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The purpose of this paper is to develop an alternative theory of deuteron stripping to resonance states based
on the surface-integral formalism of Kadyrov et al. [Ann. Phys. 324, 1516 (2009)] and continuum-discretized
coupled channels (CDCC). First we demonstrate how the surface-integral formalism works in the three-body
model and then we consider a more realistic problem in which a composite structure of target nuclei is taken via
optical potentials. We explore different choices of channel wave functions and transition operators and show that
a conventional CDCC volume matrix element can be written in terms of a surface-integral matrix element, which
is peripheral, and an auxiliary matrix element, which determines the contribution of the nuclear interior over the
variable rnA. This auxiliary matrix element appears because of the inconsistency in treating of the n-A potential:
This potential should be real in the final state to support bound states or resonance scattering and complex in
the initial state to describe n-A scattering. Our main result is formulation of the theory of the stripping to
resonance states using the prior form of the surface-integral formalism and CDCC method. It is demonstrated that
the conventional CDCC volume matrix element coincides with the surface matrix element, which converges for
the stripping to the resonance state. Also the surface representation (over the variable rnA) of the stripping matrix
element enhances the peripheral part of the amplitude although the internal contribution does not disappear and
increases with an increase of the deuteron energy. We present calculations corroborating our findings for both
stripping to the bound state and the resonance.
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I. INTRODUCTION

Theory of the nucleon transfer reaction formulated in
terms of the matrix element containing the potential transition
operator is based on the perturbation approach over the
potential transition operator. It can be formulated in two forms:
post or prior. In the post (prior) form the initial (final) scattering
wave function is approximated by a simpler channel wave
function. The distorted-wave Born approximation (DWBA),
which is the simplest approach, is the first-order perturbation
theory over the potential transition operator (which is different
in the post and prior forms) sandwiched by the initial and
final-channel wave functions. These channel wave functions
are given by a product of the bound-state wave function of
the the initial (final nuclei) multiplied by a corresponding
distorted wave. The DWBA is based on the assumption that
the probability of direct reactions is so small that they can
be treated as direct transitions from the initial to the final
channel without any coupling to the other channels, which is
not always true. A definite improvement is the continuum-
discretized coupled channels (CDCC) method applied for the
analysis of the deuteron stripping. In the CDCC method, in
addition to d + A channel, the three-body breakup channel
p + n + A is included. However, the CDCC method has its
own limitations. The main one is related with the contribution
of the rearrangement channels. For example, for deuteron
stripping these rearrangement channels are the proton or
neutron bound to the target. Because rearrangement channels
are not orthogonal to the initial d + A channel and to the
breakup p + n + A channel, their accurate inclusion makes
the problem very complicated and the only legitimate solution

is the Faddeev formalism [1], which allows one to treat
consistently nonorthogonal channels without double counting.
However, it is quite difficult to use the Faddeev formalism
on a routine basis and its application, owing to the technical
problems with the Coulomb interaction, is limited only to light
nuclei. Hence, the CDCC method is still useful, but one needs
to clearly understand the shortcomings of the CDCC method
and one of them is the absence of the rearrangement channels
in the asymptotic regions.

In practical calculations it is assumed that in a limited
region near the target the CDCC wave function reproduces
the three-body wave function reasonably well. To calculate
the stripping matrix element the standard iteration procedure
is used: The CDCC wave function does not have rearrangement
channels in the asymptotic region but can be used to calculate
the reaction matrix element contributed by the final volume
around the target. Here the question of the uniqueness appears:
How would the solution of the CDCC equation change if
we add the rearrangement channel wave function to the
original CDCC wave function. For example, if we consider
the deuteron-stripping reaction d + A → p + F , where F =
(nA), what would happen if we use �

CDCC(+)
i + ϕF χ

(+)
pF as the

initial wave function rather than just the CDCC wave function
�

CDCC(+)
i , where ϕF is the (nA) bound-state wave function and

χpF is the p-F distorted wave. It was shown in Ref. [2] that the
presence of two optical potentials UpA and UnA suppresses the
contribution from two rearrangement channels, p + (nA) and
n + (pA), resolving the uniqueness problem. However, if only
one optical potential is present, then the issue of uniqueness
should be checked. To suppress the rearrangement channels,
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truncation over angular momentum is being used. Then a
sensitivity to the maximal orbital angular momentum lmax

pn

of the relative motion of p and n should be checked.
Despite the shortcomings of the CDCC approach, it remains

the best option unless the Faddeev equations are solved. In this
work we use the CDCC approach to develop the theory of the
deuteron stripping to resonance states. However, instead of the
standard formulation of the theory with the matrix element
expressed in terms of the volume integral, we develop here the
theory of the deuteron stripping based on the surface-integral
formalism [3,4] and the CDCC approach. The first such
attempt was done in a recent work [5], where both DWBA and
CDCC methods were used to derive the deuteron-stripping
reaction amplitude populating bound states and resonances.
However, the CDCC part was not complete because the surface
integral was extended to the region where the CDCC method
fails. Here we present another formulation of the theory of
the stripping to resonance states using the surface-integral
formulation based on the CDCC approach in a finite region
around the target, that is, in the region where the CDCC method
should work. In Ref. [5] the surface integral in the post form
for stripping to bound states was taken over variable rnA while
the volume integral over the second Jacobian variable ρpF was
taken over the whole space. Now in our new formulation the
matrix element is expressed in terms of the surface integral over
ρpF at some finite ρpF determined by the transition operator,
while the volume integral over the second Jacobian variable
rnA is taken over the limited volume space because of the
presence of the bound-state wave function ϕF . We also use
the prior form for the analysis of the stripping to resonance
states. In this case the matrix element can be expressed in
terms of surface integral over ρdA taken at some finite radius
determined by the transition operator and the bound-state wave
function ϕpn and the volume integral over the second Jacobian
variable rpn, which is taken over the limited volume because
of the presence of ϕpn. Thus, even for stripping to resonance
the matrix element is taken over the limited space where the
CDCC method works.

We explore different choices of the channel wave functions
and, correspondingly, different transition operators. One of
the main unsolved problems in the conventional theory
for the deuteron-stripping reaction d + A → p + F is the
inconsistency in the treatment of the n-A potential, which
should be real to support the final bound or resonance state
(nA) but complex to describe the initial n-A scattering.
We show how this inconsistency leads to the appearance of
the auxiliary term when connecting the conventional volume
matrix element with the surface-integral form. We also present
calculations using the FRESCO code [6] for stripping to bound
states and resonances. The main goal of this work is to present
an advanced theory of the deuteron stripping to a resonance,
which further leads to the three-body continuum in the final
state. Such reactions can occur in broad interval of the deuteron
incident energies. Note that the deuteron stripping to resonance
requires 2.224 MeV, the deuteron binding energy, to break the
deuteron and additional energy to excite a resonance state.
Hence, the Q value of the reaction is negative. That is why
we do not consider here deuteron stripping at sub-Coulomb
energies with new interesting physics [7]. Such reactions can

be studied using the Faddeev formalism. The theory, which
we present here, is aimed to analyze the deuteron-stripping
reactions from low energies near the Coulomb barrier up to
the deuteron incident energies Ed ∼ 100 MeV.

II. THREE-BODY THEORY OF DEUTERON STRIPPING
POPULATING BOUND STATES IN THE

SURFACE-INTEGRAL FORMALISM

Let us consider the deuteron stripping to bound states,

d + A → p + F, (1)

where F = (An) is the bound state.
The reaction amplitude can be calculated exactly in the

three-body model using the Faddeev integral equations in the
Alt-Grassberger-Sandhas (AGS) form [8–13], but it neglects
internal degrees of freedom of the target or can only account
for a few [14,15]. Moreover, the formalism is limited to targets
with not-too-large charges. Nowadays, deuteron stripping
on heavy nuclei with atomic number A ∼ 100 is the most
important and urgent because it can provide missing vital
information about (n, γ ) s or r processes in stellar evolution.
The generalized Faddeev approach, which explicitly includes
target excitations and the Coulomb interaction for arbitrary
charges, was developed [16] but no computer codes based
on the formalism are yet available. Besides, the Faddeev
formalism is too complicated for use on an everyday basis,
especially by experimental groups.

In the traditional approach the reaction amplitude is
calculated using the iteration procedure, in which the volume
matrix element containing the exact scattering wave function
(in the initial state-post form or in the final state-prior form)
is approximated by the one in which the exact scattering
wave function is replaced with some model wave function.
This approximation is used because nowadays there are no
tools to calculate the many-body scattering wave function
accurately, especially in the asymptotic regions with many
open channels. Moreover, should this asymptotic behavior be
available, there is no need to calculate the matrix elements
because the amplitude of the asymptotic outgoing wave in the
corresponding channel is the reaction amplitude for transition
to this channel. The idea of the iteration procedure is that the
matrix element containing the scattering wave function, which
is not accurate asymptotically, is still suited to calculate the
reaction amplitude, because this matrix element is contributed
by a limited volume around the target where the model
scattering wave function may be accurate enough.

First we consider the surface-integral formalism in a three-
body model, in which all three particles are structureless and all
the interaction potentials between them are real. After that, we
specifically consider deuteron-stripping reactions extending
the three-body model, which requires using optical potentials.
Different options and ways in which they affect the reaction
amplitude are discussed.

We start from the consideration of reaction (1) in the
three-body model p + n + A. We introduce the Jacobian
variables rα and ρα commonly used to describe three-body
systems, where rα is the radius vector connecting the center
of masses of particles β and γ , while ρα is the radius-vector
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connecting the center of mass of particle α and the center of
mass of the system β + γ [17]. We also need a hyperradius
in the six-dimensional configuration space defined according
to Xα = (μα r2

α/m + Mα ρ2
α/m)1/2, where m is the nucleon

mass and μα is the reduced mass of particles β and γ , Mα =
mα mβ γ /M is the reduced mass of particle α and the bound
system (β γ ), and M is the total mass of the three-body system.
Let us introduce the asymptotic region 	α corresponding to
the case when two particles β and γ are close to each other
while the third particle α is far away. In this region rα/ρα → 0
at ρα → ∞ [17]. Also, we denote by 	0 the asymptotic
region where all three particles are far away (breakup channel),
that is rα, ρα → ∞ and rα/ρα → const �= 0. The asymptotic
behavior of the three-body wave function of three charged
particles in different asymptotic regions was discussed in
[3,4,17–20]. For the asymptotic behavior of the three-body
wave function we have

�(+)
α = �(0)

α −
∑

ν

Mν

2 π
M(as)

ν α u(+)(ρν) φν + �
(+)
0 . (2)

Here �(+)
α is the scattering wave function with the incident

wave in the initial channel α. The two-cluster channel α
is defined as the channel α + (β γ ), where the free particle
carries the name of the channel. For reaction (1) the incident
channel α is d + A, that is α = A and �(+)

α ≡ �
(+)
kdA

is the
d + A scattering wave function calculated in the three-body
model p + n + A. kij is the relative momentum of particles i
and j ; �(0)

α is the incident wave in the entry channel α. The
sum over the final two-body channels ν contains the elastic
and rearrangement channels, M(as)

ν α is the reaction amplitude
leading to the final two-body channel ν, φα = ϕβ γ is the
bound-state wave function of the pair (β γ ) in the channel α;
for example, for the channel A + d, φα = ϕpn and for the chan-
nel β = p + (nA), φβ = ϕnA. Also, u(+)(ρν) is the outgoing
wave in the two-fragment channel ν. It should be understood
that each νth asymptotic term dominates in its asymptotic
region 	ν . In the case of reaction (1) under consideration,
α = A, β = p, γ = n. �

(+)
0 is the asymptotic component of

�(+)
α in the asymptotic region 	0. We remind the reader again

that in the three-body model p + n + A the nucleus A is
a structureless constituent particle; that is, all the channels
related to the target excitation and target breakup are neglected.

Equation (2) is of fundamental importance because it
provides a model-independent definition of the reaction
amplitude M(as)

ν α as the amplitude of the outgoing spherical
wave in the final channel ν formed from the initial channel
α for an arbitrary collision of composite nuclei. However, its
practical implementation in the many-body case, except for
three- and four-body systems, is hardly yet possible, because
contemporary microscopic methods fail to provide the correct
asymptotic behavior. That is why, if we are not going to use
the Faddeev or Faddeev-Yakubovski [21] coupled equations,
the conventional methods for the determination of reaction
amplitudes is to calculate the volume matrix elements in the
post or prior forms.

Below we remind the reader how to derive these matrix
elements in the three-body model, which can be extended to
a many-body system. Let us consider the three-body wave

function �(+)
α containing the incident wave in the channel

α + (β γ ). It satisfies the Schrödinger equation

(E − Hα − Kα − V α) �(+)
α = 0. (3)

Here Hα = Kα + Vα is the Hamiltonian describing the relative
motion of the system β + γ , Kα is the kinetic-energy operator
of the relative motion of β and γ , Kα is the kinetic-energy oper-
ator of the relative motion of α and the center of mass of β + γ ,
V α = V − Vα , V = Vα + Vβ + Vγ is the total interaction po-
tential in the three-body system, Vα is the interaction potential
between β and γ , E = Eα − εα is the total energy of three-
body system, Eα is the relative kinetic energy of the particle α
and the pair (β γ ), εα = mβ + mγ − mβ γ is the binding energy
of the bound state (β γ ), and mα is the mass of particle α.

