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Structure of krypton isotopes calculated with symmetry-conserving configuration-mixing methods
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Shape transitions and shape coexistence in the 70–98Kr region are studied in a unified view with state-of-the-art
beyond-self-consistent mean-field methods based on the Gogny D1S interaction. Beyond-mean-field effects are
taken into account through the exact angular-momentum and particle-number restoration and the possibility of
axial and nonaxial shape mixing. The results of the low-lying properties of these isotopes are in good agreement
with the experimental data when the triaxial degree of freedom is included. Shape transitions from axial-oblate
(70–72Kr) to triaxial-prolate (74–78Kr) and from spherical-triaxial (86–92Kr) to axial-oblate (94–98Kr) ground states
are obtained. Additionally, low-lying 0+ excited states and quasi-γ bands are found showing the richness of the
collective structure in this region.
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I. INTRODUCTION

Shape evolution of Krypton isotopes have attracted a lot
of experimental and theoretical interest in the past [1]. Such
an evolution is rather complex and can be understood as a
consequence of the various shell gaps found in the Nilsson
single-particle energies. The existence of these gaps produces
energy landscapes with more than one equilibrium shape.
Hence, the most energetically favored intrinsic configuration
can change abruptly by adding neutrons, producing shape
transitions along the isotopic chain. Furthermore, shape coex-
istence can occur if different configurations originate collective
bands with 0+ band heads close in energy. Additionally, these
configurations can be mixed and the degree of mixing can be
determined by the distortion of the rotational or vibrational
behavior of the corresponding bands and by the transitions
between states of different bands.

In the neutron-deficient side, fingerprints of shape coexis-
tence as low-lying 0+

2 excited states [2–5], shape mixing as the
distortion of low-lying bands [6], as well as spectroscopic
quadrupole moments and electromagnetic transitions [7–9]
have been measured, supporting the possible coexistence of
a prolate band and an oblate band for these nuclei. In addition,
the experiments suggest that the shape transition occurs from
an oblate 72Kr to prolate 74–76Kr ground states although,
based on recent Coulomb-excitation measurements, a prolate
character of the 2+

1 state in 72Kr has been proposed [10].
On the other hand, the onset of deformation in the neutron-

rich isotopes around the region A ∼ 100 is the subject of recent
studies [11,12]. Hence, while for Sr and Zr isotopes a quite
sharp transition from spherical to deformed configurations in
N = 58 to 60 is observed, the neutron-rich Kr isotopes do not
show such a rapid change. Furthermore, shape coexistence is
found experimentally by the occurrence of two and three 0+
excited states below 2 MeV with strong E0 transitions in 96Sr
and 98Zr, respectively (N = 58) [13,14]. Unfortunately, there
is no experimental data currently available for Kr isotopes in
this region.

From the theoretical point of view, early self-consistent
mean-field studies have already shown a rich shape evolution
in this region by analyzing the potential-energy surfaces
(PESs) obtained with Skyrme [15], relativistic [16], and Gogny
[17] interactions. However, spectroscopic information cannot

be obtained within a pure mean-field approach and several
methods have been applied to calculate excitation energies,
electromagnetic properties, etc. Due to the huge number of
possible configurations, conventional large-scale shell-model
calculations are still out of reach in this region. Nevertheless,
results using the shell-model Monte Carlo (SMMC) approach
with a pairing-plus-quadrupole interaction [18], the VAMPIR
method with an effective G matrix defined in a reduced valence
space [19,20], and the five-dimensional collective Hamiltonian
(5DCH), also with a pairing-plus-quadrupole interaction [21],
have been reported.

Additionally, there are several methods based on self-
consistent underlying mean fields that have been applied to
compute spectroscopic properties. Recently, a version of the
interacting boson model (IBM) has been used to study the
shape dynamics of neutron-rich Kr isotopes [12]. In this
case, the parameters of the IBM Hamiltonian are found by
mapping the mean-field energy surfaces obtained with the
Gogny D1M interaction to the corresponding IBM ones. The
results reproduce quite well the available experimental data
and are consistent with a smooth triaxial-to-oblate transition
around N = 60.

On the other hand, the 5DCH method has been also used
to study the low-lying spectroscopy in this region. Here,
the inertial parameters and the potential energy of a Bohr
collective Hamiltonian are extracted from an underlying mean
field, based on Gogny [8,22] or relativistic [23] interactions.
Then, such a reduced problem is solved and the energy
levels, moments, and transitions are computed. The agreement
with the available data is also good with both Gogny and
relativistic interactions. In particular, in the neutron-deficient
part, these calculations reveal the key role played by the
triaxial degree of freedom to reproduce the correct defor-
mation of the ground-state and first-excited state bands in
74–78Kr.

Finally, the most microscopic approaches consistent with
the underlying mean field are the work of Bender et al.
[24] (with the Skyrme SLy6 interaction) and the calculation
of 76Kr included in Refs. [23,25] (with the PC-PK1 rela-
tivistic Lagrangian). There, the generator coordinate method
(GCM) with particle-number- and angular-momentum-
projected mean-field states is applied. In both cases, contrary
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to the 5DCH results, these calculations do not reproduce the or-
dering of the low-lying levels, predicting oblate ground states
also for 74–78Kr. Since the 5DCH is a Gaussian overlap approx-
imation of a GCM, a lack of triaxiality in these exact GCM
calculations has been proposed as the most plausible explana-
tion for this problem. Nevertheless, whether this contradiction
is actually due to the inclusion of triaxial deformations or to
the effective interaction, a study using the same underlying in-
teraction and with the same beyond-mean-field approach, with
and without including the triaxial degree of freedom, should
be performed. This has been done recently in the nucleus 76Kr
by using the PC-PK1 relativistic Lagrangian [25] but a more
systematic study along the isotopic chain is still missing.

