in is found

together with f ex from a common description of the observed
energies of the isoscalar giant monopole and quadrupole
resonances. The values of these parameters, calculated for
208Pb, are found to be the following: f ex = −2.926 and
f in = 0.0875. The Landau–Migdal parameter f ′ obtained
from a fit to single-quasiparticle spectra via the symmetry
potential v(r) of Eq. (22) determines also the energies of the
isovector spinless giant resonances. It was found that, within
the considered model, the IVGDR energy is underestimated
without taking the momentum-dependent forces into account.
Apart from the IVGDR energy shift, the intensity of these
forces, k′

1, determines also the excess of the integrated E1
photoabsorption cross section σ int

E1 over the Thomas–Reiche–
Kuhn sum rule σTRK = 15A MeV mb : σ int

E1 = (1 + k′
1)σTRK.

Thus, the parameter k′
1 can be deduced from consistent

description of the photoabsorption cross section in the vicinity
of the IVGDR. It means that the DSD E1-reaction amplitudes
of Eq. (15) can be evaluated within the model without the use of
additional adjustable parameters. Since the experimental data
concerned with the IVGQR energy are scanty, we deduce the
parameter k′

2 by considering the DSD photoneutron and inverse
reactions in the vicinity of the IVGQR. Such a procedure
allows us to make within the model the predictions concerning
the IVGQR main properties.

One more input quantity for implementations of the
PHDOM is the intensity of the imaginary part of the effective
optical-model potential, W (ω). From a fit to the total widths of
various giant resonances within the PHDOM “pole” version,
it was found that W (ω) exhibits a saturation-like energy
dependence [7,10]:

2W (ω � �) = α
(ω − �)2

1 + (ω − �)2/B2
, W (ω � �) = 0.

(23)

The “gap” parameter � = 3 MeV and the “saturation” pa-
rameter B = 7 MeV are chosen as universal quantities, while
the intensity parameter α ∼ 0.1 MeV−1 is further considered
as an adjustable parameter, found within the PHDOM from
a fit to the observed peak energy (or to an estimate of the
total width) of a given giant resonance. As mentioned above,
the real part of the optical-model addition to the mean field
P (ω), appearing due to the spreading effect, is determined by
W (ω) via a proper dispersive relationship [7,8,14]. The explicit
expression for P (ω) obtained in Ref. [14] with the use of the
parametrization given by Eq. (23) is rather cumbersome and
not shown here.
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In the concluding this section, we estimate the accuracy
of the approximate expression (17) for the energy-averaged
free p-h propagator (Sec. II B). Actually, this expression is
obtained in Refs. [7,8] with the use of an approximate spectral
expansion of the optical-model Green functions. The accuracy
of this approximation can be verified by evaluation of the
isoscalar monopole strength function S

(+)
V0

(ω), associated with
the spurious external field V0 = 1. For 208Pb, we find that
the calculated integral spurious strength

∫
S

(+)
V0

(ω)dω is quite
small: of order 10−3.

III. ENERGY-AVERAGED CROSS SECTIONS

A. Expressions for cross sections

The energy-averaged cross sections of photonuclear reac-
tions considered below are expressed in terms of the energy-
averaged strength functions and DSD-reaction amplitudes of
Eqs. (14)–(16). In particular, the total cross section of the
(E1 + E2)-photoabsorption is determined by the correspond-
ing energy-weighted strength functions:

σa,E1(ω) + σa,E2(ω)

= 16π3

3

e2

�c
ω

[
S

(−)
1 (ω) + 1

20

(
ω

�c

)2

S
(−)
2 (ω)

]
. (24)

Here, ω is the photon energy. The strength functions S
(±)
2 (ω)

are of particular interest because they determine, among
other things, the energies of the isoscalar and isovector giant
quadrupole resonances. The photoabsorption cross section
integrated over a given energy interval δ, σ int(δ) is also related
to observable quantities.

Neglecting the fluctuating part the expression for the
energy-averaged partial differential cross section of the DSD
photoneutron reaction, accompanied by excitation of the
IVGDR and IVGQR in the (Z,N ) target nucleus and leading to
population of the one-hole state μ−1 of the (Z,N − 1) product
nucleus, can be presented as an expansion in terms of the first
five Legendre polynomials:

dσμ(ω, θ )

d�n

=
∑
LLL′

B
(L)n
μ,LL′PL(cos θ ). (25)

The expansion coefficients, expressed in terms of known kine-
matical factors and the photoneutron DSD-reaction amplitudes
of Eqs. (15) and (16), can be written in the following form (in
the following, the isobaric index n may be omitted for brevity):

B
(L)
μ,LL′ = 4π5/2cLc∗

L′
e2

�c
ω

∑
(λ)(λ′)

il
′−l(−1)j

′+jμ

×
(

ω

�c

)L+L′−2

(L − 1L′1|L0)W (jj,′LL′;Ljμ)