Equation (3) can be rewritten in the channel β �= α
representation as

(E − Hβ − Kβ − V β) �(+)
α = 0. (4)

Note that, according to Eq. (2), �(+)
α has the incident wave only

in the channel α. Now neglecting the Coulomb interaction for
a while (this does not affect the final result), we introduce the
channel wave function in the channel β,

�
(0)
β = ei qβ ·ρβ φβ, (5)

where qβ is the relative momentum of particle β and the bound
state (α γ ), that is, the momentum conjugated to the Jacobian
coordinate ρβ . Multiplying Eq. (4) from the left by the channel

wave function �
(0)
β we get

〈
�

(0)
β

∣∣(E − −→
H β −

−→
K β)|�(+)

α 〉 = 〈
�

(0)
β

∣∣V β | �(+)
α 〉. (6)

Taking into account that

(E − Hβ − Kβ) �
(0)
β = 0, (7)

we can rewrite〈
�

(0)
β

∣∣(←−K β −
−→
K β)|�(+)

α 〉 = 〈
�

(0)
β

∣∣V β | �(+)
α 〉 = Mβ α. (8)

Here we took into account that the right-hand side is the con-
ventional reaction amplitude Mβ α = 〈�(0)

β |V β | �(+)
α 〉. The

operator
−→
K β (

←−
K β) acts to the right (left). When deriving this

equation we took into account that Hβ is Hermitian if (αγ ) is
a bound state, that is,〈
�

(0)
β

∣∣(←−H β − −→
H β)|�(+)

α 〉 = 〈
�

(0)
β

∣∣(−→H β − −→
H β)|�(+)

α 〉 = 0.

(9)

It follows from the fact that Vβ is a Hermitian operator. Because
�

(0)
β contains the bound state (α γ ) we can take the integral

over rβ by parts twice transforming
←−
K β into

−→
K β . Hence,

Hβ = Kβ + Vβ is also the Hermitian operator. This validates
Eq. (9).

Now using the Green’s theorem

L = 〈f (r)|←−K − −→
K |g(r)〉

= − 1

2μ2
lim

r→∞ r2
∫

d r̂
[
g(r)

∂f ∗(r)

∂r
− f ∗(r)

∂g(r)

∂r

]
,

(10)
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we can transform the volume integral on the left-hand side of
Eq. (8) into a surface one in the subspace over ρβ :

〈
�

(0)
β

∣∣(←−K β −
−→
K β)|�(+)

α 〉

= − 1

2M2
β

lim
ρβ→∞ ρ2

β

∫
d rβ φ∗

β

∫
dρ̂β

×
[
�(+)

α

∂ e−i qβ ·ρβ

∂ρβ

− e−i qβ ·ρβ
∂�(+)

α

∂ρβ

]
. (11)

Taking into account that the leading asymptotic term of �(+)
α

in 	β is [see Eq. (2)]

�(+)
α

	β≈ −Mβ

2 π
M(as)

β α u(+)(ρβ) φβ (12)

and using the asymptotic equation [22]

eiqβ ·ρβ
ρβ→∞−−−−→ 1

2πqβρβ

[eiqβρβ δ(q̂β − ρ̂β)

− e−iqβρβ δ(q̂β + ρ̂β)], (13)

and the normalization integral∫
drβ |φβ |2 = 1, (14)

we get

〈
�

(0)
β

∣∣(←−K β −
−→
K β)|�(+)

α 〉 = M(as)
β α . (15)

Hence,

M(as)
β α = Mβ α. (16)

Thus, we have proven that the conventional reaction amplitude
Mβ α given by the volume matrix element coincides with
the amplitude M(as)

β α of the outgoing scattered wave in the
channel β with the incident wave in the channel α. In the
standard applications to decrease the transition operator, one
can subtract the final-channel potential Uβ in the matrix
element on the right-hand side of Eq. (8), which leads to the
final-channel wave function �

(−)
β = χ

(−)
β φβ , where χ

(−)
β is

the distorted wave generated by the channel potential Uβ and
describing the scattering of particle β and the bound state (α γ ).
The channel potential is arbitrary and can be real or complex.
From the derivation it is clear that the matrix element does not
depend on the choice of Uβ if �(+)

α is the exact three-body
wave function. Then we have

Mβ α = 〈�(−)
β |(

←−
K β −

−→
K β)|�(+)

α 〉 = 〈�(−)
β |V β − Uβ | �(+)

α 〉.
(17)

After introducing the distorted wave in the channel β, we
can turn on the Coulomb interaction.

Now let us discuss the lessons which we can learn from
derivation of Eq. (17).

(i) This equation proves that, indeed, the volume matrix
element, which is used in standard calculations of the
reaction amplitude Mβ α , is, in fact, the amplitude
M(as)

βα of the leading asymptotic term of the exact

three-body scattering wave function in the asymptotic
domain 	β .

(ii) Equation (4) is important for deriving Eq. (17). The
former shows that the exact scattering wave function
�α also satisfies the Schrödinger equation in the chan-
nel β representation; that is, it has correct asymptotic
behavior in the channel β �= α. The corresponding
integral equation for �α will be homogeneous in the
β �= α channel.

(iii) There is a clear advantage of using the volume
matrix element rather than to calculate the amplitude
of the asymptotic scattering wave function in the
corresponding asymptotic domain. Because φβ = ϕα γ

is the bound-state wave function of the pair (α γ ), the
integration over the Jacobian coordinate rβ is limited.
The transition operator V β − Uβ , where V β = Vα +
Vγ , Vα ≡ Vβ γ , and Vγ ≡ Vα β , cuts the integration
over the second Jacobian variable ρβ at some finite
value. Hence, it is sufficient to know the scattering
wave function �(+)

α , developing from the initial state
�(0)

α , only in the constrained domain in the coordinate
space {rβ,ρβ} around target nucleus α.

Let us introduce Rβ as a quantity larger than the nuclear
interaction radius RN

β in the two-body subsystem (αγ ) and Rβ

to be a quantity larger than nuclear interaction radius in the
two-cluster channel β. These are the values which should be
taken into account in the volume matrix element to achieve the
required accuracy, which is typically ∼1% or better.

It is worth mentioning that Rβ may be taken significantly
larger than the nuclear interaction radius RN

β of particles
α and γ . Clearly, Rβ should be larger than 1/κβ , where
κβ ≡ κα γ is the bound-state wave number of the bound state
(αγ ). We define a hyperradius corresponding to {Rβ,Rβ} as

X0 = (μβ R2
β/m + Mβ R

2
β/m)1/2. With this we can rewrite

Eq. (17) as

Mβ α ≈ 〈�(−)
β |V β − Uβ | �(+)

α 〉|Xβ�X0

= 〈�(−)
β |(

←−
K β −

−→
K β)|�(+)

α 〉|Xβ�X0

= − R
2
β

2 Mβ

∫
rβ�Rβ

drβ φ∗
β

∫
d 	ρβ

×
[
�(+)

α

∂χ
(−)∗
β

∂ρβ

− χ
(−)∗
β

∂�(+)
α

∂ρβ

]∣∣∣∣∣
ρβ=Rβ

. (18)

Equation (18) is our first main result in this section. It shows
that in the three-body method the volume matrix element can
be transformed into the peripheral matrix element. The surface
integral over 	ρβ

in Eq. (18) is taken along the sphere with

the radius ρβ = Rβ encircling the finite volume inside of this
sphere, while the integral over rβ is taken over the volume
confined by the sphere with the radius rβ = Rβ . If we take the
limit Rβ → ∞, we get identity, Mβ α ≡ M(as)

β α . However, in
practical calculations we can constrain the integration region
by a finite Rβ ; that is, we need to know the wave function �(+)

α

only in a limited volume around the target. The value of Rβ
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can be determined by checking the convergence of the matrix
element as function of Rβ . If Rβ is not too large, then we do
not need to know the asymptotic behavior of �(+)

α . Although
Eq. (18) has been derived in a three-body model, the derivation
is valid also for a many-body case assuming that �(+)

α is the
exact many-body scattering wave function with the incident
wave in the channel α + (βγ ).

Note that in the prior formalism the stripping reaction
matrix element is given by

Mβ α ≈ 〈�(−)
β |V α − Uα| �(+)

α 〉|Xα�X0

= 〈�(−)
β |(

←−
K α −

−→
K α)|�(+)

α 〉|Xα�X0

= − R
2
α

2 Mα

∫
rα�Rα

drα φα

∫
d 	ρα

×
[
χ (+)

α

∂�
(−)∗
β

∂ρα

− �
(−)∗
β

∂χ (+)
α

∂ρα

]∣∣∣∣∣
ρα=Rα

, (19)

where φα = ϕβ γ . Though the post and prior forms are
identical, there are computational advantages in using specific
form depending on the reaction under consideration. We
address it below.

The fact that the integration volume is constrained is
quite important because it justifies the usage of the different
approximations for the exact scattering wave function, which
are valid in the limited space around nucleus even if these
approximations do not provide wave functions with correct
asymptotic behavior in the rearrangement channels. Such
approximations are well known: DWBA, CDCC [2,23–25],
and adiabatic method (ADWA) [26]. In the DWBA the initial
scattering wave function contains only the contribution from
the incident channel α + (β γ ). In the CDCC method the initial
wave function is contributed by the channel α + (β γ ), in
which the pair (β γ ) is taken in the bound state plus discretized
states describing the three-body system α + β + γ in the con-
tinuum. The adiabatic approach, as does the CDCC method,
also takes into account the continuum states of the (β γ ) system
but in a more simplified way. All three methods fail to provide
correct asymptotic behavior in the rearrangement channels.
Nevertheless, all three methods, being not perfect, still give
reasonable transfer reaction cross sections. The accuracy of
the each method depends on the kinematics, energy, inter-
acting nuclei, and purposes. When the energy increases, the
contribution of the deuteron breakup channel also increases,
making the ADWA and CDCC more adequate than the DWBA.
In addition, this creates another problem to be dealt with: the
increase of the contribution from the nuclear interior. In the
internal region a strong coupling of different channels occurs
and antisymmetrization effects are important. Meanwhile, the
existing approaches, DWBA, ADWA, and CDCC, are based on
the three-body model extended by adopting optical potentials
and they are designed to treat mostly peripheral reactions. The
surface-integral formalism developed here in the combination
with the R-matrix method can provide a solution.

Finally, one important feature of Eq. (18) remains to be
discussed. Assume that we use the CDCC wave function to
calculate �(+)

α . In the CDCC method particles β and γ are kept

close to each other by using the projection operator, which
truncates the number of the allowed β-γ partial waves. At
the same time the surface integral over 	ρβ

is calculated at

ρβ = Rβ . As Rβ can be significantly larger than the nucleus
radius, the dominant contribution to the volume integral over
rβ should come from RN

β � rβ � Rβ . Hence, the reaction
amplitude given by Eq. (18) is entirely peripheral in the
subspace over rβ and ρβ and can be rewritten as

Mβ α = − R
2
β

2 Mβ

∫
RN

β �rβ�Rβ

drβ φ∗
β

∫
d 	ρβ

×
[
�CDCC(+)

α

∂χ
(−)∗
β

∂ρβ

− χ
(−)∗
β

∂�CDCC(+)
α

∂ρβ

]∣∣∣∣∣
ρβ=Rβ

,

(20)

where φβ(rβ) ≈ Cβ W−ηβ ,lβ+1/2(2 κβ rβ)/rβ is the radial part
of the bound-state wave function, Cβ is the asymptotic
normalization coefficient (ANC) of the bound state (αγ ),
W−ηβ ,lβ+1/2(2 κβ rβ) is the Whittaker function, ηβ is the
Coulomb parameter, and lβ ≡ lαγ is the orbital angular
momentum of the bound state (αγ ). In the many-body case
φβ should be replaced by the corresponding overlap function.
Transition from the three-body model to the CDCC method
requires using of the optical potentials, which effectively take
into account the internal structure of the target.

III. DEUTERON STRIPPING TO A BOUND STATE:
FROM MANY-BODY TO THREE-BODY MODEL

Post form

In the previous section we considered the deuteron-
stripping reaction in the three-body problem; that is, all three
particles, p, n, and A are structureless constituents. Hence, all
the interaction potentials are real. Definitely internal degrees of
freedom of the target should be taken into account. However,
a rigorous practical many-body theory of transfer reactions
is not yet available and contemporary nuclear reaction theory
uses the three-body model in which the internal structure of
the target is taken into account effectively by replacing N -A
optical potentials.