In this work the shape evolution from neutron-deficient to
stable and neutron-rich Kr isotopes is studied in a unified man-
ner by using the so-called symmetry-conserving configuration-
mixing (SCCM) method. This framework is based on the GCM
and includes quantum number restorations (particle number
and angular momentum) and shape mixing of axial and triaxial
intrinsic states. In addition, Gogny D1S [26] is used as the
underlying interaction at every step. Therefore, the triaxial
degree of freedom is explored beyond mean field without using
either IBM mappings or Gaussian overlap approximations.

The paper is organized as follows: First, the most important
aspects of the theoretical framework in Sec. II are reviewed.
Then, in Sec. III, the results of the calculations, starting from
a mean-field description in terms of the energy surfaces and
Nilsson levels are shown. Next, the shape evolution along
the isotopic chain and the role played by the triaxial degree
of freedom are discussed with the help of the collective
wave functions. Furthermore, both global (along the isotopic
chain) and individual (nucleus by nucleus) theoretical results
are compared with the experimental data. Finally, the most
important conclusions of this work are summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

As stated above, in this paper the so-called symmetry-
conserving configuration-mixing (SCCM) method is used.
A detailed description of this theoretical framework can be
found in Refs. [27–29] (and references therein). Nevertheless,
the most important aspects of this framework are now
summarized, pointing out some differences with other similar
methods used in the literature. For the sake of simplicity, the
energy at different levels of complexity of the many-body
method are written as expectation values of a Hamiltonian
in the following paragraphs. However, since the Gogny D1S
interaction contains density dependencies, this notation is not
fully rigorous and corresponding energy density functionals
(EDFs) should be defined otherwise. Furthermore, a proper
definition of the EDF is also key to avoid the potential problems
that come out when symmetry restorations and configuration
mixing are performed within this framework (see Refs. [30,31]
for a thorough description of this issue and Refs. [27,32] for
the definition of the present EDF).

In the SCCM method used in this work, the differ-
ent many-body states are calculated by mixing particle-
number- and angular-momentum-restored intrinsic Hartree–
Fock–Bogoliubov-type wave functions (HFB) which have

different quadrupole shapes (axial and nonaxial) [27,28]:

|�IMσ 〉 =
∑

β2,γ,K

f Iσ
K (β2,γ ) P I

MKP NP Z |� (β2,γ )〉 , (1)

where I , M , K are the total angular momentum and its
projection on the z axis in the laboratory and intrinsic frame,
respectively, P I

MK and P N(Z) are the angular-momentum
and neutron (proton) projectors defined through integrals
in the Euler and gauge angles, respectively [33], and σ
labels different states obtained for a given value of I . The
HFB-type states—|�(β2,γ )〉—are found with the variation
after particle-number-projection method (PN-VAP) [30,33],
i.e., the particle-number-projected energy is minimized by
imposing constraints in the quadrupole deformation [Q̂2μ =
r2Y2μ(θ,ϕ)]:

0 = δ(E′N,Z(β2,γ )),

E′N,Z (β2,γ ) = EN,Z(β2,γ ) − λq20〈�|Q̂20|�〉
− λq22〈�|Q̂22|�〉, (2)

where λq2μ
are Lagrange multipliers that guarantee the condi-

tions

λq20 → 〈�|Q̂20|�〉 = q20,
(3)

λq22 → 〈�|Q̂22|�〉 = q22.

In addition, the deformation parameters (β2,γ ) are directly
related to (q20,q22) by

q20 = β2 cos γ

C
, q22 = β2 sin γ√

2C
, C =

√
5

4π

4π

3r2
0 A5/3

,

(4)

being r0 = 1.2 fm and A is the mass number. The PN-VAP
energy in Eq. (2) defines a potential-energy surface (PES) in
the (β2,γ ) plane which is useful to analyze the intrinsic shape
of the nucleus:

EN,Z(β2,γ ) = 〈�(β2,γ )|ĤP NP Z|�(β2,γ )〉
〈�(β2,γ )|P NP Z|�(β2,γ )〉 . (5)

The states in Eq. (1) are the generator coordinate method
(GCM) ansatz. Hence, the parameters f Iσ

K (β2,γ ) are varia-
tional parameters that are found by solving the Hill–Wheeler–
Griffin (HWG) equations [33]:∑
β ′

2γ
′K ′

(HI
β2γK,β ′

2γ
′K ′ − EIσN I

β2γK,β ′
2γ

′K ′
)
f Iσ

K ′
(
β ′

2,γ
′) = 0. (6)

The energy- and norm-overlap matrices are defined as

HI
β2γK,β ′

2γ
′K ′ = 〈�(β2,γ )|ĤP I

KK ′P
NP Z|�(β ′

2,γ
′)〉,

(7)N I
β2γK,β ′

2γ
′K ′ = 〈�(β2,γ )|P I

KK ′P
NP Z|�(β ′

2,γ
′)〉.