×〈(λ)||YL||(λ′)〉ML, cM
∗
L′, c′ . (26)

Here, cL = iL[2L + 1/(2L + 1)!!]
√

(L + 1)/L, and (L −
1L′1|L0) and W (jj ′LL′;Ljμ) are the Clebsch–Gordan and
Racah coefficients, respectively. In the IVGDR energy region,
the expressions (25) and (26) are simplified (L = L′ = 1) and

can be presented as follows:

dσμ, E1(ω,θ )

d�
= 1

4π
σμ,E1(ω)[1 + a2, μ(ω)P2(cos θ )]. (27)

Here,

σμ,E1(ω) = 16π3

3

e2

�c
ω

∑
(λ)

|M1, c(ω)|2

is the total cross section of the respective partial DSD (γ,n)
reaction, and a2,μ(ω) is the anisotropy parameter:

a2, μ(ω) = −
√

6π
∑

(λ),(λ′)

il−l′ (−1)j+j ′
W (2j ′1jμ; j1)

×〈(λ)||Y2||(λ′)〉M1, c(ω)M∗
1, c′ (ω)

/∑
(λ)

|M1, c|2.

(28)

The cross section σμ,E1(ω) determines the partial probabil-
ity bμ,E1(δ) for direct neutron decay of the IVGDR with the
population of μ−1 single-hole state of the product-nucleus in
accordance with the relation [7,10,17]

bμ,E1(δ) =
∫

δ

ω−1σμ,E1(ω)dω

/ ∫
δ

ω−1σa, E1(ω)dω. (29)

In Eq. (29), δ is the considered excitation-energy interval. In
the absence of the spreading effect (that is, within the cRPA),
the total probability of IVGDR direct neutron decay bE1(δ) =∑

μ bμ, E1(δ) is close to unity, as follows from Eq. (3). We
neglect here a small contribution of IVGDR direct proton
decay in the total probability. The spreading effect reduces
substantially the quantity bE1, so that the difference 1 − bE1 is
the probability of IVGDR statistical (mainly neutron) decay,
provided that the pre-equilibrium decay is neglected.

In accordance with the detailed-balance principle, the
partial cross section for the DSD E1 + E2 neutron radiative
capture by the neutron-closed-shell nucleus (Z,N ), leading
to population of the μ single-particle configuration of the
product nucleus (Z,N + 1), dσ inv

μ /d�γ is determined by the

FIG. 1. Calculated total E1 + E2 photoabsorption cross section
for 208Pb in comparison with the experimental data of Ref. [18].

034613-5



B. A. TULUPOV AND M. H. URIN PHYSICAL REVIEW C 90, 034613 (2014)

TABLE II. Values of the adjustable parameters determining the
particle-hole interaction and the imaginary part of the effective
optical-model potential.

Nucleus k′
1 α (MeV−1)

89Y 0.15 0.125
140Ce 0.13 0.10
208Pb 0.17 0.08

corresponding partial DSD (γ,n)-reaction cross section:

dσ inv
μ (ε)

d�γ

= ω2

2mc2ε

dσμ(ω)

d�n

, (30)

with ε being the neutron kinetic energy and ω = ε − εμ.
In accordance with the kinematics of the (n,γ ) reaction
considered, the DSD (γ,n)-reaction cross section in Eq. (30)
is multiplied by the factor (2jμ + 1). Therefore, this cross
section should be evaluated with the use of Eqs. (15) and (16),
where the factor nμ equals unity as it takes place for the fully
occupied neutron levels.

B. Reactions accompanied by excitation of IVGDR

We start the presentation of the calculation results obtained
within the PHDOM with a description of photoabsorption by
the 208Pb target nucleus. Using Eqs. (10)–(14), (17)–(19), (23),
and (24), we calculate the cross section of E1 photoabsorption
by this nucleus and compare the results with the corresponding
experimental data of Ref. [18] (see Fig. 1.) This comparison
allows us to determine the adjustable parameters α and k′

1,
given in Table II. The integrated photoabsorption cross section
calculated for the energy interval δ = 7.5 to 37.5 MeV is
3633 mbn MeV, which is rather close to the corresponding
experimental value of 3584 mbn MeV [18,19]. This point
together with the satisfactory description of the IVGDR peak
energy is an evidence for the consistency of the model. Also
the calculated value of σ int

E1 is found to be close to the sum
rule σTRK(1 + k′

1). We note that the integrated cross section,
calculated within the cRPA (3673 mbn MeV; see Fig. 1),
slightly exceeds the corresponding value of 3633 mbn MeV

FIG. 2. Calculated total photoabsorption cross section for (left-
side panel) 140Ce and (right-side panel) 89Y in comparison with the
experimental data of Ref. [19]. The notations are the same as in Fig. 1.