Here we consider this reduction of the many-body problem
to the three-body one and apply the surface-integral formalism
developed in the previous section specifically for the deuteron-
stripping reaction. We neglect the antisymmetrization between
the existing proton and the rest of the nucleons in the target A.
To derive an equation for the reaction amplitude, we start from
the Schrödinger equation for the total scattering wave function
�

(+)
i developing from the initial channel,

(E − KpF − KnA − VnA − VpA − Vpn − HA) �
(+)
i = 0,

(21)

where VnA (VpA) is the n-A (p-A) interaction potential given
by the sum of NN potentials (three-body forces can also be
included), HA is the internal Hamiltonian of nucleus A. �

(+)
i

has the incident wave in the initial channel d + A and outgoing
waves in both direct and rearrangement channels.
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Standard choice of the exit-channel wave function

To proceed further, we need to adopt a suitable form of the
final-channel wave function. Here we show how to derive and
transform the stripping reaction amplitude in the case when
the exit-channel wave function is taken in the standard form

�
(−)
f = χ

(−)
pF ϕF , (22)

where χ
(−)
pF is the distorted wave of particles p and F in the final

channel and ϕF is the bound-state wave function of nucleus F

in the final channel. The wave function �
(−)
f is a solution of

the Schrödinger equation

(E − KpF − UpF − KnA − VnA − HA) �
(−)
f = 0. (23)

Multiplying Eq. (21) from the left by �
(−)∗
f and taking into

account Eq. (23), we get

〈�(−)
f |E − −→

K pF − −→
K nA − VnA − −→

H A

−[VpA + Vpn − UpF ] − UpF |�(+)
i 〉

= 〈�(−)
f |←−K pF − −→

K pF + ←−
K nA − −→

K nA

+←−
H A − −→

H A − [VpA + Vpn − UpF ]|�(+)
i 〉

= 〈�(−)
f |←−K pF − −→

K pF − [VpA + Vpn − UpF ]|�(+)
i 〉 = 0.

(24)

When deriving this equation we took into account that the
operators HA and KnA are Hermitian because the final-channel
wave function contains the bound state F = (nA). Hence,
〈�(−)

f |←−K nA + ←−
H A − −→

K nA − −→
H A|�(+)

i 〉 = 0. We can rewrite
Eq. (24) as

M(as) = 〈�(−)
f |←−K pF − −→

K pF |�(+)
i 〉 (25)

= 〈�(−)
f |VpA + Vpn − UpF |�(+)

i 〉 ≡ M(post). (26)

We can verify that the matrix element 〈�(−)
f |←−K pF −

−→
K pF |�(+)

i 〉 is equal to the amplitude M(as) of the leading
asymptotic term of the exact d + A scattering wave function
�

(+)
i in the channel p + F . It can be proved by converting

matrix element (25) into a surface integral in the subspace
over ρpF . After taking the limit of the radius of the surface
ρpF → ∞ we get that the matrix element is nothing but the
reaction amplitude M(as) [3,4]. This amplitude is the model-
independent definition of the reaction amplitude. Thus, it
follows from Eq. (26) that the conventional reaction amplitude
given by the volume matrix element Mpost is equal to M(as).
In Eq. (26) the internal degrees of freedom of the target A are
taken into account properly. However, the exact many-body
scattering wave function is not yet available and at this stage
approximations are supposed to be used.

First we use the fact that, owing to the presence of the
factor ϕF [VpA + Vpn − UpF ], the integration can be carried
over a finite volume in the six-dimensional configuration space
{ρpF , rnA}, where we do not need to know the asymptotic

behavior of the scattering wave function �
(+)
i . The presence

of the factor ϕF [VpA + Vpn − UpF ] in the matrix element

constrains the integration over the Jacobian variables by a
finite volume around the target nucleus. Clearly ϕF cuts the
integration over the internal nucleon coordinates including
the coordinates of the transferred neutron. We introduce RnA

as the maximal rnA, which is required to achieve a desired
accuracy for the integral over rnA. We also introduce RpF

as the maximal ρpF , which is required to achieve a desired
accuracy for the integral over ρpF . If RnA is the channel radius
for which we can use the radius of the strong n-A interaction,
then RnA > RnA and may be significantly larger for loosely
bound states. At some large-enough ρpF and finite rnA � RnA

the nuclear part V N
pA + Vpn − UN

pF of the transition operator
becomes negligible.

Now we consider the matrix element 〈χ (−)
f ϕF |V C

pA −
UC

pF |�(+)
i 〉 from the Coulomb part of the transition operator.

At rpA � RA, where RA is the radius of nucleus A, we can
approximate in the leading order V C

pA(rpA) ≈ UC
pA(rpA) =

ZA e2/rpA, while UC
pF (ρpF ) = ZA e2/ρpF , where ZA is the

charge of nucleus A. Taking into account that

ρpF = rpA − 1

A + 1
rnA, (27)

we get for rpA � rnA

UC
pF (ρpF ) − UpA(rpA)

rpA�rnA≈ ZA e2

rpA

1

A + 1

r̂pA · rnA

rpA

, (28)

where r̂ = r/r and A also represents the total number of
nucleons in nucleus A. Hence, at large-enough rpA the dif-
ference in the Coulomb potential becomes negligible; that is,
the integration volume in the matrix element 〈χ (−)

f ϕF | UC
pA −

UC
pF |�(+)

i 〉 is also limited. Then we can rewrite

M(post) = 〈�(−)
f |VpA + Vpn − UpF |�(+)

i 〉|X�X0 (29)

= 〈�(−)
f |←−K pF − −→

K pF |�(+)
i 〉|X�X0 , (30)

where the hyperradius is defined as

X =
√

μnA

m
r2
nA + μpF

m
ρ2

pF (31)

and

X0 =
√

μnA

m
R2

nA + μpF

m
R2

pF , (32)

where m is the nucleon mass and μij is the reduced mass of
particles i and j .

Transforming now the matrix element containing the
kinetic-energy operators into a surface integral in the subspace
over ρpF , we get

M(post) = − R2
pF

2 μpF

∫
d ζF ϕ∗

F (ζF )
∫

d 	ρpF

×
[
�

(+)
i

∂ χ
(−)∗
pF (ρpF )

∂ ρpF

−χ
(−)∗
pF (ρpF )

∂ �
(+)
i

∂ ρpF

]∣∣∣∣
ρpF =RpF ; rnA�RnA

. (33)
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Here the surface integral is taken over the sphere with the
radius ρpF = RpF , while the volume integral is taken over
the set ζF of the internal coordinates of nucleus F subject
to a condition that the coordinate rnA is constrained by
rnA � RnA. Thus, the stripping matrix element is contributed
by the finite volume in the space {ρpF , rnA}. This important
fact paves the way for different approximations used in the
contemporary nuclear reaction theory, because within this
finite volume the exact initial scattering wave function �

(+)
i

can be approximated by wave functions, which do not have
correct asymptotic behavior in the rearrangement channel
p + F . Nevertheless, they approximate this wave function
in the finite volume fairly enough, at least in the three-body
approach. Such approximations are well known: the initial
channel wave function χ

(+)
dA ϕpn ϕA used in the DWBA, the

CDCC wave function �
CDCC(+)
i ϕA, or the adiabatic model

wave function �
AD(+)
i ϕA. Note that all the three approaches

are based on the three-body model, in which the target A
is treated as structureless constituent particle. That is why
in each approach the scattering wave function contains the
target bound-state wave function ϕA in a factorized form.
The composite structure of the target is taken into account
effectively via the optical potentials.

Equation (29) is exact if the antisymmetrization effects are
neglected. Assume now that in the integration region the wave
function �

(+)
i can be approximated by the wave functions

used in the DWBA, CDCC [2], or ADWA [26] methods.
Usually such an approximation is done in the volume matrix
element (29). Here we apply it after transforming the volume
matrix element into the surface integral over ρpF , keeping
the volume integral over ζF . This is the main difference
between the standard approach and the one we use here. The
replacement of �

(+)
i by the CDCC wave function, which is the

most advanced among the three above-mentioned methods,
leads to the following CDCC reaction amplitude in the surface
approximation:

MCDCC(post)
surf = − R2

pF

2 μpF

∫
d rnA IF∗

A (rnA)
∫

d 	ρpF

×
[
�

CDCC(+)
i

∂ χ
(−)∗
pF (ρpF )

∂ ρpF

− χ
(−)∗
pF (ρpF )

∂ �
CDCC(+)
i

∂ ρpF

]∣∣∣∣∣
ρpF =RpF ; rnA�RnA

.

(34)

Here IF
A (rnA) = 〈ϕA|ϕF 〉 is the overlap function of the bound-

state wave functions of nuclei F and A. We remind the reader
that here we neglected antisymmetrization effects. Thus,
starting from the exact volume matrix element, we transformed
it into the surface integral over ρpF leaving the volume integral
over the second Jacobian variable rnA. After that, the exact
scattering wave function was replaced by the CDCC one
reducing the exact amplitude M(post) in the surface-integral
representation to the CDCC amplitude MCDCC(post)

surf also in the
surface-integral form.

Now the question is how this MCDCC(post)
surf amplitude in

the surface-integral form is related to the conventional CDCC
amplitude given by the volume matrix element? Note that the
conventional CDCC amplitude

MCDCC(post)
conv = 〈

χ
(−)
pF IF

A

∣∣UpA

+Vpn − UpF

∣∣�CDCC(+)
i

〉∣∣
X�X0

(35)

is also obtained from the exact matrix element (26) by
approximating �

(+)
i → �

CDCC(+)
i and VPA → UpA. To answer

this question, we transform Eq. (34) back to the volume
integral. To do it we replace the surface integral by the
volume integral in which the transition operator is given by
the difference of the kinetic-energy operators

←−
K − −→

K :

MCDCC(post)
surf = 〈

χ
(−)
pF IF

A

∣∣←−K pF − −→
K pF

∣∣�CDCC(+)
i

〉∣∣
X�X0

(36)

= 〈
χ

(−)
pF IF

A

∣∣←−K − −→
K

∣∣�CDCC(+)
i

〉∣∣
X�X0

(37)

= 〈
χ

(−)
pF IF

A

∣∣UpA + UnA

+Vpn − V
sp
nA − UpF

∣∣�CDCC(+)
i

〉∣∣
X�X0

. (38)

Here, to get Eq. (37) from Eq. (36), we took into account that
the matrix element

←−
K nA − −→

K nA vanishes because, after two
integrations by parts over rnA, the surface integral at rnA → ∞
disappears owing to the presence of the overlap function IF

A ,

and
←−
K nA can be converted into

−→
K nA. Note that although the

integration over rnA is restricted by rnA � RnA, we can extend
it to infinity to make the matrix element from

←−
K nA − −→

K nA

vanish. To get Eq. (38) we took into account that the CDCC
wave function is the solution of the Schrödinger equation

(E − T − UpA − UnA − Vpn)�CDCC(+)
i = 0. (39)

Note that often the truncation of the relative orbital angular
momentum lpn is used in the CDCC approach [2], which works
as an additional suppression of the rearrangement channels
[23] to the optical potentials UpA and UnA. This truncation is
achieved by using the projector

P̂pn =
lmax
pn∑

lpn=0

lpn∑
mlpn=−lpn

∫
d	rpn

Ylpn mlpn
(r̂pn) Y ∗

lpn mlpn
(r̂′

pn).

(40)

Suppression of the rearrangement channels is required to
provide a unique solution of the CDCC Schrödinger equation
(39). It has been shown in Ref. [23] that the suppression of the
rearrangement channels by the optical potentials is stronger
than by the projection operator P̂pn and, a priori, there is no
need to introduce the projector P̂pn if two optical potentials
UpA and UnA are being used. However, the constraint over lpn

can always be added if needed.
We have assumed also that the overlap function IF

A is
proportional to the single-particle bound-state wave func-
tion at all rnA. Then χ

(−)
pF IF

A satisfies the Schrödinger
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equation (
E − K − V

sp
nA − U ∗

pF

)
χ

(−)
pF IF

A = 0, (41)

where V
sp
nA = 〈ϕA|VnA|ϕA〉 is the single-particle n-A potential

supporting the bound state.
There is an important point to be discussed here. The

integration in Eq. (38) is taken at fixed ρpF = RpF and
rnA � RnA, meaning that the integration over rpA is also
constrained. These constraints follow from the ones in the
original matrix element (33). Replacing the exact scattering
wave function �

(+)
i by �

CDCC(+)
i ϕA in Eq. (33) we still keep

the constraints of the integration region as in the original
matrix element. This is because the CDCC method is valid
only in the limited hypervolume with X � X0, where the
asymptotic regime of �

(+)
i has not yet been reached. Within

this volume, the CDCC wave function is supposed to be a
reasonable approximation to the exact one.