Normally the HWG equation (one for each value of I ) is solved
by transforming the generalized eigenvalue problem defined
by Eq. (6) into a regular diagonalization problem [33]. To do
so, the norm overlap matrix is first diagonalized:∑

β ′
2γ

′K ′
N I

β2γK,β ′
2γ

′KUI
�;β ′

2γ
′K ′ = nI

�UI
�;β2γK. (8)
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Then, an orthonormal set of states, the so-called natural basis,
is built with the eigenvectors and eigenvalues of the norm
overlap:

∣∣�IM
〉 =

∑
β2γK

UI
�;β2γK√

nI
�

P I
MKP NP Z |� (β2,γ )〉 , nI

� �= 0.

(9)

In the last equation, the linear dependencies of the original
set of states are removed by choosing those norm eigenvalues
that are different from zero. Therefore, both the GCM ansatz
[Eq. (1)] and HWG equations [Eq. (6)] can be rewritten as

|�IMσ 〉 =
∑
�

gIσ
� |�IM〉, (10)

∑
�′

〈�IM |Ĥ |�′IM〉gIσ
�′ = EIσgIσ

� . (11)

The solution of the HWG equations provides the coefficients
gIσ

� , from which observables such as energy spectrum, radii,
electromagnetic moments, reduced transition probabilities,
etc. can be calculated. In addition, the weights of a given
intrinsic (β2,γ ) configuration in the corresponding GCM state,
the so-called collective wave functions, are also given as a
function of the coefficients defined above:

GIσ (β2,γ ) =
∑
K,�

gIσ
� UI

�;β2γK. (12)

These quantities are useful to understand the intrinsic structure
of the ground and excited states in terms of these collective
coordinates.

All of the above expressions can be largely simplified if
the HFB-type states are axially symmetric [34]. In particular,
γ only takes two values, namely, γ = 0◦ (prolate, β2 > 0)
and γ = 60◦ (oblate or, equivalently, 180◦, β2 < 0). The
angular-momentum projection is then reduced to K = 0 values
and only one of the three integrals in the Euler angles has to
be evaluated. To check the relevance of the triaxial degree of
freedom in the Krypton isotopic chain, both axial and triaxial
calculations with the same underlying interaction—Gogny
D1S—are discussed throughout this document.

One should mention the main methodological differences
between the present study and some recent calculations
reported for the Kr isotopic chain. As stated in the introduction,
the generator coordinate method with exact particle-number-
and angular-momentum-projection calculations have been
already performed with Skyrme [24] and relativistic [23]
energy density functionals but including only axial shapes
(γ = 0◦, 180◦) which is a strong limitation to study shape tran-
sitions and coexistence in this region. Only the nucleus 76Kr
has been recently computed considering the triaxial degree of
freedom with the relativistic framework [25]. Nevertheless, in
those cases, plain HFB or Lipkin–Nogami (LN) intrinsic wave
functions are used instead of the ones provided by the PN-VAP
method. Hence, pairing correlations are much better described
than in the HFB and LN approaches that cannot account for
such correlations in weak-pairing regimes [34,35]. On the
other hand, five-dimensional collective Hamiltonian (5DCH)
results have been reported using the Gogny D1S [8,22]

and covariant [23] interactions, which include quadrupole
triaxial shapes. However, the 5DCH is deduced from the
GCM method assuming a Gaussian overlap approximation
(GOA, see Ref. [36]). Quantum number projections are
not taken into account in such a method, either. This fact
could affect significantly the spectrum predicted by 5DCH
calculations since the absence of particle-number restoration
leads to spurious mixing of solutions with a different number
of particles [37,38]. Finally, recent calculations have been
reported in this region within the interacting boson model
(IBM) framework [11,12]. Here the IBM Hamiltonian of each
isotope is mapped to the HFB potential-energy surface in the
(β2,γ ) plane calculated with the Gogny D1M interaction [39].
Then, theoretical predictions are obtained after solving the
IBM Hamiltonian in a restricted valence space.

Consequently, in contrast to the methods reported above,
the method used here includes the triaxial degree of free-
dom, quantum restoration, and shape-mixing correlations
self-consistently and they are free from GOA approaches.
Nevertheless, there are some limitations—shared also with
the calculations already mentioned—that must be pointed out.

The most important limitations concern HFB-type states,
which do not contain explicit quasiparticle excitations, con-
serve both time-reversal and spatial-parity symmetries, and
do not allow the inclusion of proton-neutron pairing. Thus,
neither negative-parity states (the lowest experimental 3− state
is found in 72Kr at 1.85 MeV [13]) nor pure single-particle ex-
citations can be obtained. Nevertheless, parity-breaking calcu-
lations in this region with Gogny interactions have shown in all
of the nuclei studied here a static octupole deformation equal
to zero [40]. Therefore, its influence on the spectra should be
eventually considered through octupole fluctuations and parity
projection which are beyond the scope of the present work.

Furthermore, excited states are not explored in a fully
efficient way from the variational point of view due to the above
restrictions. The inclusion of other degrees of freedom such as
pairing [37,38] or quadrupole fluctuations [41] would improve
the variational description of the excited states, particularly the
0+ states, but they are not considered here since they would
increase prohibitively the computational time. Finally, since
the HFB-type states have a product structure of protons and
neutrons separately, Tz = 0 pairing is not taken into account
in the present calculations. This limitation can be particularly
relevant in describing the N ≈ Z nuclei but, again, an isospin
mixing [42] performed in combination with the present SCCM
method is beyond the present study. Nevertheless, the degrees
of freedom relevant to describe qualitatively and, to some
extent, also quantitatively the low-lying states in the Kr
isotopic chain are expected to be included in the present work.

