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Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier
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The angular dependence of surface diffuseness is further discussed. The results of self-consistent calculations
are compared with those obtained with the phenomenological mean-field potential. The rather simple
parametrizations are suggested. The effects of surface polarization and hexadecapole deformation on the height
of the Coulomb barrier are revealed.

DOI: 10.1103/PhysRevC.90.034322 PACS number(s): 21.10.Ft, 21.60.Jz, 27.70.+q, 27.90.+b

I. INTRODUCTION

The study of nucleon distribution in atomic nuclei is
expected to provide valuable information for the understanding
of nuclear excitations, the appearance of the new magic
numbers near the drip lines, and the difference between
proton and neutron nuclear radii to study the symmetry energy
[1–9]. The surface diffuseness correction is necessary to
improve the accuracy of the macroscopic-microscopic mass
formula for unstable nuclei [10]. The surface effect of the
symmetry potential plays an important role in the nuclei
near the drip lines. The nucleon density profile affects the
nucleus-nucleus interactions as well. It is important for the
determination of the fusion barrier between two colliding
nuclei.

The self-consistent methods provide us the ground-state
deformations that depend on the specific interaction used in
the energy-density functional [11,12]. The nucleus-nucleus
potential is usually sensitive to the deformations of nuclei as
well as to their surface diffuseness. Usually the predictions
of quadrupole deformations vary within 20% and the pre-
dicted values of hexadecapole deformations vary much more
[11]. Rather large uncertainty in the values of hexadecapole
deformation parameters β4 would create an uncertainty in
the barrier of the nucleus-nucleus potential that has to be
studied.

In Ref. [13], we have revealed the angle dependence of
the surface diffuseness in deformed nuclei observed within
self-consistent calculations. The energy-density functional
based on Skyrme effective interaction was used to study the
nucleon distributions in the nuclear ground states. In the
present article, we discuss further the angular dependence
of surface diffuseness induced by deformation and provide
useful expressions for this dependence (Sec. II). The role of
polarization of the diffuseness in the symmetry energy is also
discussed. In Sec. III the isotopic dependence of the surface
diffuseness is studied. The role of hexadecapole deformation
in the nucleus-nucleus interaction potential is treated as well
and provided by analytical expressions in Sec. IV and the
Appendix. The conclusions are given in Sec. V.

II. ANGULAR DEPENDENCE OF SURFACE DIFFUSENESS

In well-deformed nuclei (β2 � 0.2) the diffuseness along
the symmetry axis (θ = 0) seems to be smaller than that along
the axis perpendicular to the symmetry axis (θ = π/2). This
effect can be seen in Fig. 1, where the density is computed
using the EV8 code [14] with the Sly6 [15] interaction. At
θ = 0 the nucleon density distribution has a maximum near
the surface. After this maximum (Fig. 1) ρ steeply falls with
increasing R. At θ = π/2 the value of ρ has no maxima near
the nuclear surface and decreases slower with increasing R.
For weakly deformed nuclei, the diffuseness is slightly larger
at θ = 0 than at θ = π/2. In Fig. 2 we show the difference of
diffuseness aL along the long axis and diffuseness aS along
the short axis for the deformed nuclei with β2 � 0.2. While
the nuclei with A = 120–140 and 150–190 the difference of
aL and aS is about 5%, it is about two times larger in the nuclei
with A = 230–260. So, the effects of angular dependence of
the diffuseness are expected to be more pronounced especially
in the actinide region.

A limitation of the self-consistent method is that it is
not possible to change the deformation parameters. In con-
sequence a simpler model is used here. We impose the mean-
field potential as the Woods-Saxon potential with spin-orbit
interaction and solve the Schrödinger equation in it [16], then
we can look at the nucleon density profile at different values
of quadrupole and hexadecapole deformations and directly get
phenomenological insight of their effects. The density profiles
obtained would have more oscillations than in Fig. 1 because
the pairing is not taken into account in this case. The maximum
of ρ(R) near the surface is well seen at θ = 0 (Figs. 3 and 4).
After this maximum ρ steeply decreases and the diffuseness
is smaller at θ = 0. Naively, one can expect larger diffuseness
at θ = 0 because stiffness of the single-particle potential is
smaller along the long nuclear semiaxis and the nucleons spend
more time near the surface. Indeed, the nucleons spend more
time closer to the nuclear surface that provides the maximum in
ρ(R) near the surface. However, after the resulted maximum of
nucleon density the diffuseness becomes smaller. This feature
is better seen for larger deformed nuclei like 152Sm in Fig. 4.
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FIG. 1. The calculated nucleon density distributions along the
symmetry axis at θ = 0 (solid lines) and along the perpendicular axis
at θ = π/2 (dotted lines) in well-deformed 238U (a) and in weakly
deformed 220U (b).