Note that the transition operator in Eq. (38) differs from
the one in the conventional CDCC amplitude (35) and the
difference is attributable to the additional transition operator
UnA − V

sp
nA. The appearance of this additional transition opera-

tor is the price we pay for using energy-independent potentials.
Because of the importance of this issue we would like to trace
the appearance of this additional transition operator. First we
should look back at the derivation of the exact matrix element
(26). In this equation the potential describing n-A scattering
in the initial state is real and coincides with the potential
supporting (nA) bound state. Hence, these potentials cancel
each other out. However, after we replace the exact scattering
wave function with the wave function �

CDCC(+)
i ϕA, the initial

n-A potential becomes complex while the final-state n-A
potential is the real mean-field neutron potential supporting
the bound state. Replacing the n-A potential in the initial state
with the energy-dependent one makes the problem of solving
the CDCC equations difficult and impractical. That is why
in practical applications the adopted initial n-A potential is
a complex local energy-independent one. The conventional
CDCC amplitude (35) can be derived from Eq. (26) by
using the substitution �

(+)
i → �

CDCC(+)
i ϕA, where the CDCC

wave function satisfies Eq. (39), and VpA + Vpn − UPF by
UpA + Vpn − UpF . However, a different expression for the
CDCC amplitude can be obtained if we start its derivation
from the equation

M(post)=〈�(−)
f |VpA + Vpn+VnA − VnA − UpF |�(+)

i 〉|X�X0 ,

(42)

which is identical to Eq. (26) but in which we have not
yet canceled out VnA potentials. The potential (+VnA) in the
transition operator comes from the Schrödinger equation for
�

(+)
i and (−VnA) from the Schrödinger equation for �

(−)
f . If

we use the substitutions �
(+)
i → �

CDCC(+)
i ϕA, VpA → UpA

and (+VnA) → (+UnA) in Eq. (42), we get Eq. (38), which
can be transformed to the surface integral over ρpF rather than
the conventional one given by Eq. (35).

Now we can rewrite

MCDCC(post)
conv = MCDCC(post)

surf − MCDCC(post)
aux , (43)

where MCDCC(post)
conv is the conventional CDCC stripping ampli-

tude given by Eq. (35) and

MCDCC(post)
aux = 〈

χ
(−)
pF IF

A

∣∣UnA

−V
sp
nA

∣∣�CDCC(+)
i

〉∣∣
ρpF �RpF ; rnA�RnA

(44)

= i
〈
χ

(−)
pF IF

A

∣∣Im UnA

∣∣�CDCC(+)
i

〉∣∣
ρpF �RpF ; r�RnA

(45)

is the auxiliary amplitude. Equation (45) follows from Eq. (44)
assuming that ReUnA = V

sp
nA. Thus, there is an ambiguity

in the definition of the CDCC amplitude. If we replace
the exact scattering wave function with the CDCC one in
the volume matrix element (29) we obtain the conventional
CDCC reaction amplitude (35). However, if we approximate
the exact scattering wave function by the CDCC one in the
surface-integral matrix element (34), we obtain the amplitude
in the surface-integral formalism MCDCC(post)

surf , which differs
from the conventional reaction amplitude MCDCC(post)

conv by the
auxiliary matrix element MCDCC(post)

aux ; see Eq. (43).
The ambiguity in the definition of the CDCC amplitude

is related with the matrix element taken from the transition
operator UnA − V

sp
nA. The source of this ambiguity is the

inconsistency in the treatment of the n-A potentials when
the many-body problem is reduced to the three-body one: To
describe the n-A interaction in the initial state, the optical UnA

is used while the real potential VnA is adopted for describing
the bound state (nA) (see the Appendix, where we discuss how
the inconsistency in the treatment of the n-A potential affects
even the DWBA, which is more simpler than the CDCC). This
inconsistency remains an open question in the contemporary
nuclear reaction theory if we use energy-independent n-A
potentials when reducing the many-body problem to the three-
body one. A similar problem appears in the treatment of the
deuteron-stripping reactions using the Faddeev formalism in
the momentum space, in which the integration over the energy
requires energy-dependent nucleon-target optical potentials.
These potentials should provide scattering phase shifts at
positive n-A relative energies and possible bound states at
negative relative energies.

The replacement of the exact scattering wave function
by the CDCC one is more accurate when it is done in the
volume matrix element rather then in the surface one. The
volume matrix element is contributed by the internal and
peripheral (over the variable rnA) parts. While at low energy
the external part dominates, with energy increase the role
of the internal part also increases. Meanwhile, the surface
matrix element is mostly peripheral. It is evident from the
following consideration. For large ρpF ∼ 30 fm and small
nonlocality |RpF − RdA| of the post form (see calculations
in Sec. V) ρdA is also large. Even if the initial CDCC wave
function contains the p-n pair in the continuum, the constraint
over lpn constrains also the distance rpn. Hence, large rnA

becomes dominant in the surface matrix element. Meanwhile,
the auxiliary matrix element is entirely contributed by the
internal region because of the presence of ImUnA. Thus, the
conventional amplitude is contributed by the internal auxiliary
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amplitude and mostly peripheral surface matrix element. Thus,
we suggest to use Eq. (43) as the post CDCC amplitude, which
can be expressed in terms of the predominantly peripheral
surface matrix element and the auxiliary amplitude.

As we have underscored, the constraint X � X0 in the
integration in the matrix elements in Eq. (43) comes from
the constraint in the exact matrix element (42). The integrand
in MCDCC(post)

aux , which contains the transition operator Im UnA,
does not restrict the integration over ρpF , and the constraint
X � X0 comes only from the original matrix element (42).
That is why the amplitude MCDCC(post)

aux may depend on the
choice of X0. For peripheral reactions the internal contribution
in the post form is small and MCDCC(post)

aux is also small
compared to MCDCC(post)

conv because the depth of Im UnA is
significantly smaller than the depth of the real part of the
transition operator in MCDCC(post)

conv , which is ∼Vpn. Then
the conventional CDCC amplitude MCDCC(post)

conv is close to the
surface CDCC amplitude MCDCC(post)

surf .
Note that if we use the CDCC wave function satisfying the

Schrödinger equation [27]

(
E − T − UpA − V

sp
nA − Vpn

)
�

CDCC(+)
i = 0, (46)

where the real V sp
nA is being used rather than the optical potential

UnA, then

MCDCC(post)
surf = MCDCC(post)

conv = 〈
χ

(−)
pF IF

A

∣∣UpA + Vpn − UpF

× ∣∣�CDCC(+)
i

〉∣∣
X�X0

; (47)

that is, the CDCC surface-integral form and the conventional
CDCC amplitudes coincide. However, in this case the rear-
rangement channel p + (nA) is not suppressed and, hence,
the solution of Eq. (47) is not unique. For example, one can
consider �

CDCC(+)
i + ϕnA χ̃

(+)
pF , where χ̃

(+)
pF is the p-F distorted

wave. To decrease the contribution of the rearrangement
channel the cutoff over lpn was introduced in Ref. [27];
however, the suppression of the rearrangement channels by
the angular momentum cutoff is weaker than by the optical
potentials [23]. To achieve convergence, the integration radius
over ρpF was extended up to 40 fm. In Ref. [27] it was also
demonstrated that using of the CDCC wave function satisfying
the Schrödinger equation with the UnA optical potential rather
than with V

sp
nA gives the angular distribution better agreeing

with the experimental one.
We have expressed the conventional post CDCC amplitude

MCDCC(post)
conv given by the volume integral in terms of the

surface-integral matrix element MCDCC(post)
surf and the inter-

nal auxiliary amplitude MCDCC(post)
aux . There is no specific

advantage in invoking the surface formalism when we use
the final-channel wave function χ

(−)
pF IF

A and the main goal
here was to discuss the surface formalism just for better
understanding of it. However, below we show another choice
of the channel wave function, which clearly demonstrates the
advantage of the surface formalism.

Greider-Goldberger-Watson-Johnson choice of the final-channel
wave function

Here we consider a different choice of the exit-channel
wave function. We choose it to be a solution of the Schrödinger
equation

(E − K − VpA − VnA) �̃
(−)
f = 0. (48)

By comparing Eqs. (23) and (48) we can easily see the
difference between the standard final-channel wave function
�

(−)
f and the newly defined �̃

(−)
f . Multiplying Eq. (21) from the

left by �̃
(−)∗
f and following a procedure similar to the one used

for derivation of the exact reaction amplitude in the previous
part, we get

M(post) = 〈�̃(−)
f |VpA + VnA + Vpn − VpA − VnA|�(+)

i 〉
= 〈�̃(−)

f |Vpn|�(+)
i 〉|rpn�Rpn

(49)

= 〈�̃(−)
f |←−K − −→

K |�(+)
i 〉|rpn�Rpn

. (50)

The advantage of the new choice of the final-channel wave
function is that the transition operator is just Vnp and this keeps
the nucleons of the deuteron within the range of their nuclear
interaction. It allows us to simplify the initial scattering wave
function. However, the new final-channel wave function, a
priori, cannot be factorized into a product of the p-A distorted
wave and the n-A bound-state wave function because now,
owing to the presence of the VpA, the recoil of the target can
excite the system (nA) into any bound or continuum states.
As a result, the final-channel wave function is contributed by
the continuum component p + n + A and integration over rdA

is not constrained. The asymptotic behavior of �̃
(−)∗
f at large

ρpF is given by the sum of the incident wave in the channel
p + F plus outgoing waves in all open two-body channels p +
Fn, where n denotes bound or excited states of F plus three-
body outgoing wave in the channel p + n + A. Converting the
matrix element in Eq. (50) containing

←−
K − −→

K , where K =
KpF + KnA + KA, into surface integrals we find that only
the integral over ρpF survives giving the amplitude of the
leading asymptotic term of the initial wave function in the
rearrangement channel p + F . Thus, using the surface-integral
formalism, it can be easily shown that the matrix element (49)
coincides with the reaction amplitude for the stripping reaction
d + A → p + F . The first proof of Eq. (49) was provided by
Greider [28]. Although the final result was correct, the proof
contained an error. The first correct proof of Eq. (49) was
presented by Goldberger and Watson [29] and extensively used
by Johnson and co-workers in the formulation of the ADWA
and its applications [26,30–33].

For practical application we consider the limit A → ∞, in
which the final-channel wave function can be factorized as

�̃
(−)
f = χ

(−)
pA ϕF . (51)
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In this limit we can choose rpA and rnA as two new independent
Jacobian variables. Owing to the presence of the bound-state
wave function ϕF and the potential Vnp as the transition
operator, the integration over both Jacobian variables is
constrained. The reaction amplitude is reduced to

M(post) = 〈χ (−)
pF ϕF |Vpn|�(+)

i 〉|rnA�RnA; rpn�Rpn
(52)

= 〈χ (−)
pF ϕF |←−K − −→

K |�(+)
i 〉|rnA�RnA; rpn�Rpn

= 〈χ (−)
pF ϕF |←−K pA − −→

K pA|�(+)
i 〉|rnA�RnA; rpn�Rpn

. (53)

Here we took into account that KnA and KA are Hermitian
operators because of the presence of the bound-state wave
function ϕF ; that is, integrating twice by parts we can trans-
form

←−
K nA + ←−

K A to
−→
K nA + −→

K A. Because rpA = rnA + rpn,
the limitation of the integration over rpA is rpA � RpA =
RnA + Rpn.

Now, as in the previous section, we approximate the exact
scattering wave function �

(+)
i by the CDCC one �

CDCC(+)
i ϕA

and replace the potential VpA in Eq. (48) by the optical potential
UpA. As discussed previously, it can be done in the volume

matrix element (52) containing the transition operator Vpn or

in the matrix element containing
←−
K pA − −→

K pA. The obtained
amplitudes differ by the term containing the transition operator
UnA − V

sp
nA. Actually, if we do the approximation directly in

the matrix element (52) we get the conventional post CDCC
amplitude

MCDCC(post)
conv = 〈χ (−)

pF IF |Vpn

∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

. (54)

Owing to the presence of the short-range potential Vpn, we
do not need to introduce an additional projector into the
Schrödinger equation for the CDCC wave function, which
constrains the distance between the proton and the neutron
(see Eq. (40) and Ref. [2,27]). Another advantage of the
presence of Vpn is a possibility to approximate the CDCC wave
function by the first term of the Weinberg states expansion
[33]. The Weinberg states ϕW

i are solutions of the equation
with eigenvalues λi :( − εd

pn − Kpn − λi Vpn

)
ϕW

i (rpn) = 0, i = 1,2, . . . . (55)

This expansion significantly simplifies the calculation of the
initial-state scattering wave function.

Now we approximate �
(+)
i by the CDCC wave function �

CDCC(+)
i ϕA in the matrix element (53) to obtain the deuteron-stripping

amplitude in the surface-integral formalism:

MCDCC(post)
surf = 〈χ (−)

pF IF |←−K pA − −→
K pA

∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

(56)

= − R2
pA

2 μpA

∫
d rnA IF∗

A (rnA)
∫

d 	rpA

×
[
�

CDCC(+)
i (rdA, rpn)

∂ χ
(−)∗
pA (rpA)

∂ rpA

− χ
(−)∗
pA (rpA)

∂ �
CDCC(+)
i (rdA, rpn)

∂ rpA

]∣∣∣∣∣
rpA=RpA;rpn�Rpn

. (57)

In this representation the matrix element is actually the surface integral in the subspace over rpA and the volume integral over rnA.
The main advantage of the surface-integral form is that it is completely peripheral over rpA and rnA. We take into account that in
the volume matrix element (52) the integration over rpA is limited by rpA � RpA, where RpA = RnA + Rpn. Actually we can
take the surface integral at any rpA > RpA but we do not want to do it because with the increasing of the integration radius in the
surface integral we risk being in the region where the CDCC wave function is not applicable. So it is better to use the minimally
required integration radius, which is RpA. At rpA = RpA we make the integration over rnA peripheral. From rnA = rpA − rpn

it follows that RpA − Rpn � rnA � RpA + Rpn. Taking into account that RpA ∼ 25–30 fm and that Rpn is small, we conclude
that RnA � rnA � RnA, where RnA = RpA − Rpn and RnA is the n-A nuclear interaction radius.