Concerning some technical details about the calculations,
a regular triangular mesh in the triaxial plane including
NGCM = 60 HFB-type states are used. Each of these states is
expanded in a single-particle basis with nine major spherical
harmonic oscillator shells. The number of integration points
in the Euler—(a,b,c)—and gauge (ϕ) angles are chosen to
ensure the convergence of both diagonal and nondiagonal
projected matrix elements of the total angular momentum and
particle-number operators to the nominal values I (I + 1), N ,
and Z = 36, respectively. In this case, these values are Na = 8,
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Nb = Nc = 16, and Nϕ = 9 (see Ref. [27] for details). The cal-
culations were performed at the high-performance computing
facility Prometheus at GSI (Darmstadt) [43] with a computing
time of 48 000 h in a single processor for each nucleus.

III. RESULTS AND DISCUSSION

A. PN-VAP potential-energy surfaces and Nilsson-like
single-particle energies

A first physical insight into the shape of the Kr isotopes
can be obtained from the potential-energy surfaces [PES, see
Eq. (5)] plotted in Fig. 1. This figure reveals the large variety of
energy landscapes found in this isotopic chain with examples
of spherical, oblate, prolate, γ -soft, and oblate-prolate shape-
coexistent nuclei. Starting from the lighter isotopes, single
absolute oblate minima are obtained for 68–70Kr, having for

the former a noticeable γ softness. For 72–76Kr two clear
minima are observed in the PES; oblate and triaxial/prolate
in 72Kr; axial oblate and prolate in 74Kr, being both almost
degenerate; and spherical and prolate in 76Kr. The latter two
minima tend to merge in 78Kr and for 80Kr a large degeneracy
around the spherical shape up to β2 = 0.3 is observed. Such
a degeneracy is drastically reduced in 82Kr where a slightly
prolate single minimum is found, similar to 84Kr. After
the spherical semimagic nucleus 86Kr and slightly spherical
88–90Kr isotopes, a γ -soft nucleus, 92Kr, is obtained. Then, for
94Kr a single oblate/γ -soft minimum is observed and, finally,
potential-energy surfaces with two axial minima (oblate and
prolate) are found for the neutron-rich isotopes 96–98Kr.

The general behavior of the energy landscapes and the
position of the minima can be understood by analyzing
the underlying single-particle levels. Hence, these minima
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FIG. 1. (Color online) Particle number projected potential-energy surface in the (β,γ ) plane for 68–98Kr. Contour lines are separated by 1
MeV (solid lines) and by 0.25 MeV (dashed lines) and the energies are normalized to the minimum of each surface.
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FIG. 2. (Color online) Neutron single-particle energies as a func-
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correspond to the appearance of shell gaps and/or level
crossings in a Nilsson-like spectrum. In Fig. 2, the single-
particle energies calculated self-consistently for neutrons in
96Kr are represented. Similar spectra—although shifted in
energy—are obtained both for protons and for the rest of the
isotopes in the chain. For the sake of simplicity, only the axial
quadrupole direction is plotted.

First, the structure of the protons for the Kr isotopes
(Z = 36) is described. Hence, the proton Fermi energy crosses
two gaps: oblate (β2 ∼ −0.30) and prolate (β2 ∼ +0.35).
Both gaps are produced by the filling—on top of the magic
number Z = 28—of the two 2p3/2 subshells, another level
coming from 1f5/2 and one from 1g9/2 subshells. Therefore,
the configuration of protons in the Krypton isotopes favor the
appearance of oblate and prolate deformation.

The role of the neutrons is now analyzed. One can see in
Fig. 2 that the structure of the neutron deficient and stable
Krypton isotopes (68–86Kr) is dominated by the pf and 1g9/2

shells. Hence, the oblate shapes found at 68–70Kr can be
associated both to the structure of the protons discussed above
and the appearance of gaps between the 2p3/2 and 1f5/2 levels;
the shape coexistence in 72–76Kr is related both to the spherical
gaps between 1f5/2 and 2p1/2 (N = 38) and 2p1/2 and 1g9/2

(N = 40) shells, and the filling of the 1g9/2 and emptying of
the pf subshells. The nuclei 78–86Kr are dominated by the
filling of the spherical 1g9/2 shell.

Above N = 50, several cases are identified, i.e., nuclei:
close to sphericity or γ soft, 88–92Kr, associated with gaps
produced by the 2d5/2 and 3s1/2 shells; with oblate minima,
94–98Kr, due to the proton gap and the filling of 1h11/2 levels
with the highest values of jz; and with prolate minima,
coexisting with the oblate ones, 96–98Kr, given by the lowest jz

levels from 1h11/2 that are crossing below the neutron Fermi
level.

B. Collective wave functions

The analysis given in the preceding section can be consid-
ered as a “mean-field-based” exploration of the structure of
the nuclei studied in this work. However, the shape of every
single nucleus can be examined state by state after performing
the symmetry restorations and shape mixing within the SCCM
method sketched in Sec. II. Hence, the so-called collective
wave functions (c.w.f.) represent the weights of each intrinsic
deformation in building the many-body nuclear states |�IMσ 〉
[33]. Since one of the aims of the present work is the analysis of
the role played by the triaxial degree of freedom, both axial and
triaxial calculations are performed. Obviously, the former are
very much lighter than the latter in terms of computing time.
In Fig. 3 the axial and triaxial c.w.f. for the first two 0+ and
2+ states in 70–98Kr are shown. In each box, that corresponds
to a given nucleus: 0+

1 and 0+
2 are shown in the upper part and

2+
1 and 2+

2 in the lower part. Additionally, the axial results are
plotted in the middle panel and the triaxial ones in the left
(yrast states) and right (lowest 0+

2 and 2+
2 states) panels.