From the nucleon density that resulted from the Woods-
Saxon potential one can see whether the hexadecapole de-
formation affects the angular dependence of diffuseness. In
Fig. 3, the nucleon density profiles are shown at θ = 0 and π/2
for 238U at β2 = 0.254 with β4 = 0 and β4 = 0.08. As seen,
the hexadecapole deformation does only marginally affect the
angular dependence of the diffuseness.

In Fig. 5, the diffuseness of the nucleon density distribution
in 238U is depicted as a function of angle with respect to the
symmetry axis. The calculations were performed with SLy6
and SLy4 forces. The dependencies of a on θ are similar in two
cases and can be approximated for actinides at 0 � θ � π/2
as follows:

a(θ ) = a(0) + 0.45 sin2 θ − 0.4 sin3 θ.
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FIG. 2. (Color online) The value of (aL − aS)/a0 as a function
of mass in %. a0 is an average diffuseness. The black crosses and
red open circles correspond, respectively, to results obtained with the
SkM* and Sly4 functionals.

FIG. 3. The calculated nucleon density distributions along the
symmetry axis at θ = 0 (solid lines) and along the perpendicular axis
at θ = π/2 (dotted lines) in 238U. The deformation parameters are
β2 = 0.254 and β4 = 0 (a) and β2 = 0.254 and β4 = 0.08 (b).

For the region of rare-earth nuclei, the same functional
dependence is valid, but with different coefficients:

a(θ ) = a(0) + 0.25 sin2 θ − 0.25 sin3 θ.

In the mass formula, the symmetry energy ∼ ∫
dr[ρn(r) −

ρp(r)]/[ρn(r) + ρp(r)] depends on the difference of the neu-
tron and proton density profiles. The surface region is built
by quite different proton and neutron orbitals. However, the
angular dependencies of proton and neutron diffuseness are
similar and ruled by the deformed mean field. As follows from
our coarse estimate, the symmetry energy changes up to a few
hundred keV due to the angular dependence of diffusion. So,
the angular dependence of the diffuseness could result in some
low-lying excited states in nuclei.

FIG. 4. The calculated nucleon density distributions along the
symmetry axis at θ = 0 (solid lines) and along the perpendicular axis
at θ = π/2 (dotted lines) in 152Sm. The deformation parameters are
β2 = 0.27 and β4 = 0.1.
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FIG. 5. The calculated dependence of nucleon density distribu-
tion diffuseness for 238U on the angle with respect to the symmetry
axis. The results obtained with SLy6 and SLy4 forces are presented
by dotted and solid lines, respectively.

III. ISOTOPIC DEPENDENCE OF SURFACE DIFFUSENESS

For well-deformed even-even isotopes 226−240U, the values
of diffuseness at θ = 0, π/4, and π/2 are depicted in Fig. 6
as a function of x = √

5.93/Sn. Here, Sn is the experimental
neutron separation energy and Sn = 5.93 MeV in 240U. One
can see that a(x) can be roughly approximated at each θ by
linear function:

a(x) ≈ a(x = 1) + ξ (x − 1), (1)

where ξ = 0.12–0.14 for nuclei treated. The value of a
increases by about 2–4% with increasing mass number by
about 6%. Note that in Ref. [17] the simpler linear dependence
a(x) = a(x = 1)x was used.

FIG. 6. The calculated isotopic dependencies of nucleon density
distribution diffuseness on x = √

5.93/Sn, where Sn is the exper-
imental neutron separation energy, at angles θ = 0 (squares), π/4
(circles), and π/2 (triangles) for even-even isotopes 226−240U.

FIG. 7. The calculated isotopic dependencies of average dif-
fuseness on x = √

S ′
n/Sn, where Sn is the experimental neutron

separation energy. For 220−234Ra (open circles), 220−238Th (triangles),
and 240−252Cm (squares) even isotopes, the values S ′

n equal to Sn in
234Ra, 238Th, and 252Cm, respectively.