At rnA � RnA the radial overlap function can be replaced by its asymptotic term. We remind the reader that the overlap
function can be written as

IF
A (rnA) =

∑
jnA mjnA mlnA

〈
JA MA jnA mjnA

∣∣JF MF

〉

× 〈
Jn Mn lnA mlnA

∣∣jnA mjnA

〉
YlnA mlnA

(r̂nA) IF
A jnA lnA

(rnA). (58)

Here lnA (mlnA
) is the relative orbital angular momentum (its projection) of n-A in the bound state F = (nA), jnA (mjnA

) is the
total angular momentum (its projection) of the neutron in the bound state, Ji (Mi) is the spin (its projection) of nucleus i. The
radial overlap function at rnA > RnA takes the form

IF
A jnA lnA

(rnA)
rnA�RnA≈ CF

A jnA lnA
ilnA+1 κnA h

(1)
lnA

(i κnA rnA)
rnA→∞≈ CF

A jnA lnA

e−κnA rnA

rnA

, (59)

where h
(1)
lnA

(i κnA rnA) is the spherical Hankel function of the first order, CF
A jnA lnA

is the ANC of the overlap function, κnA =√
2 μnA εF

nA is the bound-state wave number, and εF
nA is the binding energy of the ground state of F for the virtual decay

F → n + A. Taking into account Eqs (58) and (59), we get the final expression for the post-form CDCC deuteron-stripping
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amplitude in the surface-integral formalism:

MCDCC(post)
surf = −

∑
jnA mjnA mlnA

〈
JA MA jnA mjnA

∣∣JF MF

〉 〈
Jn Mn lnA mlnA

∣∣jnA mjnA

〉

× i−lnA−1CF
A jnA lnA

κnA

R2
pA

2 μpA

∫
RnA�rnA�RnA

d rnA Y ∗
lnA mlnA

(r̂nA) h
(1)∗
lnA

(i κnA rnA)

×
∫

d	rpA

[
�

CDCC(+)
i (rdA, rpn)

∂ χ
(−)∗
pA (rpA)

∂ rpA

− χ
(−)∗
pA (rpA)

∂ �
CDCC(+)
i (rdA, rpn)

∂ rpA

]∣∣∣∣∣
rpA=RpA;rpn�Rpn

. (60)

Thus, the original volume matrix element can be con-
verted into the surface integral over rpA, which, owing to
the constraint on the variable rpn, leads to the dominant
contributions for rnA � RnA. It allows us to parametrize the
reaction amplitude in terms of the ANC. This peripheral
character of the reaction amplitude is obtained because we
used the modified final-channel wave function.

We can relate now the MCDCC(post)
surf and the conventional

CDCC amplitude MCDCC(post)
conv . To this end, we rewrite (54) as

MCDCC(post)
conv = 〈χ (−)

pF IF |UpA + UnA + Vpn − UpA − V
sp
nA

+ [
V

sp
nA − UnA

]∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

= MCDCC(post)
surf − MCDCC(post)

aux . (61)

Thus, as before we can rewrite the conventional post CDCC
volume matrix element in terms of two amplitudes: the entirely
peripheral surface-integral matrix element and the internal
auxiliary one. The matrix element in the surface-integral form
is expressed in terms of the potential transition operator

MCDCC(post)
surf = 〈χ (−)

pF IF |UpA + UnA + Vpn

−UpA − V
sp
nA

∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

(62)

= 〈χ (−)
pF IF |←−K − −→

K
∣∣�CDCC(+)

i

〉∣∣
rnA�RnA; rpn�Rpn

.

(63)

When deriving (63) we took into account that �
CDCC(+)
i

satisfies the Schrödinger equation with the potential UpA +
UnA + Vpn and the final-channel wave function is the solution
of the Schrödinger equation with the potential UpA + V

sp
nA. It

allows us to replace UpA + UnA + Vpn − UpA − V
sp
nA in the

matrix element (62) with
←−
K − −→

K , which leads to the surface
matrix element (60). The auxiliary matrix element, which is
entirely contributed by the nuclear interior, is written as

MCDCC(post)
aux

= 〈χ (−)
pF IF |[UnA − V

sp
nA

]∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

= 〈χ (−)
pF IF |Im UnA

∣∣�CDCC(+)
i

〉∣∣
rnA�RnA; rpn�Rpn

. (64)

In Eq. (64) we adopted Re UnA = V
sp
nA. We remind the reader

that the auxiliary matrix element MCDCC(post)
aux appears because

of the inconsistency in treating the n-A potential. The auxiliary
matrix element is contributed by the range of the imaginary

part of the UnA potential; that is, rnA � RnA. The depth of the
imaginary part of UnA is significantly smaller than that of Vpn.
Also, the constraint rpn � Rpn keeps protons in the region with
the strongest absorption. Hence, we expect that |MCDCC(post)

aux |
can be significantly smaller than |MCDCC(post)

conv | at low energies
and good matching of the initial and final momenta. In this
case,

MCDCC(post)
conv ≈ MCDCC(post)

surf . (65)

Once again we repeat that adoption of the Greider-
Goldberger-Watson-Johnson final-channel wave function al-
lowed us to constrain the integration over rpn by the range of
the transition operator Vpn despite the fact that the CDCC wave
function contains the components describing the p-n pair in the
continuum. As we mentioned, it allows one to approximate the
CDCC wave function by the first term of the Weinberg states
expansion [33] and this significantly simplifies the calculation
of the initial-state scattering wave function.

The presence of the overlap function IF
A constrains the

integration over rnA. As the result of these two constraints
the surface matrix element taken at rpA = RpA leads to the
dominant contribution at rnA � RnA. In other words, the
surface matrix element is peripheral, allowing us to
parametrize it in terms of the ANC for the bound state F =
(nA), which is the only model-independent spectroscopic
information extractable from experiment [34]. The auxiliary
term determines the contribution from the nuclear interior.
Although here equations were obtained assuming an infinitely
heavy target A, they should work also for a heavy target with
a finite mass. Necessary corrections may be introduced using
expansion over a small parameter 1/A.

IV. DEUTERON STRIPPING TO A RESONANCE STATE

Now we proceed to the main goal of the present paper and
apply the surface formalism used in the previous sections for
stripping to bound states to describe the deuteron stripping
populating resonance states.

Prior form

To treat the stripping to resonance states we use the prior
formalism, in which the exact scattering wave function �

(−)
f

is taken in the final state. We consider the deuteron-stripping
reaction

d + A → p + n + A, (66)
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proceeding through the resonant subreaction n + A → F ∗ →
n + A. The results can easily be extended for the deuteron-
stripping reaction

d + A → p + b + B, (67)

which proceeds through the resonant subreaction n + A →
F ∗ → b + B, where the channel b + B differs from n + A.

The wave function �
(−)
f satisfies the Schrödinger equation

�
(−)∗
f (E − ←−

K − VpA − VnA − Vpn − HA) = 0 (68)

and has the p + n + A incident three-body wave in the
continuum with the outgoing waves in all the open channels.
Let �

(+)
i = ϕpn χ

(+)
dA be the wave function of the entry channel

and χ
(+)
dA be the d + A distorted wave. We adopt the initial-

channel wave function as the solution of the Schrödinger
equation

(E − K − Vpn − UdA − HA) �
(+)
i = 0, (69)

with the d + A incident wave. Because we do not consider
excitation of the target nucleus A, in what follows we disregard
the Hamiltonian HA.

Multiplying Eq. (68) from the right by �
(+)
i and taking into

account Eq. (69), we get

M(as) = 〈�(−)
f |←−K − −→

K |�(+)
i 〉 (70)

= 〈�(−)
f |VpA + VnA + Vpn − Vpn − UdA

∣∣�(+)
i 〉

= 〈�(−)
f |VpA + VnA − UdA|�(+)

i 〉 = M(prior). (71)

Equation (71) is the standard prior form of the volume matrix
element, while Eq. (70) is the matrix element, which can be
written in a surface-integral form. This matrix element can
be easily reduced to the amplitude of the leading asymptotic
term of the �

(−)∗
f in the channel d + A. This amplitude, by

definition, is the deuteron-stripping amplitude M(as). To show
it we rewrite

〈�(−)
f |←−K − −→

K |�(+)
i 〉 = 〈�(−)

f |←−K dA − −→
K dA|�(+)

i 〉
+ 〈�(−)

f |←−K pn − −→
K pn|�(+)

i 〉. (72)

The matrix element containing
←−
K pn − −→

K pn vanishes
because it contains the deuteron bound-state wave function
ϕpn. Taking the limit Rpn → ∞ we get

〈�(−)
f |←−K pn − −→

K pn|�(+)
i 〉 = − lim

Rpn→∞
R2

pn

2 μpn

∫
dρdA χ

(+)
dA (ρdA)

∫
d	rpn

×
[
�

(−)∗
f (ρdA,rpn)

∂ϕpn(rpn)

∂rpn

− ϕpn(rpn)
∂�

(−)∗
f (ρdA,rpn)

∂rpn

]∣∣∣∣∣
rpn=Rpn

= 0. (73)

Hence,

M(as) = 〈�(−)
f

∣∣←−K − −→
K

∣∣�(+)
i 〉 = 〈�(−)

f

∣∣←−K dA − −→
K dA

∣∣�(+)
i 〉

= − lim
RdA→∞

R2
dA

2 μdA

∫
drpn ϕpn(rpn)

∫
d	ρdA

×
[
�

(−)∗
f (ρdA,rpn)

∂χ
(+)
dA (ρdA)

∂ρdA

− χ
(+)
dA (ρdA)

∂�
(−)∗
f (ρdA,rpn)

∂ρdA

]∣∣∣∣∣
ρdA=RdA

= Mprior. (74)

To prove that this equation reduces to M(as), we have taken
into account that at ρdA → ∞ only the leading asymptotic
term

�
(−)∗
f (ρdA, rpn) ∼ −μdA

2 π
M(as) u+(ρdA) ϕpn, (75)

where u+(ρdA) is outgoing scattered wave in the d + A
two-body channel, will give nonvanishing contribution to the
integral over ρdA. Thus, in the prior form the conventional
CDCC amplitude given by the volume matrix element is equal
to the amplitude in the surface-integral formalism. It is because
only one potential, V

sp
nA, is used in the prior formalism.

After proving that the volume matrix element (71) is equal
to the amplitude of the total scattering wave function in the

asymptotic final d + A channel M(as), we consider now the
constraints on the integration volume in the matrix element
(71). Owing to the presence of the deuteron bound-state wave
function in the initial channel, the integration over rpn is
limited. At large rpA, VpA → UC

pA, where UC
pA = ZA e2/rpA

is the Coulomb potential between the proton and the center
of mass of nucleus A; also at large rpA, UdA → UC

dA because
at large rpA also rdA is large because of the constrain of rpn.
For the same reason, when rpA increases, also rnA increases.
Then VnA vanishes when rpA increases. As rdA increases, the
matrix element from the difference UC

pA − UC
dA goes to zero

as d0 ZA e2/(2 r2
dA), where d0 is the deuteron size [35]. Hence,

the integration over rdA is also constrained. Thus, the volume
integral in Eq. (71) can be taken over the constrained volume
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in the six-dimensional space {ρdA, rpn} with the hyperradius
Y � Y0, where Y0 = (μpn R2

pn/m + μdA R2
dA/m)1/2. Also

Rpn is the maximal rpn, which is required to achieve a desired
accuracy for the integral over rpn and RdA is the maximal ρdA,
which is required to achieve a desired accuracy for the integral
over ρdA.

Hence, we can rewrite (71) in form of the conventional
volume and the surface-integral forms:

M(prior) = 〈�(−)
f |VpA + VnA − UdA|�(+)

i 〉|ρdA�RdA; rpn�Rpn

(76)

= − R2
dA

2 μdA

∫
drpn ϕpn(rpn)

∫
d	ρdA

×
[
�

(−)∗
f (ρdA,rpn)

∂χ
(+)
dA (ρdA)

∂ρdA

− χ
(+)
dA (ρdA)

× ∂�
(−)∗
f (ρdA,rpn)

∂ρdA

]∣∣∣∣∣
ρdA=RdA; rpn�Rpn

(77)

= M(as). (78)

Thus, the integration in both forms, volume and surface, is
constrained.

As in the previous sections, now we can get the prior form
of the CDCC amplitude for the stripping to the resonance
state in the conventional volume integral form and the surface
formalism. To this end we replace �

(−)
f with the CDCC wave

function �
CDCC(−)
f . If we do it in the matrix element (76)

containing the volume integral we get the conventional CDCC
prior form amplitude:

MCDCC(prior)
conv

= 〈
�

CDCC(−)
f

∣∣UpA + V
sp
nA − UdA|ϕpn χ

(+)
dA 〉|ρdA�RdA; rpn�Rpn

.