Before entering into the details of the shape evolution along
the isotopic chain, a general remark about the differences
and/or similarities between the axial and triaxial calculations
should be made. Comparing both approaches, the axial c.w.f.
can be interpreted in many cases just as the reduction to one
degree of freedom of the triaxial ones. This is the case for all
the states represented in Fig. 3 for 84–92,98Kr, the 0+

1 , 2+
1 states

for 70,72,94,96Kr, the 2+
1 , 2+

2 states for 74Kr, and the 0+
1 , 0+

2 states
for 82Kr. For the rest of states, the axial and triaxial c.w.f. are
either of different nature and/or the ordering is exchanged.
This is particularly important in the neutron-deficient region
(74–80Kr) where pure axial SCCM calculations had problems in
reproducing the experimental data in contrast to 5DCH calcu-
lations including triaxiality [22–24]. This issue is discussed in
detail below. One should mention a final remark about the axial
vs triaxial comparison. Although some of the axial collective
functions can be associated with their triaxial partners, the
quality of the axial approach could be different depending on
the nucleus. Hence, more similar results are obtained in cases
where the triaxial degree of freedom does not play a role—
98Kr, for example—than in those where pure triaxial states are
found and the axial c.w.f. present a symmetric double-peak
structure around the spherical point—90–92Kr, for example.

The shape evolution along the isotopic chain is now
discussed. Starting from the neutron-deficient part, axial oblate
(β2 ∼ −0.35) 0+

1 and 2+
1 states for 70–72Kr are obtained. The

triaxial results for 0+
2 and 2+

2 are also similar in both nuclei
with the triaxial or prolate c.w.f. peaked at (β2,γ ) ∼ (0.6,15◦).
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FIG. 3. (Color online) Collective wave functions for the ground state (0+
1 ) and 2+

1 , 0+
2 , and 2+

2 excited states calculated with the SCCM
method for 70–98Kr isotopes (from left to right and from top to bottom). One-dimensional plots represent axial calculations while “pie-like”
plots represent full triaxial results (color scale: red and blue mean large and small height, respectively).

In contrast, the axial results present a slightly less deformed
prolate states for 70Kr and an almost symmetric prolate/oblate
shape mixing (0+

2 ) and a prolate (2+
2 ) excited state for 72Kr.

As stated above, the most significant differences between
axial and triaxial calculations are found in the structure of

the 74–80Kr isotopes. For 74Kr, a ground state c.w.f. that is
quite extended in the γ direction is obtained. Its maximum
corresponds to a triaxial/prolate deformation [(0.5,10◦)]. The
2+

1 state peaks also in a similar deformation although the c.w.f.
is more condensed around its maximum. On the other hand,
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the first 0+ excited state shows a clear shape mixing of oblate
[(0.35,60◦)] and prolate [(0.5,0◦)] shapes; the former having
a larger contribution. Finally, the 2+

2 c.w.f. peaks in the oblate
part of the (β2,γ ) plane also at ∼(0.35,60◦). Therefore, the
structure of the 0+ states corresponds to the mixing through
the γ direction of the two minima observed in the PES (see
Fig. 1) while the 2+ states are less mixed and more constrained
inside the potential wells. Looking at the axial calculation
for this nucleus, basically the same result as the triaxial one
for the 2+ states is found but the 0+ states contain a smaller
mixing and are inverted with respect to the triaxial calculation.
Consequently, the impossibility of shape mixing through
the triaxial degree of freedom in axial calculations affects
significantly the structure obtained within this approximation.

Similar conclusions can be extracted for 76–78Kr isotopes,
where the γ softness that connects different oblate and prolate
shapes allows the mixing in the γ direction. The ground and 2+

1
states are peaked in triaxial or prolate configurations; the 0+

2
c.w.f. present two maxima, the absolute one in an axial oblate
shape and the other maximum in a prolate (76Kr) state or a
triaxial/prolate (78Kr) state; and the 2+

2 are quite extended in
the triaxial plane and could be considered as the band heads of
quasi-γ bands. The axial calculations are rather different since
oblate ground-state bands and prolate excited-state bands are
obtained for both nuclei. These results for the neutron-deficient
isotopes are fully consistent with the axial SCCM calculations
performed with the Skyrme SLy6 interaction [24] and with
the triaxial 5DCH calculations carried out both with the
Gogny D1S [8,22] and relativistic PC-PK1 [23] interactions.
However, in the present case, the same effective interaction
and the same many-body method is used both for axial and
triaxial calculations and the only difference between them
is whether the triaxial degree of freedom is included. From
the present calculations one can safely conclude that the
disagreement with the experimental data obtained with an axial
SCCM method [24] is more related to the lack of the triaxial
degree of freedom rather than a drawback of the underlying
effective interaction. This result is also obtained for the nucleus
76Kr calculated with a SCCM method based on a relativistic
functional [25].