The deviation from linear dependence occurs at x cor-
responding to the neutron subshell at N = 150–152. The
diffuseness becomes smaller by a few percent in actinides with
N = 150–152 in comparison with the neighboring isotopes.
However, Eq. (1) is still useful for rough estimates. As found,
it is also suitable for the isotopic dependence of average value
of diffuseness defined as

a0 =
∫ π/2

0
a(θ ) sin θdθ. (2)

As seen in Fig. 7, the dependencies of a0(x) are rather close to
the linear ones.

IV. THE COULOMB BARRIER

To calculate the nucleus-nucleus interaction potential V (R),
we use the procedure presented in Refs. [18,19]. The nucleus-
nucleus interaction potential at zero angular momentum (L =
0) is given as

V (R) = VN (R) + VC(R). (3)

For the nuclear part of the nucleus-nucleus potential, the
double-folding formalism with density-dependent effective
nucleon-nucleon interaction is used. Within this approach
many heavy-ion capture reactions with stable and radioactive
beams at energies above and well below the Coulomb
barrier have been successfully described [20]. The quadrupole
deformations of colliding nuclei are taken into consideration in
this approach. Here, we take into account only the quadrupole
[β(i)

2 ] and hexadecapole [β(i)
4 ] deformations (i = 1,2).
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For the Coulomb barrier one can obtain the relationships between the derivatives of VN and VC :(
dV

dR

)
R=Rb

= 0, (4)

(
dVN

dR

)
R=Rb

= −
(

dVC

dR

)
R=Rb

= Z1Z2e
2

R2
b

, (5)

and (
d2V

dR2

)
R=Rb

= −μω2
b, (6)

(
d2VN

dR2

)
R=Rb

= −μω2
b −

(
d2VC

dR2

)
R=Rb

= −μω2
b − 2Z1Z2e

2

R3
b

. (7)

Here, Rb and ωb are the position and the frequency, respectively, of the Coulomb barrier for the spherical nuclei at L = 0. The
μ = m0A1A2/(A1 + A2) is the reduced mass parameter with the nucleon mass m0 and the Zi (Ai) is the atomic (mass) number
of nucleus i. The exact formula for the Coulomb nucleus-nucleus interaction is

VC = Z1Z2e
2

R
+

(
9

20π

)1/2
Z1Z2e

2

R3

∑
i=1,2

R2
i β

(i)
2

[
1 + 2

7

(
5

π

)1/2

β
(i)
2

]
P2(cos θi) +

(
1

4π

)1/2
Z1Z2e

2

R5

∑
i=1,2

R4
i β

(i)
4 P4(cos θi).

(8)

This expression is for interacting two deformed nuclei with sharp charge distributions. The diffuseness is known [21] and can be
disregarded in the calculation of VC . Equation (8) is well tested at R near Rb. Note that at R ≈ Rb the overlap of nucleon-density
tails is rather small to be taken into account.

One can expand the nuclear part VN of the nucleus-nucleus interaction around R = Rb as follows:

VN = V
sp
N (Rb) −

(
dVN

dR

)
R=Rb

�R + 1

2

(
d2VN

dR2

)
R=Rb

(�R)2, (9)

�R =
(

5

4π

)1/2 ∑
i=1,2

Riβ
(i)
2 P2(cos θi) +

(
9

4π

)1/2 ∑
i=1,2

Riβ
(i)
4 P4(cos θi). (10)

Using Eqs. (3), (5), (7), and (8), we obtain

VN = V
sp
N (Rb) −

(
5

4π

)1/2
Z1Z2e

2

R2
b

∑
i=1,2

Riβ
(i)
2 P2(cos θi) + 5

8π

(
− μω2 − 2Z1Z2e

2

R3
b

) ∑
i=1,2

[
Riβ

(i)
2 P2(cos θi)

]2

+ 5

4π

(
− μω2 − 2Z1Z2e

2

R3
b

)
R1R2β

(1)
2 β

(2)
2 P2(cos θ1)P2(cos θ2) −

(
9

4π

)1/2
Z1Z2e

2

R2
b

∑
i=1,2

Riβ
(i)
4 P4(cos θi), (11)

where V
sp
N is the nuclear part of the nucleus-nucleus interaction for the spherical nuclei. By summing VC from Eq. (7) and VN

from Eq. (10), we obtain that the Coulomb barrier has the following dependence on the orientations of the deformed nuclei [the
change of the Coulomb interaction up to (β(i)