(79)

To obtain the prior form of the CDCC matrix element we
replaced VpA by the optical potential UpA. Correspondingly,
from Eq. (78) we get the CDCC prior form amplitude in the
surface-integral representation:

MCDCC(prior)
surf

= − R2
dA

2 μdA

∫
drpn ϕpn(rpn)

∫
d	ρdA

×
[
�

CDCC(−)∗
f (ρdA,rpn)

∂χ
(+)
dA (ρdA)

∂ρdA

− χ
(+)
dA (ρdA)

∂�
CDCC(−)∗
f (ρdA,rpn)

∂ρdA

]∣∣∣∣∣
ρdA=RdA; rpn�Rpn

.

(80)

Because the potential V
sp
nA is real, both conventional and

surface-integral forms coincide. It is straightforward to see,
but before showing it we discuss the CDCC wave function
�

CDCC(−)
f . We consider the deuteron-stripping reaction popu-

lating a resonance state, which decays into the channel n + A.

Thus, we have the three-body system p + n + A in the final
state, in which we need to take into account explicitly the
n + A rescattering in the final state to describe the resonance
in the n-A system. To this end in the finite volume around
the target A we approximate the exact final-state scattering
wave function by the CDCC wave function �

CDCC(−)
f , which

satisfies the three-body Schrödinger equation

�
CDCC(−)∗
f

(
E − ←−

K − UpA − V
sp
nA − Vpn

) = 0. (81)

The CDCC method simplifies the problem by considering
only one equation (81) with the incident wave describing the
three-body system p + n + A in the continuum. The simplest
mechanism of the deuteron stripping populating a resonance
state can be described as a virtual breakup of the deuteron with
subsequent n + A resonance scattering, in which the proton is
a spectator. An effective way to describe the three-body system
in the continuum, which takes into account the resonance
scattering in the subsystem n + A, is to use the CDCC wave
function which is expressed in terms of the product of the n-A
scattering wave function times the scattering wave function of
the proton off the center of mass of the system n + A. Then
the only channel coupled to the three-body continuum that can
be included in the CDCC method is the two-fragment channel
p + F , where F = (nA) is the bound state. A few bound states
of the system (nA) can be taken into account. Then we can
write the CDCC wave function in the form

�
CDCC(−)
f (ρpF , rnA) =

imax∑
i=0

ϕ
(i)
nA(rnA) χ (i)(−)

qpF
(ρpF )

+
jmax∑
j=1

ψ
(j )(−)
knA

(rnA) χ
(j )(−)
qpF (knA)(ρpF ),

(82)

Here ϕ
(i)
nA(rnA) is the ith bound-state wave function of the

system F = (nA) with i = 0 corresponding to the ground state
and χ

(i)(−)
qpF

(ρpF ) are the functions, which describe the relative
motion of the center of mass of p and the (nA) pair in the ith

bound state. ψ
(j )(−)
knA

(rnA) is the n-A scattering wave function
obtained by averaging continuous breakup states in the j th bin
and χ

(j )(−)
qpF (knA)(ρpF ) is the wave function describing the relative

motion of the proton and the center of mass of the system
n + A in the continuum in the j th bin. In Eq. (82) the relative
momentum qpF (knA) of the particles p and F is related to the
n-A relative momentum knA via the energy conservation law:

E = EdA − εd
pn = EpF − εF

nA = q2
pF

2 μpF

+ k2
nA

2 μnA

. (83)

The n-A interaction is taken as a real single-particle potential
V

sp
nA, which can support the resonance in the n-A system. The

corresponding scattering wave function is orthogonal to the
bound states generated by this potential.

To be sure that Eq. (82) provides a unique solution of
Eq. (81) we need to suppress the two-fragment rearrangement
channels, n + (pA) and d + A. Unfortunately, there is only
one optical potential, UpA, in Eq. (81). This potential to
some extent suppresses the rearrangement channel n + (p A)
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because it generates a substantial positive imaginary part
to the potential n + (p A) damping the outgoing neutron
wave. However, the other rearrangement channel d + A is
not suppressed because the potential Vpn is real. To provide
a unique solution of Eq. (81) a model space is introduced in
which the CDCC solution becomes unique. This model space
is achieved by cutting the n-A relative orbital angular momenta
by some finite lmax

nA [36]. Although the solution is unique in such
a model space because the rearrangement channels are absent
in the asymptotic regions, the nonuniqueness is disguised in the
dependence of the CDCC solution on the adopted model space
[36]. Fortunately, in the case of the stripping to resonance the
number of the resonant partial waves lnA is limited by one or
a few at most. To ensure the uniqueness of the CDCC solution
only the number of the nonresonant partial waves (nonresonant
background) in the subsystem n-A requires a cutoff that can
create a model dependence on lmax

nA . Note that a constraint on
lnA keeps n close to A, suppressing the contribution of the
rearrangement channel d + A.

We write now the n-A scattering wave function taking into
account the spins in the representation with given channel spin
and its projections:

ψ
(j )(−)
knAs ms m′′

s
(rnA) = i

2 π

knA rnA

∑
JF MF lnA mlnA

m′′
lnA

× 〈
s ms lnA mlnA

∣∣JF MF

〉
× 〈

s m′′
s lnA m′′

lnA

∣∣JF MF

〉
i−lnA Y ∗

lnA mlnA

× (k̂nA)YlnA m′′
lnA

(r̂nA)φnAsm′′
s
u

(j )(+)∗
knAslnAJF

(rnA).

(84)

Here s is the channel spin (ms and m′′
s are its projections

before and after scattering) and lnA is the n-A orbital angular
momentum (mlnA

and m′′
lnA

are its projections before and after
scattering), JF (MF ) is the spin (its projection) of nucleus
F , and φnA s m′′

s
is the spin function of the system n + A

with the channel spin s. We presented here only the diagonal
components (over the channel spin and the orbital angular
momenta) of the scattering wave function. General cases of
the scattering wave function with different channel spins in
the initial and final states and even including reaction channels
are given in Ref. [5].

Note that in practical application we need to use

ψ
(j )(−)∗
knAs ms m′′

s
(rnA), which is expressed in terms of the binned

radial wave function u
(j )(+)
knA s lnA JF

(rnA) given by [37]

u
(j )(+)
knA s lnA JF

(rnA) =
√

2

π N
(j )
s lnA JF

×
∫ k

(j )
nA

k
(j−1)
nA

dknA g
(j )
s lnA JF

(knA) u
(+)
knA s lnA JF

(rnA),

(85)

where g
(j )
s lnA JF

(knA) is the weight function. The normalization
constant is

N
(j )
s lnA JF

=
∫ k

(j )
nA

k
(j−1)
nA

d knA

∣∣g(j )
s lnA JF

(knA)
∣∣2

. (86)

The adopted normalization constant N
(j )
s lnA JF

makes an or-

thonormal set u(j )(+)∗
knA s lnA JF

(rnA) when all the intervals (kj−1
nA , k

(j )
nA)

are nonoverlapping.
The next important step is adoption of the weight function

g
(j )
s lnA JF

(knA). In Ref. [37] two different prescriptions were used
for the weight function for resonant and nonresonant bins. We
use for the nonresonant bins

g
(j )
s lnA JF

(knA) = e−i δs lnA JF
(knA) (87)

and for the resonance bin

gs lnA JF
(k) = eiδs lnA JF

(k) sin[δs lnA JF
(k)], (88)

where δs lnA JF
(knA) is the n-A scattering phase shift.

The radial scattering wave function u
(j )(+)
knAs lnA ,JF

(rnA) should
describe the resonance scattering in the bin covering the
resonant region. In the R-matrix approach the coordinate space
over rnA is divided into the internal, rnA � RnA, and external,
rnA > RnA, regions. In the internal region in the one-level
approximation

u
(int)
knA s lnA JF

= −i

√
knA

μnA

e
−i δhs

lnA

×
[
�nA s lnA JF

(EnA)
]1/2

ER − EnA − i �nA s lnA JF
(EnA)/2

Xint. (89)

Here �nA s lnA JF
(EnA) is the partial resonance width in the

channel n + A, δhs
lnA

is the hard-sphere scattering phase shift,
and Xint is an eigenfunction of the Hamiltonian describing
the compound system F = n + A. At the channel radius
rnA = RnA,

Xint = 1

RnA

√
2 μnA RnA γs lnA JF

, (90)

where γs lnA JF
is the reduced width amplitude in the channel

with quantum numbers s, lnA, and JF . In the external region
(rnA > RnA) in the representation with a given channel
spin s and orbital angular momentum lnA wave function,
u

(j )(+)
knAs lnA JF

(rnA) takes the standard form

u
(ext)(+)
knA s lnA JF

= [
IlnA

(knA, rnA) − S
JF

nA s lnA; nA s lnA
OlnA

(knA, rnA)
]
,

(91)

where IlnA
(knA, rnA) and OlnA

(knA, rnA) are incoming and
outgoing spherical waves, respectively. By equating the in-
ternal u

(int)
knA s lnA JF

and external u
(ext)(+)
knA s lnA JF

wave functions at
the channel radius rnA = RnA, we get an expression for the
resonant S matrix elastic scattering element S

JF

nA s lnA; nA s lnA
,

which at energies near the resonances takes the form

S
JF

nA s lnA; nA s lnA

= e
−2 i δhs

lnA

[
1 + i

�nA s lnA JF
(EnA)

ER − EnA − i �nA s lnA JF
(EnA)/2

]
,

(92)

034604-14



SURFACE-INTEGRAL FORMALISM OF DEUTERON STRIPPING PHYSICAL REVIEW C 90, 034604 (2014)

where ER is the real part of the resonance energy. δhs
lnA

is
the hard-sphere scattering phase shift in the channel n + A
determined by equation

e
−2 i δhs

lnA = IlnA
(knA, RnA)

OlnA
(knA, RnA)

. (93)

Thus, in the external region u
(ext)(+)
knA s lnA JF

can be expressed in
terms of the observable partial resonance widths and resonance
energies.

Another possible approach is the potential one. In the poten-
tial approach first we introduce the overlap function I

F (−)∗
A knA

=
〈ψ (−)

F knA
|ϕA〉, where ϕA is the bound-state wave function of

nucleus A and ψ
(−)
F is the eigenfunction of the continuum

spectrum of the Hamiltonian H = KnA + VnA + HA of the
system F = n + A. This overlap function is approximated
as [35]

I
F (−)∗
A knA

= SF
A u

(−)∗
knA

, (94)

where SF
A is the spectroscopic factor of the configuration n + A

in F and u
(−)∗
knA

is a solution of the Schrödinger equation(
EnA − KnA − V

sp
nA

)
u

(−)∗
knA

(rnA) = 0. (95)

The external part of the single-particle wave function
u

(ext)(+)
knA s lnA JF

(we recovered here the spins) is given by Eq. (91)
where the elastic scattering S matrix is generated by the
potential V

sp
nA. This S matrix element in the single-particle

model is given by

S
(sp) JF

nA s lnA; nA s lnA

= e
−2 i δ

sp
s lnA JF

(
1 + i

�
sp
nA s lnA JF

ER − EnA − i �
sp
nA s lnA JF

/2

)
,

(96)

where δ
sp
s lnA JF

is the potential nonresonance scattering phase
shift and �

sp
nA s lnA JF

is the single-particle neutron resonance
width. Then the observable resonance width is written as

�nA s lnA JF
= SF

A �
sp
nA s lnA JF

. (97)

Now we return to the prior form of the stripping amplitude.
After defining the CDCC wave function in the final state it is
clear from Eqs. (81) and

(E − K − Vpn − UdA) ϕpn χ
(+)
dA = 0 (98)

that amplitudes (79) and (80) coincide. The main advantage
of the surface amplitude (80) is that the convergence problem

for the stripping to resonance is solved because the integration
over ρdA is taken at the finite ρdA = RdA and the integration
over rpn is constrained owing to the presence of ϕpn. Because
of these two integrations the contribution of the peripheral
region over rnA in the surface matrix element is enhanced com-
pared to the conventional volume matrix element. However, the
surface matrix element is not fully peripheral over rnA because
of the large nonlocality of the prior amplitude (typically
20–25 fm). It means that small ρpF , and, correspondingly,
small rnA can contribute making nonperipheral contribution
also possible, especially when the energy increases. Equation
(80) is the main result of our paper.

There is one more point about CDCC to discuss. We have
assumed that the CDCC wave function given by Eq. (82) is a
solution of Eq. (81). As we have discussed, the constraint
imposed on lmax

nA allows us to diminish the role of the
rearrangement channels. However, it may not be enough and a
more sophisticated truncation procedure is achieved by using
the projector

P̂nA =
lmax
nA∑

lnA=0

lnA∑
mlnA

=−lnA

∫
d	rnA

YlnA mlnA
(r̂nA) Y ∗

lnA mlnA
(r̂′

nA).

(99)

Applying the projector PnA to Eq. (81) from the right we
get the Schrödinger equation for the CDCC wave function in
the final state in the projected model space,

�
CDCC(−)∗
(PnA) f

(
E − ←−

K − U
PnA

pA − V PnA
pn − VnA

) = 0, (100)

where �
CDCC(−)∗
(PnA) f = �

CDCC(−)∗
f PnA, U

PnA

pA = PnA UpA PnA,
and V PnA

pn = PnA Vpn PnA. Note that the projector PnA acts on
rnA; hence, it modifies UpA and Vpn, which can be expressed
in terms of the radii rnA and ρpF . The potential VnA remains
intact to the action of PnA because it depends only on rnA rather
than on rnA.