Moving towards the N = 50 shell closure, a smooth
transition in the ground state c.w.f. with a dominant role of
the triaxial degree of freedom is observed. Hence, the shape
evolution from the triaxial/prolate 78Kr to the spherical 86Kr
ground states proceeds through triaxial/oblate (80Kr), pure
triaxial (82Kr), and prolate/spherical (84Kr) configurations. On
the other hand, the evolution of the excited states is not smooth.
The calculations show 2+

1 states with dominant triaxial/oblate
shapes for 80–82Kr, axial prolate shapes for 84Kr and axial
oblate shapes for 86Kr. However, the main difference appears
in the shapes of the 0+

2 and 2+
2 in this interval of nuclei. For

84Kr and 86Kr, an axial oblate and an axial prolate rotational
band are observed, respectively. On the contrary, 0+

2 and 2+
2

show a different structure for 80Kr and 82Kr. In the latter,
an axial oblate and an axial prolate 0+

2 and 2+
2 state are

obtained, respectively. In the former, a strong mixing between
small triaxial deformed and large triaxial/prolate deformed
configurations are found in the 0+

2 c.w.f., while the 2+
2 is

peaked around the pure triaxial (0.4,30◦) shape. Furthermore,

the axial calculations are rather consistent with the triaxial
ones for 84–86Kr and for some states in 80–82Kr.

Finally, the structure of the neutron-rich isotopes is de-
scribed next. In this case, the 0+

1 and 2+
1 c.w.f. are similar in the

88–98Kr nuclei. Adding neutrons on top of the N = 50 magic
number produces a smooth transition from quasispherical
shapes in 88Kr to γ -soft configurations in 90–92Kr and axial
oblate shapes in 94–98Kr. Again, the evolution of the 0+

2 and
2+

2 states is more involved. In the latter, slightly deformed
triaxial shapes for 88–94Kr, oblate shapes for 96Kr, and prolate
shapes for 98Kr are observed. The 0+

2 states show also different
structures; namely, mostly triaxial deformation for 88–90Kr,
axial oblate deformation for 92–96Kr, and a prolate shape for
98Kr. It is important to point out that the c.w.f. obtained here
can be directly related to the corresponding PES shown in
Fig. 1.

Finally, these results are consistent with the calculations
performed in the neutron-rich region with the IBM method
mapped to the Gogny D1M interaction [12].

C. Systematics of excitation energies

Once the shape evolution inferred from the SCCM cal-
culations has been analyzed, the results for observables and
the comparison with the available experimental data are
shown. In Figs. 4(a)–4(d) the low-lying excitation energies
along the isotopic chain; namely, 2+

1 , 4+
1 , 0+

2 , and 2+
2 , are

plotted. A remarkable good agreement, both qualitative and
quantitative, is obtained with the experimental values when
the triaxial degree of freedom is taken into account, in
particular for the neutron deficient 72–82Kr isotopes. The most
significant differences are found around the N = 50 magic
number (84–88Kr). Here, although the qualitative behavior of
the experimental data is well reproduced, i.e., increase of
the excitation energies and the maximum at N = 50, the
theoretical results overestimate the actual values. In this region,
explicit quasiparticle excitations are expected to play a relevant
role but they are not included in this work.

On the other hand, a continuous decrease of the 2+
1

excitation energy above N = 50 is obtained with the triaxial
calculations, revealing a smooth increase of deformation when
increasing the number of neutrons. This is consistent with the
shape evolution shown in the previous section. However, the
experimental trend up to the last measured value (96Kr) is
flatter. In any case, neither the calculations nor the experiments
support a sharp transition at N = 60 in the Kr isotopes as the
one observed in Sr and Zr isotopes (see Ref. [12] and references
therein).

Concerning the possible shape coexistence expected in
this region, low-lying 0+

2 states around 1 MeV or below in
excitation energy have been measured for 72–78Kr. The triaxial
calculations reproduce quite nicely these energies and they
correspond to states with a strong shape mixing between
prolate and oblate configurations (see Fig. 3). Furthermore,
these calculations predict 0+

2 states with small excitation
energies and different shapes from their corresponding ground
states for 94,98Kr isotopes.

Finally, the results provided by the axial and triaxial
calculations are compared in Fig. 4. The axial excitation
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FIG. 4. (Color online) Excitation energies along the Krypton
isotopic chain 70–98Kr for (a) 2+

1 , (b) 4+
1 , (c) 0+

2 , and (d) 2+
2 states. Black

boxes, blue diamonds, and red bullets represent the experimental
values (taken from Ref. [13]), and the results of SCCM axial and
SCCM triaxial calculations, respectively.

energies are much larger than the triaxial energies except
for those nuclei where the triaxial c.w.f. are actually axial
deformed states (70–72,94–98Kr). Therefore, the performance of
the axial calculations is significantly poorer in reproducing the
experimental data.

D. Systematics of electromagnetic transition
probabilities and moments

The global behavior of the electromagnetic transitions and
moments along the isotopic chain is plotted in Fig. 5. Only
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FIG. 5. (Color online) (a) Electric-quadrupole (E2) reduced
transition probabilities between 2+

1 and 0+
1 states. (b) Spectroscopic

electric-quadrupole moments and (c) gyromagnetic factors for 2+
1

states. (d) Electric-monopole E0 transition strength between 0+
2 and

0+
1 states. Black boxes and red bullets represent the experimental

values (taken from Refs. [5,8,12–14,20,44–48]) and the results of
SCCM triaxial calculations, respectively. Blue dashed line in panel
(c) is the Z/A line provided by the collective rotor model [33].

triaxial and the available experimental data are represented in
this case. It is important to point out that no effective charges
are used here since the valence space is very large and without
a core.