2 )2 and nuclear interaction with orientations up to (β(i)
2 )2]:

Vb(θi) = V
sp
b +

∑
i=1,2

fi

(
Rb,β

(i)
2

)
β

(i)
2 P2(cos θi) +

∑
i=1,2

gi(Rb)
[
β

(i)
2 P2(cos θi)

]2 + h0(Rb)β(1)
2 β

(2)
2 P2(cos θ1)P2(cos θ2)

+
∑
i=1,2

ki(Rb)β(i)
4 P4(cos θi), (12)

where V
sp
b = V

sp
N (Rb) + Z1Z2e

2/Rb and

fi

(
Rb,β

(i)
2

) = 1

(20π )1/2

Z1Z2e
2Ri

R2
b

[
− 5 + 3Ri

Rb

(
1 + 2

7

(
5

π

)1/2

β
(i)
2

)]
, (13)

gi(Rb) = 5R2
i

8π

[
− μω2

b − 2Z1Z2e
2

R3
b

]
, (14)
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FIG. 8. The calculated dependencies of the Coulomb-barrier
heights Vb on the orientation angle θ in the reactions 36S + 238U
(solid line) and 16O + 238U (dotted line). The result obtained with
nucleon density distributions calculated for 238U with the Hartree-
Fock-Bogoliubov approach.

h0(Rb) = 5R1R2

4π

[
− μω2

b − 2Z1Z2e
2

R3
b

]
, (15)

ki(Rb) = 1

(4π )1/2

Z1Z2e
2Ri

R2
b

[
− 3 + R3

i

R3
b

]
. (16)

The main inputs in the calculation of V (R) are the
parameters of radius r0 and diffuseness a. The barrier height
Vb does not depend on a explicitly but through the values
of Rb and ωb. Here, we set r0 = 1.15 fm and look at
the dependence of the fusion barrier on a(θ2) = a(θ ) and
deformation parameters. We consider the reactions 36S + 238U
and 16O + 238U with spherical light nuclei and deformed heavy
nucleus. It is interesting to understand why in the calculations
with constant diffuseness and only quadrupole deformation
one can successfully describe the experimental data. In the
phenomenological calculation of the nucleus-nucleus potential
the hexadecapole deformations of interacting nuclei are often
disregarded. The direct calculations of the Coulomb barrier
heights with a(θ ), β

(2)
2 = β2 = 0.244 (β(1)

2 = 0), and β
(2)
4 =

β4 = 0.094 (β(1)
4 = 0) demonstrate almost linear dependence

of Vb on sin2 θ (Fig. 8). As found, the angular dependence of
a causes small deviations from the linear dependence.

Employing the Eqs. (12) and (A7) (see the Appendix)
for Vb(θ ) and numerical calculations of the nucleus-nucleus
interaction potential, one can suggest a simple approximation
of the Coulomb barrier height:

Vb(θ ) = Vb(0) + α
Z1Z2A

1/3
2(

A
1/3
1 + A

1/3
2

)2 (β2 + fβ4) sin2 θ, (17)

where α ≈ 0.50 and f ≈ 0.81 for the reactions considered.
As seen, almost the same values of Vb(θ ) can be obtained with
β4 �= 0 and β4 = 0 by properly varying β2. This is illustrated
in Fig. 9. Taking the experimental β2 = 0.286 for 238U, we
calculate Vb(θ ) at constant diffuseness a = 0.56 fm for 238U

FIG. 9. (Color online) The calculated dependencies of the
Coulomb-barrier heights Vb on the orientation angle θ in the
36S + 238U reaction. The results obtained with a = 0.56 fm, β2 =
0.286, and β4 = 0 for 238U are presented by solid line. The dotted
line corresponds to a(θ ), β2 = 0.244, and β4 = 0.08. For 36S, the
diffuseness parameter is 0.55 fm.

in the 36S + 238U reaction. Using the fact that a(θ ) weakly
depends on β4, we show that almost the same results can be
obtained with a(θ ), β2 = 0.244, and β4 = 0.08. Note that in
238U we have a0 = 0.55 fm.