FIG. 3. Calculated partial differential 208Pb(n,γ )-reaction cross
sections in comparison with the experimental data of Ref. [20].

obtained within the PHDOM, due to the inclusion of the
spreading effect in the PHDOM. Similar results obtained for
the 140Ce and 89Y target nuclei are presented in Table II and
Fig. 2. The calculated E1 + E2 photoabsorption cross sections
are also shown in Figs. 1 and 2 to demonstrate the small
relative contribution of E2 photoabsorption to the total cross
section. In the case of photoabsorption by 208Pb, the ratio of
σ int

E2/σ
int
E1 calculated for the above-mentioned energy interval

δ is found to be about 5%. To illustrate the contribution of
Landau damping to the formation of the IVGDR total width
(generally speaking, to the cross-section-shape line), we show
in Figs. 1 and 2 the photoabsorption cross sections calculated
within the cRPA (multiplied by the factor 10−1). As follows
from these figures, due to Landau damping the IVGDR cannot
be considered as a single-level resonance.

The description of the DSD photoneutron and inverse
reactions accompanied by IVGDR excitation is based on

FIG. 4. Calculated anisotropy parameters for some partial dif-
ferential 208Pb(n,γ )-reaction cross sections in comparison with the
experimental data of Ref. [20].

034613-6



DESCRIPTION OF THE SIMPLEST PHOTONUCLEAR . . . PHYSICAL REVIEW C 90, 034613 (2014)

FIG. 5. Calculated (n,γ )-reaction partial cross sections for (left-side panel) 140Ce and (right-side panel) 89Y in comparison with the
experimental data of Ref. [21].

Eqs. (27)–(30), in which the energy-averaged E1-reaction
amplitudes are determined by Eq. (15). In such a description
there are no new adjustable parameters (as compared with
those used in the description of E1 photoabsorption). The
energy-averaged partial differential 208Pb(n,γ )-reaction cross
sections (at 90◦) calculated within the model and multiplied
by the spectroscopic factor Sμ of the respective single-neutron
state of the product nucleus are given in Fig. 3, in comparison
with the corresponding experimental data of Ref. [20]. The
Sμ values are taken from Ref. [5]. The anisotropy parameters
a2,μ calculated for two of the above-considered partial cross
sections are shown in Fig. 4, in comparison with the corre-
sponding experimental data of Ref. [20]. The calculated partial
differential cross sections of neutron radiative capture by the
neutron-closed-shell 140Ce and 89Y target nuclei are shown in
Fig. 5, in comparison with the corresponding experimental
data of Ref. [21]. Bearing in mind that the above-shown
DSD-reaction cross sections are evaluated within the model
without the use of free parameters, the description of the
corresponding experimental data seems to be satisfactory.

Following Refs. [13,17], we evaluate the differential cross
sections of the partial 208Pb(γ,n) reactions, considering the
results as the predictions of the model. The spectroscopic
factors Sμ of neutron-hole states populated in this reaction are
taken from Ref. [22]. The differential partial cross sections
(at 90◦) are shown in Fig. 6. Using the calculated partial
cross sections σμ,E1(ω) in Eq. (29) we evaluate the partial

FIG. 6. Calculated partial differential (γ,n)-reaction cross sec-
tions for 208Pb.

branching ratios for IVGDR direct neutron decay from the
excitation-energy interval δ = 7.5 to 37.5 MeV. The results
are listed in Table III. The total probability for direct decay
to the states listed in Table III is not large (about 13%).
It means that the main contributions to the formation of
this relatively-low-energy giant resonance are due to Landau
damping and the spreading effect.

C. Reactions accompanied by excitation of IVGQR

Experimental information on the properties of the IVGQR
is rather scanty (see, e.g., Ref. [3]). The common studies
based on the use of the ordinary photonuclear reactions
met with difficulties caused by a large IVGDR “tail” in the
IVGQR region. This difficulty can be bypassed provided that
specific subjects for study are chosen. Such a subject is the
asymmetry (with respect to 90◦) of the differential DSD (γ,n)-
or inverse-reaction cross sections. As follows from Eqs. (25),
(26), and (30), the asymmetry value is proportional to the
product of the E1- and E2-reaction amplitudes of Eqs. (15)
and (16), respectively, and, therefore, exhibits a nonregular
energy behavior in the IVGQR region.