In the projected model space the rearrangement channels
are suppressed. For example, if we add to the CDCC
wave function the component of the rearrangement channel
ϕpn χ

(+)
dA , application of the projector PnA at ρdA � rpn brings

an additional suppression factor ρ−2
dA [2]. In the projected model

space the conventional volume matrix element and the matrix
element in the surface-integral formalism do not coincide. To
show it we go back to the conventional volume matrix element
(79), in which we replace �

CDCC(−)
f with �

(−)
(PnA)f without

changing potentials. Then we get

MCDCC(prior)
conv = 〈

�
CDCC(−)
(PnA) f

∣∣UpA + V
sp
nA − UdA|ϕpn χ

(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn
. (101)

To transform this matrix element to the surface-integral form, we rewrite

UpA + V
sp
nA − UdA = (

UpA − U
PnA

pA

) + [
U

PnA

pA + V PnA
pn + V

sp
nA

] − [Vpn + UdA] + (
Vpn − V PnA

pn

)
. (102)
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Taking into account the Schrödinger equations for �
CDCC(−)∗
(PnA)f and ϕpn χ

(+)
dA , we can replace the bracketed operator [UPnA

pA +
V PnA

pn + V
sp
nA] with E − ←−

K and [Vpn + UdA] with E − −→
K . Then Eq. (101) can be reduced to

MCDCC(prior)
conv = 〈

�
CDCC(−)
(PnA) f

∣∣UpA + V
sp
nA − UdA|ϕpn χ

(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn
(103)

= MCDCC(prior)
surf + MCDCC(prior)

aux . (104)

Here the matrix element in the surface-integral representation is

MCDCC(prior)
surf = 〈

�
CDCC(−)
(PnA) f

∣∣−→K − ←−
K |ϕpn χ

(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn

= 〈
�

CDCC(−)
(PnA) f

∣∣−→K dA − ←−
K dA|ϕpn χ

(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn

= − R2
dA

2 μdA

∫
drpn ϕpn(rpn)

∫
d	ρdA

[
�

CDCC(−)∗
(PnA)f (ρdA,rpn)

∂χ
(+)
dA (ρdA)

∂ρdA

− χ
(+)
dA (ρdA)

∂�
CDCC(−)∗
(PnA) f (ρdA,rpn)

∂ρdA

]∣∣∣∣∣
ρdA=RdA; rpn�Rpn

, (105)

where we took into account that the matrix element from
←−
K pn − −→

K pn vanishes. The auxiliary matrix element is given by

MCDCC(prior)
aux = 〈

�
CDCC(−)
(PnA) f

∣∣UpA − U
PnA

pA + Vpn − V PnA
pn |ϕpn χ

(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn

= 〈
�

CDCC(−)
(PnA) f

∣∣PnA(UpA + Vpn)QnA|ϕpn χ
(+)
dA 〉∣∣

ρdA�RdA; rpn�Rpn
. (106)

To obtain Eq. (106) we took into account that PnA + QnA =
1, P 2

nA = PnA,�
CDCC(−)∗
(PnA) f (UpA − U

PnA

pA + Vpn − V PnA
pn ) =

�
CDCC(−)∗
(PnA) f PnA (UpA − U

PnA

pA + Vpn − V PnA
pn ) = �

CDCC(−)
(PnA) f

PnA (UpA + Vpn) QnA. The potential PnA (UpA + Vpn) QnA

couples low orbital angular momenta lnA with the large lnA

from the subspace QnA. Thus, the auxiliary term adds a model
dependence because by taking into account this term we
go beyond the limits of the model space constrained by the
projector PnA.

V. NUMERICAL RESULTS

In this section we present some calculations corroborating
our theoretical findings, although the code for the surface
integral formalism in the CDCC approach is not yet available
and the work on it is in progress.

A. Stripping to bound state: Reaction
14C(d, p)15C(2s1/2,Ex = 0.0 MeV)

First we present the effect of the auxiliary matrix element
(45). To this end we performed calculations using the prior
DWBA amplitude,

MDW(prior) = 〈
χ

(−)
pF ϕF

nA

∣∣UpA + UnA − UdA|ϕpn χ
(+)
dA 〉, (107)

and the prior CDCC amplitude,

MCDCC(prior) = 〈
�

CDCC(−)
f

∣∣UpA + UnA − UdA|ϕpn χ
(+)
dA 〉.

(108)

In both amplitudes, to calculate the initial distorted wave χ
(+)
dA

we use the optical potential UdA prescribed by the ADWA us-
ing the zero-range Johnson-Sopper prescription [26] in which

the d-A optical potential UdA is given by the sum UpA + UnA

taken at rpn = 0 and at half of the deuteron incident energy.
In all the calculations we use Koning-Delaroche potential [38]
for the N -A optical potentials. We use the spectroscopic factor
SF

A = 1 for n + 14C configuration in the ground state of 15C.
By comparing the differential cross sections obtained using
the complex UnA and the real UnA = V

sp
nA we can estimate the

effect of the auxiliary terms

MDW(prior)
aux = 〈χ (−)

pF ϕnA|ImUnA|ϕpn χ
(+)
dA 〉 (109)

and

MCDCC(prior)
aux = 〈

�
CDCC(−)
f

∣∣ImUnA|ϕpn χ
(+)
dA 〉. (110)

Clearly, our calculations give a rather qualitative estimation
of the auxiliary term effect because when we change the
UnA in the transition operator we simultaneously change the
distorted wave χ

(+)
dA in the initial state, while in the auxiliary

amplitudes (109) and (110), as UnA changes only the transition
operator should change. Hence, our calculations overestimate
the effect of the auxiliary term. The calculations are done for
the 14C(d,p)15C(2s1/2,Ex = 0.0 MeV) at the deuteron energy
of Ed = 23.4 MeV. The results are shown in Figs. 1 and 2.

The replacement in UdA of the real potential V
sp
nA by the

complex optical potential UnA changes the differential cross
section at forward angles by 10% for the DWBA and by 11%
for the CDCC.

As we can see in Figs. 1 and 2 the replacement of UnA with
V

sp
nA makes very little effect on the differential cross section in

the region of the first stripping peak, confirming that at low
energies the contribution from the nuclear interior is small at
forward angles but increases with angle increasing. Hence, at
low energies the replacement of UnA with V

sp
nA does not affect
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FIG. 1. (Color online) Prior DWBA differential cross sections for
the 14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed = 23.4 MeV. The solid
red line is obtained using the optical potential UnA when calculating
UdA; the blue dotted line is obtained with UnA = V

sp
nA in UdA.

the spectroscopic information, like ANCs or spectroscopic
factors, which is extracted from the normalization of the
calculated differential cross section to the experimental one
in the first stripping peak.

Similar calculations for 60-MeV deuterons give quite
different results. In Fig. 3 we present the prior DWBA
differential cross sections for two different choices of the n-A
potential used to calculate UdA. As we see, the difference is
quite significant but it comes mainly owing to the different
initial distorted waves χ

(+)
dA generated by different UdA. If for

Ed = 23.4 MeV this difference was not important because
the reaction was peripheral, it is not the case for 60 MeV,
when the deuteron-stripping reaction is contributed also by
the nuclear interior [39]. Unfortunately, we are not able to
calculate the matrix element from ImUnA without changing
the initial distorted wave.

In the second type of calculations we compared the post
and prior CDCC amplitudes for the 14C(d,p)15C(2s1/2,Ex =
0.0 MeV) reaction at the deuteron energy of Ed = 23.4 MeV.

FIG. 2. (Color online) Prior CDCC differential cross sections for
the 14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed = 23.4 MeV. Notations
are the same as in Fig. 1.

FIG. 3. (Color online) Prior DWBA differential cross sections for
the 14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed = 60 MeV. Notations
are the same as in Fig. 1.
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FIG. 4. (Color online) Post (a) and prior (b) CDCC differential
cross sections for the 14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed =
23.4 MeV. In the post form (a) the cutoff is introduced over the
p-n partial waves in the continuum component of the initial CDCC
scattering wave function: lmax

pn = 0, red solid line; lmax
pn = 2, black

dashed line; lmax
pn = 4, blue short dashed line; lpn = 6, dots. In the

prior form (b) the cutoff is introduced over the n-A partial waves in the
continuum component of the final CDCC scattering wave function:
lmax
nA = 1, red solid line; lmax

nA = 2, black dashed line; lmax
nA = 3, blue

short dashed line; lnA = 4, dots.
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FIG. 5. (Color online) Convergence of the post (a) and prior (b)
CDCC differential cross sections for the 14C(d, p)15C(2s1/2,Ex =
0.0 MeV) at Ed = 23.4 MeV. Rmatch = 20 fm, red solid line; Rmatch =
30 fm, black dashed line; Rmatch = 40 fm, blue short dashed line.

In Fig. 4 we compare the dependence of the CDCC amplitudes
on the maximum lpn of the continuum p-n states in the post
form and maximum lnA of the continuum n-A states in the
prior form. For both post and prior forms lpn = 4 and lnA = 4,
correspondingly, are enough to achieve convergence.

Now in Fig. 5 we demonstrate the convergence of the
post and prior CDCC differential cross sections for the
14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed = 23.4 MeV as
functions of RdA and RpF . In the FRESCO code this cor-
responds to parameter Rmatch. The post form converges at
Rmatch = 40 fm, while the prior form converges at Rmatch =
30 fm, although the post form has nonlocality range in the
matrix element 9 fm versus 24 fm in the prior form. These
calculations demonstrate that the integration volumes over ρdA

and ρpF in the CDCC matrix elements are constrained.
In Fig. 6 we show the convergence of the post and prior

CDCC differential cross sections as functions of rnA for the
14C(d, p)15C(2s1/2,Ex = 0.0 MeV) at Ed = 23.4 MeV. To
this end we calculated the post and prior CDCC differential
cross sections in which the integration over rnA was cut at
the upper limit rmax

nA . By increasing rmax
nA we can determine

the convergence of the CDCC differential cross sections as
functions of rmax

nA . The convergence over rnA is important
because depending on rnA the overlap function IF

A is the
only source of the spectroscopic information, which can be
extracted from the deuteron-stripping reactions. In the case
under consideration, owing to the small neutron binding energy

0.0
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FIG. 6. (Color online) Dependence of the normalized post
CDCC differential cross sections Rx on rmax

nA for the 14C(d, p)
15C(2s1/2,Ex = 0.0 MeV) at Ed = 23.4 MeV. Rx is the ratio of the
peak CDCC differential cross section, in which the integral over rnA

is calculated up to rmax
nA , to the full peak CDCC differential cross

section calculated at rmax
nA → ∞. The solid red line is the normalized

post CDCC form; the blue dotted line is the normalized prior CDCC
fiorm.

ε
15C
n 14C = 1.218 MeV in 15C, we expect a very slow convergence

of the CDCC matrix elements. Nevertheless, our calculations
demonstrate that the prior form converges at rnA ≈ 9 fm, while
the convergence of the post form is achieved at rnA > 20 fm.
This advantage of the prior form may be not decisive for the
stripping to bound states but could be important for stripping
to resonance states.

B. Stripping to resonance state: Reaction 16O(d, p)17O(1d3/2)

Now we proceed to the calculation of the stripping to a
resonance state. We select the reaction 16O(d, p)17O(1d3/2)
at Ed = 36 MeV populating a resonance state of energy
Ex = 5.085 MeV, which corresponds to the resonance level
at 0.94 MeV. In all the calculations shown below we use the
single-particle approach for the n-A resonant scattering wave
function calculated in the Woods-Saxon potential with the
radial parameter r0 = 1.25 fm and diffuseness a = 0.65 fm.

In the first calculation we compare the post and prior
calculations following the procedure developed in Ref. [5]. The
post and prior ADWA and prior CCBA (coupled-channel Born
approximation) are used for comparison. The prior ADWA
is the standard prior DWBA in which the initial deuteron
potential is given by the sum of the optical UPA and UnA

potentials calculated at half of the deuteron energy using
the zero-range Johnson-Sopper prescription [26]. In the prior
CCBA the final-state wave function can be derived from
Eq. (82). To do it we use the partial wave expansion of the
binned n-A continuum scattering wave function leaving only
the resonance partial wave lnA = 2. The adopted bin covers
the resonance region and χ

(res)(−)
qpF (knA)(ρpF ) corresponding to the

resonance bin has asymptotically both incident and outgoing
waves. The continuum resonance wave function component is
coupled with two bound states in 17O: the ground state 1d5/2
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FIG. 7. (Color online) Dependence of the normalized ADWA
and CCBA differential cross sections Rx on rnA for the deuteron
stripping to resonance 16O(d, p)17O(1d3/2) at Ed = 36 MeV. Blue
short and long dash-dotted lines, the ratios RX of the peak prior
ADWA and CCBA differential cross sections, correspondingly, in
which the radial integral over rnA is calculated for rnA � rmin

nA , to
the full differential cross section. Similarly, magenta dotted and
green dashed lines are the ratios RX of the peak prior ADWA and
CCBA differential cross sections, correspondingly, in which the radial
integral over rnA is calculated in the interval 0 � rnA � rmax

nA , to the full
differential cross section. The red solid line is the RX dependence on
rmax
nA calculated for the post ADWA form. Hence, rnA on the abscissa

is rmin
nA for the blue short and long dashed lines and rmax

nA for the dotted
magenta, dashed green, and solid red lines.

and the first excited state 2s1/2. These terms are given by the
sum over i = 0,1 in Eq. (82). Thus, schematically we can write
the final-state wave function in CCBA as

�
CDCC(−)
f (ρpF , rnA) = ϕ

(0)
nA(rnA) χ (0)(−)

qpF
(ρpF )

+ϕ
(1)
nA(rnA) χ (1)(−)

qpF
(ρpF )

+ψ
(res)(−)
knA, lnA=3(rnA) χ

(res)(−)
qpF (knA)(ρpF ).