In many applications the phenomenological calculation of
the Coulomb barrier performed with only β2 and constant
average diffuseness results in almost the same value as in
the consistent calculations with β4 and a(θ ) because the
disregard of β4 in the calculation of Vb can be negated
by the proper change of β2 at constant diffuseness. This
is why the phenomenological calculations are successful to
describe the experimental data.

The average values of the Coulomb barrier Vb are defined
as

V̄b =
∫ π/2

0
Vb(θ ) sin θdθ. (18)

We found that almost the same V̄b are obtained with a(θ ),
β2 = 0.244, and β4 = 0.094 (V̄b = 152.5 MeV), which follow
from the self-consistent treatment, and with a = 0.56 fm,
β2 = 0.286, and β4 = 0 (V̄b = 152.4 MeV). Therefore, the
processes above the Coulomb barrier are insensitive to the
angular dependence of the diffuseness and the value of β4.

V. SUMMARY

We found that the angular dependence of diffuseness is
caused by the mean-field effects that create inhomogeneities
on the nuclear surface. The residual interaction partly washes
out these inhomogeneities. In the region of actinides the
surface polarization is about two times stronger than that in
the rare-earth nuclei. The angular dependence of a can be
roughly approximated by the polynomial of sin θ . The isotopic
dependence of the diffuseness on 1/

√
Sn is found to be almost

linear. The deviation from the linear dependence occurs when
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the neutron number becomes magic or quasimagic. The simple
parametrization was suggested for the height of the Coulomb
barrier in the case of interacting deformed nuclei. Almost
the same height of the barrier can be obtained with β4 �= 0
and β4 = 0. In the last case the parameter of quadrupole
deformation has to be taken to be larger. In the collisions of
deformed and spherical nuclei, the barrier height is the almost
linear function of sin2 θ .
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APPENDIX

For the Coulomb barrier at given orientations θi (i = 1,2) of
interacting nuclei, one can obtain the following relationships:

(
dV

dR

)
R=Rb(θi )

= 0, (A1)

(
dVN

dR

)
R=Rb(θi )

= −
(

dVC

dR

)
R=Rb(θi )

= Z1Z2e
2

R2
b(θi)

. (A2)

Near the Coulomb barrier positions Rb(θi) the nuclear part of
the nucleus-nucleus interaction potential can be approximated
by the exponential function,

VN ≈ V 0
N exp{−[R − Rb(θi)]/a(θi)}. (A3)

From Eqs. (A2) and (A3) one can derive the following
expression for the barrier height Vb(θi):

Vb(θi) = Z1Z2e
2

Rb(θi)

[
1 − a(θi)

Rb(θi)

]
. (A4)

Expanding Rb(θi) and a(θi) around Rb(0) and a(0), respec-
tively,

Rb(θi) = Rb(0) + �Rb(θi), (A5)

a(θi) = a(0) + �a(θi), (A6)

and substituting Eqs. (A5) and (A6) in Eq. (A4), we finally
obtain

Vb(θi) ≈ Vb(0) − Z1Z2e
2

R2
b(0)

[�Rb(θi) + �a(θi)]. (A7)

As found from Eq. (A7), the angular dependencies of a(θi)
and Rb(θi) cause the deviations of Vb(θi) from Vb(0). Note
that these two contributions have different signs. Because
�Rb(θi) � �a(θi), the main deviations come from the
�Rb(θi) term. This conclusion was proved by the numerical
calculations (see main text).

Because (
d2VN

dR2

)
R=Rb(θi )

= 1

a(θ )
VN, (A8)

one can determine the barrier stiffness:

μω2
b(θ ) = Z1Z2e

2[Rb(θi) − 2a(θi)]

R3
b(θi)a(θi)

≈ μω2
b(0)− Z1Z2e

2

R3
b(0)a2(0)

[2a(0)�Rb(θi)

+Rb(0)�a(θi)]. (A9)

As seen from this equation, the angular dependence of
stiffness occurs from the angular dependencies of the bar-
rier position and the diffuseness. Because 2a(0)|�Rb(θi)| >
Rb(0)�a(θi), �Rb(θi) is negative and its absolute value
grows with increasing θi , the value of stiffness for the
pole-pole configuration is smaller than that for the side-side
configuration.
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