Figure 5(a) shows that the theoretical B(E2) values repro-
duce the trend of the experimental results but are systematically
larger. Furthermore, local deviations are also found in 74Kr
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FIG. 6. Excitation energies for 70–76Kr isotopes. Experimental values are taken from Ref. [13].

and, to a lesser extent, in 86–88Kr. The origin of this effect
could be a slight overestimation of the deformation by
the Gogny functional enhanced by the angular-momentum
projection. Nevertheless, the largest collectivity is observed
both theoretically and experimentally around N = 40, which
indicates an erosion in this region of this harmonic oscillator
shell closure. Furthermore, consistent with the behavior of
the 2+

1 excitation energies and c.w.f., a quite smooth onset of
collectivity is obtained above the N = 50 magic number.

Additional information about the shape of the 2+
1 states

is extracted from the spectroscopic quadrupole moment
represented in Fig. 5(b). The calculated Qsp values are fully
consistent with the collective wave functions shown in Fig. 3,
i.e., large Qsp(2+

1 ) positive (negative) values are obtained
for the well-deformed oblate (prolate) states observed in
70,72,94,96,98Kr (74,76,78Kr) isotopes. In addition, smaller values

for those states where both the absolute deformation is small
and the triaxial degree of freedom plays a role (80–92Kr)
are predicted. In such cases, the sign indicates whether the
c.w.f. is more concentrated above (plus) or below (minus)
γ = 30◦. Comparing with the available data, a good agreement
in the neutron-deficient 74–78Kr [8,20] (prolate) and stable
84Kr [48] (slightly prolate) isotopes is found but not for the
neutron-rich 92–96Kr nuclei recently measured [11,12]. The
latter are experimentally prolate deformed while the present
calculations predict an oblate character.

Another relevant observable that helps to analyze the
interplay between collective and single-particle degrees of
freedom is the gyromagnetic factor g(2+

1 ). In the collec-
tive rotor model, this factor is approached by the simple
law gcoll(2

+
1 ) = Z/A [33]. Figure 5(c) shows that, except

for the nuclei close to the N = 50 magic number, the
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FIG. 7. Same as Fig. 6 but for 78–84Kr isotopes.

theoretical values follow the collective model. Additionally,
the experimental values are quantitatively well reproduced for
78–84Kr isotopes [45], even though the nucleus 84Kr deviate
significantly from the Z/A trend. However, although the
calculation reproduces the correct tendency, the theoretical
value is largely underestimated for the semimagic nucleus
86Kr. As has already been mentioned above, the largest
influence of quasiparticle excitations—not included here—on
the nuclear structure is expected in this nucleus.

The last observable whose systematics along the isotopic is
analyzed is the monopole electromagnetic transition strength
ρ2(E0) [1,14]. In a simplified model, where the ground and
excited 0+ states are built by mixing two different intrinsic
shapes, this quantity is large when both the shape mixing and
the difference in the radii of the two intrinsic configurations are

large [1,49]. Looking at the collective wave functions shown
in Fig. 3, these conditions are fulfilled in 74–82,94Kr. Conse-
quently, the largest values for the E0 strength are obtained for
such nuclei, as plotted in Fig. 5(d). However, the experimental
data are only reproduced for 72–74Kr isotopes, overestimating
the ρ2(E0) values in 76–82Kr. A plausible explanation could be
that the amount of mixing provided by the present calculations
in those isotopes is too large [1]. Nevertheless, the E0 strength
is also quite sensitive to the precise values of the radii of the
involved states and small changes in the deformation of the
states can affect such a strength [1]. Furthermore, the explicit
inclusion of fluctuations in the pairing degree of freedom can
modify the final ρ2(E0) values [38]. Therefore, further studies
should be performed to reproduce quantitatively the electric
monopole strengths in this region.
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FIG. 8. Same as Fig. 6 but for 86–92Kr isotopes.

E. Individual spectra

In the previous sections, the systematics of the most
relevant observables along the Krypton isotopic chain have
been described. In order to give a more detailed description of
the structure of each nucleus, the results of the most relevant
bands obtained with the triaxial calculations are now shown
and compared with the experimental values. These bands,
shown in Figs. 6–9, are built by grouping the states that are
connected with the largest B(E2) values. Additionally, within
a given band, the structure of the collective wave functions is
rather constant or evolves continuously connecting such states.
Hence, the assignment of a given collective character is done

by looking at the c.w.f. of the states belonging to a band.
Although not all of the c.w.f. are shown here, some of them
have been already discussed in Fig. 3.

Before summarizing the results, two aspects have to be
taken into account in order to provide a fair comparison be-
tween the theoretical and the experimental results. First, since
neither time-reversal-symmetry–breaking (cranking) states,
explicit quasiparticle excitations, nor other collective degrees
of freedom such as pairing fluctuations are included, only
a qualitative agreement with the experiment is expected.
Proton-neutron pairing, potentially relevant around 72Kr, is
not taking into account either. Furthermore, the states that are
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almost pure quasiparticle excitations, like the ones expected
at or near the shell closures, are out of the configuration space
considered here. On the other hand, grouping the experimental
states into bands can only be done in some nuclei, e.g., 72–84Kr,
while in other isotopes such an identification is not fully clear
or the data is scarce [13].