(111)

Here, for simplicity, we omitted spins. The radial and mo-

mentum spherical harmonics are absorbed into ψ
(res)(−)
knA

(rnA).

The distorted waves χ
(0)(−)
qpF

(ρpF ) and χ
(1)(−)
qpF

(ρpF ) have only
outgoing waves.

The results of the calculations are shown in Fig. 7.
Dependence of the peak value of the normalized differential
cross section RX on the rmin

nA [blue short (ADWA) and
long dashed-dotted (CCBA) lines] shows that the prior form
converges pretty fast, being dominantly contributed by the
region rnA � 5 fm with following up small oscillations at
larger rmin

nA . These small oscillations are better exposed on
the ADWA and CCBA lines, which show the dependence of
the corresponding normalized cross section on rmax

nA . These
oscillations practically disappear for rmax

nA > 10 fm; that is,
the prior form converges at rmax

nA = RnA = 10 fm. Because in
both ADWA and CCBA calculations the ADWA prescriptions
were used, the difference between both methods determines
the effect of the coupling of the continuum resonant wave
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FIG. 8. (Color online) Solid red line, dependence on rmax
nA of

the normalized post ADWA differential cross section Rx for the
stripping to resonance 16O(d, p)17O(1d3/2) at Ed = 36 MeV. RX is
calculated as the ratio of the ADWA differential cross section, in
which the radial integral over rnA is calculated for 0 � rnA � rmax

nA ,
to the full differential cross section. At each rmax

nA the peak value of
the differential cross section is used. Blue dotted line, dependence
on rnA of the binned radial resonant scattering wave function

ψ
(res)
knA s=1/2 lnA=2 JF =3/2(rnA).

function in the final state with two bound states. As we see,
this effect is not significant.

Meanwhile, the post form (solid red line) does not converge
at much larger rmax

nA sustaining significant oscillations even at
rmax
nA > 20 fm. To demonstrate a poor convergence of the post

form in Fig. 8, we show the oscillation of the post ADWA
normalized differential cross section RX as a function of rmax

nA

(red solid line). For comparison we show also the oscillation
of the binned (the bin size is 1 MeV) resonant scattering waver
function. As we see, the oscillation of RX is caused by the
oscillation of the resonant scattering wave function. Hence,
the prior form has an evident advantage over the post one
when dealing with the stripping to resonance.

In Fig. 9 the angular distributions for the reaction
16O(d, p)17O(1d3/2) at Ed = 36 using prior DWBA, ADWA,
and CCBA are shown. The CCBA, as explained above, takes
into account the coupling of the final resonant scattering wave
function with the ground and first excited states in 17O. As
we can see the effect of coupling with the bound states has
little effect on the angular distributions. In the single-particle
potential approach for the resonant scattering wave function
the normalization of the theoretical cross section to the exper-
imental one determines the spectroscopic factor; see Eq. (94).
From the normalization of the calculated differential cross
sections we determined the spectroscopic factors: SF = 0.89
for the DWBA, SF = 0.66 for the ADWA, and SF = 0.73 for
the CCBA. Using the single-particle neutron partial resonance
width �sp = 128 keV, we get for the observable neutron
widths �n = 113.9 keV for the DWBA, �n = 84.5 keV for
the ADWA, and �n = 93.4 keV for the CCBA. The observed
experimental value is �n = 96 ± 5 keV. Thus, the prior CCBA
and ADWA can be used to determine the observable partial
resonance widths.
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FIG. 9. (Color online) Angular distributions for the deuteron
stripping to resonance 16O(d, p)17O(1d3/2) at Ed = 36 MeV. The
red solid line is the DWBA, the blue short dashed line is the ADWA,
and the green dashed line is the CCBA. All the angular distributions
are normalized in the region of the forward peak to the experimental
one, red dots [40].

Until now we have not discussed the impact of the resonant
bin width. In all the calculations shown above we used the
bin width of 1 MeV. To check the impact of the bin width,
we performed prior CCBA calculations with three different
bin widths. The results are shown in Fig. 10. The difference
in the normalization of the CCBA calculated differential cross
sections at 1 and 0.8 MeV is only 3.7%.

In our final calculations presented in Fig. 11 we check
the dependence of the extracted neutron resonance width
on the radius r0 of the n-A Woods-Saxon potential, which
supports the resonance state 1d3/2. This test is important
for corroboration of our theoretical findings and shows how
peripheral the deuteron stripping to resonance is. At each 1.0 �
r0 � 1.7 we calculated the CCBA differential cross section,
normalized it to the experimental one in the stripping peak
in the angular distribution and determined the spectroscopic
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FIG. 10. (Color online) Angular distributions for the deuteron
stripping to resonance 16O(d, p)17O(1d3/2) at Ed = 36 MeV cal-
culated using prior CCBA for three different bins: 1 MeV, red solid
line; 0.8 MeV, dashed black line; 0.6 MeV, short dashed blue line.
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FIG. 11. (Color online) Solid red line- dependence on r0 of the
neutron resonance width extracted from the CCBA calculations
of the 16O(d, p)17O(1d3/2) reaction at Ed = 36 MeV. The blue
dashed line is the experimental neutron resonance width of the
1d3/2 resonance in 17O and the blue strip is the resonance width’s
experimental uncertainty.

factor, which is the normalization factor. For each r0 from
the derivative of the calculated scattering phase shift we
determine the single-particle neutron resonance width and,
multiplying it by the determined spectroscopic factor, we find
the observable resonance width shown in Fig. 11. As we can
see the determined neutron resonance width �n varies with
variation of r0 in the realistic interval 1.0–1.6 fm by ±7%
from the experimental value of 96 keV.

The reaction is not peripheral and this is clearly demon-
strated by the r0 dependence of �n. In the case of the
completely peripheral reaction the extracted �n should show
none or a very little dependence on r0. From Fig. 11 we can
determine the radial parameter r0 = 1.35 fm at which the
extracted width coincides with the experimental one. In Fig. 12
we show the r0 dependence of the spectroscopic factor. Clearly,
the dependence on r0 of the spectroscopic factor is much
stronger than for �n. Taking into account that at r0 = 1.35 fm
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FIG. 12. (Color online) Solid red line- dependence on r0 of the
spectroscopic factor extracted from the CCBA calculations of the
16O(d, p)17O(1d3/2) reaction at Ed = 36 MeV.
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the calculated �n coincides with the experimental one we can
determine the spectroscopic factor to be SF

A = 0.66+0.25
−0.1 .

VI. SUMMARY

The goal of this paper was to develop a theory of the
deuteron stripping to resonances based on the surface-integral
formalism. First we demonstrated how the surface-integral
formalism worked for the deuteron stripping to bound states in
the three-body model and then we considered a more realistic
problem in which a composite structure of target nuclei is
taken into account via optical potentials. We explored different
choices of channel wave functions and transition operators and
showed that the conventional CDCC volume matrix element
can be written in terms of the surface-integral matrix element,
which is peripheral, and the auxiliary matrix element, which
determines the contribution of the nuclear interior over the
variable rnA. This auxiliary matrix element appears owing
to the inconsistency in treating of the n-A potential: This
potential should be real in the final state to support bound
states or resonance scattering and complex in the initial state
to describe n-A scattering.

Our main result is a formulation of the theory of the
stripping to resonance states using the prior form of the
surface-integral formalism and the CDCC method. It is
demonstrated that the conventional CDCC volume matrix
element coincides with the surface matrix element, which
converges for the stripping to the resonance state. Also the
surface representation (over the variable rnA) of the stripping
matrix element enhances the peripheral part of the amplitude
although the internal contribution does not disappear and
increases with increasing deuteron energy.

Although the code for the surface-integral formalism in
the CDCC approach is not yet available, we presented many
calculations corroborating our findings both for the stripping
to the bound state and the resonance. For the stripping to the
bound state we use 14C(d, p)15C at 23.4 and 60 MeV of the
deuteron incident energy. It is shown how the contribution of
the auxiliary term changes with energy. For the stripping to
resonance state we explore the 16O(d, p)17O(1d3/2) reaction
at Ed = 36 MeV. Because the CDCC code for stripping to res-
onance is not yet available we use the CCBA and demonstrate
that the prior form converges, while the post form oscillates
even at large distances. We demonstrate how the resonance

width can be extracted from the analysis of the deuteron
stripping to the resonance state.
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APPENDIX: POST-PRIOR DWBA DISCREPANCY OWING
TO THE n-A POTENTIAL INCONSISTENCY

Here we show how the inconsistency in the treatment of
the n-A potential leads to the post-prior discrepancy of the
DWBA amplitude. To this end we start from the post DWBA
amplitude,

MDW(post) = 〈χ (−)∗
pF ϕnA|�VpF |ϕpn χ

(+)
dA 〉, (A1)

and derive from it the prior DWBA form. Here

�VpF = UpA + Vpn − UpF (A2)

is the potential transition operator in the post form. Let us
take into account Schrödinger equations for the initial- and
final-channel wave functions,

(E − K − Vpn − UdA) ϕpn χ
(+)
dA = 0 (A3)

and (
E − K − V

sp
nA − UpF

)
ϕnA χ

(−)∗
pF = 0. (A4)

Then Eq. (A1) can be transformed into

MDW(post) = 〈
χ

(−)∗
pF IF

A

∣∣�VpF |ϕpn χ
(+)
dA 〉

= 〈
χ

(−)∗
pF IF

A

∣∣UpA + V
sp
nA − UdA − [

V
sp
nA + UpF

] + [Vpn + UdA]|ϕpn χ
(+)
dA 〉

= 〈
χ

(−)∗
pF IF

A

∣∣UpA + V
sp
nA − UdA + [

E − −→
K − V

sp
nA − UpF

]|ϕpn χ
(+)
dA 〉

= 〈
χ

(−)∗
pF IF

A

∣∣UpA + V
sp
nA − UdA + [

E − ←−
K − V

sp
nA − UpF

]|ϕpn χ
(+)
dA 〉

= 〈
χ

(−)∗
pF IF

A

∣∣UpA + V
sp
nA − UdA|ϕpn χ

(+)
dA 〉

= MDW(prior). (A5)
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Here we took into account that the bracketed operators are
the potentials in Eqs. (A3) and (A4). Also because the matrix
element contains ϕpn and ϕnA the kinetic-energy operator

−→
K

can be transformed into
←−
K . Thus, if we use the real V

sp
nA

potential, which generates the final bound state (nA), as the
n-A potential in the transition operator in the prior DWBA
amplitude, the post and prior DWBA amplitudes coincide. We
note that in the proof of the equality of the post and prior
forms we used the same V

sp
nA potential both in the Schrödinger

equation for the final-state bound-state wave function and in
the transition operator of the prior form. However, the often-
used global optical potential UdA is contributed by both UpA

and UnA optical potentials. Similarly, in the ADWA UdA is
given by the sum of UpA + UnA with the n-A optical potentials
taken at half deuteron energy. If we adopt UnA in the prior form
transition operator rather than V

sp
nA, then the post and prior form

DWBA amplitudes differ by the auxiliary amplitude

MDW(post) = M′DW(prior) − MDW
aux , (A6)

where the prior DWBA amplitude is given now by

M′DW(prior) = 〈
χ

(−)
pF IF

A

∣∣UpA + UnA − UdA|ϕpn χ
(+)
dA 〉 (A7)

and

MDW(prior)
aux = 〈

χ
(−)
pF IF

A

∣∣UnA − V
sp
nA|ϕpn χ

(+)
dA 〉. (A8)

In a modified prior DWBA amplitude the transition operator
contains the optical potential UnA rather than the real potential
V

sp
nA in the conventional prior form (A5). Thus, the post and

prior DWBA amplitudes differ if we replace V
sp
nA with UnA

in the transition operator of the prior form, meaning that the
inconsistency in the treatment of the n-A potential leads to the
post-prior discrepancy. If we adopt Re UnA = V

sp
nA, then

MDW(prior)
aux = 〈

χ
(−)
pF IF

A

∣∣Im UnA

∣∣ϕpn χ
(+)
dA 〉. (A9)
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