Usually, the asymmetry of the angular distribution of the
partial (γ,n) reaction, leading to population of a neutron-hole
state μ−1 of the product nucleus, is described by the quantity
αμ(ω,θ1) defined as follows [6]:

αμ (ω,θ1) = dσ (−)
μ

d�
(ω,θ1)

/
dσ (+)

μ

d�
(ω,θ1) ,

dσ (±)
μ

d�
(ω,θ1) = dσμ

d�
(ω,θ1) ± dσμ

d�
(ω,π − θ1) , (31)

with θ1 = 55◦. The choice of this angle is motivated by the
fact that PL=2(θ1) = PL=2(π − θ1) ≈ 0. If the asymmetry is
studied with the use of the reactions leading to population of
several single-hole states lying within the excitation energy
interval �Ex of the product nucleus, then the asymmetry is

TABLE III. Partial branching ratios for direct neutron decay of
the IVGDR in 208Pb.

μ 3p1/2 2f5/2 3p3/2 1i13/2 1h9/2 1f7/2

bn
μ,E1(δ)(%) 1.79 3.61 3.10 1.37 2.15 0.53
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FIG. 7. Calculated differential 208Pb(γ,n)-reaction cross sections
in comparison with the experimental data of Ref. [6].

described by the quantity

α (ω,θ1) =
∑

μ

dσ (−)
μ

d�
(ω,θ1)

/ ∑
μ

dσ (+)
μ

d�
(ω,θ1) , (32)

where summation is performed over the above-mentioned
states.

Using the suggested model for the description of the
photonuclear reactions that include excitation of the IVGQR,
it is necessary to introduce the additional adjustable parameter
k′

2 (Sec. II). To better describe the asymmetry of the DSD
differential photoneutron and inverse-reaction cross sections
for target nuclei around A = 208, we take k′

2 = 0.1. The
calculated differential 208Pb(γ,nμ)-reaction cross sections (at
θ1 and π − θ1) for the case of �Ex = 4 MeV and the

FIG. 8. Calculated asymmetry of the 208Pb(γ,n)-reaction cross
sections in comparison with the experimental data of Ref. [6].

FIG. 9. Calculated asymmetry of the partial 208Pb(n,γ0)-reaction
cross section in comparison with the experimental data of Ref. [23].

asymmetry quantity of Eq. (32) are shown in Figs. 7 and 8,
respectively, together with the corresponding experimental
data of Ref. [6]. The calculated cross section dσ (ω,55◦)/d�n

is somewhat overestimated (Fig. 7) and leads to a rather poor
description of the asymmetry quantity (Fig. 8). The reasons
for these discrepancies are not clear now and will be studied
in the future.

The asymmetry of the differential partial (n,γμ)-reaction
cross section is described by the quantity αμ(ε,θ1) defined sim-
ilarly to Eq. (31) with ε = ω + εμ being the captured-neutron
kinetic energy. Calculated within the model the asymmetry
quantities for the partial 208Pb(n,γ0)- and 209Bi(n,γμ)-reaction
cross sections describe satisfactorily the corresponding exper-
imental data of Refs. [23] and [24], as it follows from Figs. 9
and 10, respectively.

The main properties of the IVGQR can be described within
the model without the use of free parameters. As an example,
we show in Fig. 11 the calculated strength function S

(−)
2 (ω)

together with that obtained within the cRPA and multiplied
by the factor 0.2 for the 208Pb nucleus. The calculated peak
energy of 21.8 MeV and total width of 4.4 MeV are in
agreement with corresponding data of Refs. [3,6]. The first
moment of the strength function

∫
(δ) ωS

(−)
2 (ω)dω calculated

for the large energy interval δ = 7.5 to 37.5 MeV is found to

FIG. 10. Calculated asymmetry of the partial 209Bi(n,γ )-reaction
cross sections in comparison with the experimental data of Ref. [24].
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FIG. 11. Calculated strength function of the IVGQR in 208Pb.

be in a good agreement with the energy-weighted sum rule
(SR)(−)

2 = 5
16π

�
2A
m

r2(1 + 0.6k′
2).

IV. CONCLUDING REMARKS

As a conclusion, one may say that the presented work is
an example of a detailed application of the recently developed
particle-hole dispersive optical model to the description of the
simplest photonuclear reactions accompanied by excitation
of the isovector giant dipole and quadrupole resonances in a

few neutron-closed-shell nuclei. Within this semimicroscopic
model, which is “economical” in the use of the input data,
we describe satisfactorily, as a rule, the corresponding exper-
imental data and make some predictions. The unique feature
of the model is its ability to describe the direct + semidirect
reactions induced by an external single-particle field. Having
applied to the photoneutron and inverse reactions accompanied
by the excitation of the isovector giant dipole resonance, such a
description is obtained without the use of additional adjustable
parameters.

Further studies can be related to (i) inclusion of the
description of new appropriate target nuclei, (ii) further
developments of the model (for instance, taking nuclear pairing
into account), (iii) increasing the number of applications of
the model such as the description of the direct + semidirect
photoproton and inverse reactions, the simplest electronuclear
reactions, and properties of the pigmy and second isovector
giant dipole resonances.
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