Starting from the lighter nuclei, a quite similar structure of
the collective bands is observed for 70–72Kr isotopes; namely,
their ground-state and first-excited bands are built on top of
an axial oblate and triaxial or prolate well-deformed states,
respectively, with a sequence 0+, 2+, 4+, etc. Additionally,
a second-excited state triaxial band (less deformed than the
other two) and a γ band (2+, 3+, 4+, 5+, etc.) are found in
both isotopes. For 70Kr, no experimental information is known
while for 72Kr, the ground-state band and the first-excited 0+
states are measured. Compared to the theoretical results, both
the 2+

1 and 0+
2 are higher in excitation energy.

The calculated spectra for 74,76,78Kr show again ground-
state and excited bands with a �I = 2 spacing and γ bands.
The overall agreement with the experimental spectra is rather
good. Contrary to the 70–72Kr isotopes, the ground-state bands
in these nuclei are made of states with a triaxial/prolate
character and a triaxial/oblate character for the ones with 0+

2
band heads.

The theoretical ground-state band for the nucleus 80Kr
presents a triaxial character—the c.w.f. peak at (0.3,40◦)–and
the first-excited band corresponds to a pseudo-γ band with a
staggering that is not present in the experimental data. Then,
a 0+

2 state with strong shape mixing (see Fig. 3) connected to
a triaxial band built on top of 0+

3 is obtained.
Approaching the semimagic nucleus 86Kr, the stable 82–84Kr

isotopes show also in the calculations ground-state and first-
excited bands with �I = 2 built on top of 0+

1 and 0+
2 states and

a γ band as the second-excited band. For 82Kr, the ground-state
band and first-excited band are mainly formed by oblate states
and prolate states, respectively, while for 84Kr it is the other
way around. The comparison with the experimental values is

not as good as in the previous nuclei. This also happens in the
closed-shell nucleus 86Kr. Nevertheless, the calculations show
a spherical ground state and oblate states 2+

1 ,4+
3 connected to

it, a first-excited prolate band, a yrast 4+
1 with mainly K = 4,

and another oblate band on top of the 0+
3 state.

For the nuclei above N = 50 the experimental data are
restricted to a few states belonging basically to the ground-state
band. From the theoretical point of view, well-defined triaxial
and oblate ground-state bands are obtained for 88–90Kr and
94–98Kr isotopes, respectively. For 92Kr, the triaxial ground
state evolves towards oblate states when increasing the angular
momentum. Additionally, γ bands are obtained all over the
nuclei above 86Kr, the lowest in energy being the one found in
90Kr.

Finally, shape coexistence in 98Kr isotope is predicted. In
this nucleus, a clear collective spectrum is obtained, i.e., a
well-defined oblate ground-state band peaked at (0.35,60◦), a
triaxial/prolate first-excited band peaked at (0.50,10◦), and
a triaxial/oblate second-excited band peaked at (0.25,50◦).
All the states belonging to the same band show practically
the same c.w.f. and the excitation energies of the 0+ states
are also relatively small. For 94–96Kr isotopes, the situation is
slightly different. They also have low-lying 0+ excited states
and the oblate ground-state bands are as well defined as in 98Kr.
However, the shape of the states of the first-excited bands
changes from oblate 0+

2 to prolate 4+
2 states through the 2+

2
states, that show triaxial/shape mixing. Since there are some
fingerprints of shape coexistence in the neighboring Sr and Zr
nuclei [13], more experimental data are of key importance to
unveil the structural evolution of neutron-rich nuclei around
N = 60.

IV. SUMMARY

The structure of the Krypton isotopic chain from the
neutron-deficient to the neutron-rich nuclei has been stud-
ied with state-of-the-art SCCM methods with the Gogny
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D1S interaction. Beyond-mean-field effects have been taken
into account through particle-number and angular-momentum
projections and quadrupole shape (axial and nonaxial)
mixing.

From a mean-field view, the shape evolution has been
analyzed through the potential-energy surfaces in the triaxial
plane. Additionally, the spherical single-particle shells playing
a role in this region are determined from a Nilsson scheme.

SCCM calculations reveal a different shape evolution of the
ground and excited states depending on whether the triaxial
degree of freedom is included. In the full triaxial results, the
ground states change from axially deformed states (70–72Kr)
to triaxial states (74–82Kr), a slightly deformed state (84Kr),
a spherical magic nucleus (86Kr), slightly triaxial deformed
states (88–92Kr), and, finally, oblate states (94–98Kr). However,
for 74–76Kr the axial calculations produce oblate ground
states, contrary to what is expected from the experiments [8].
Since the same nuclear interaction is used in both cases, the
triaxial degree of freedom plays a key role to reproduce the
experimental data in the neutron-deficient Kr isotopes. This
result confirms the ones obtained both in Ref. [24] and in
Refs. [8,23,25] in a unified and systematic manner.

The comparison with the experimental values for the first
excitation energies along the isotopic chain show a nice
agreement when the triaxial degree of freedom is included,
specially in the neutron-deficient part. However, the experi-
mental data are only qualitatively determined around the magic
nucleus 86Kr. Additionally, a continuous decrease of the 2+

1
excitation energies is obtained instead of the flat behavior
observed experimentally. Nevertheless, the sharp transition
experimentally determined in N = 60 for Sr and Zr isotopes is

not observed in the present calculations of the Krypton isotopes
around this number of neutrons.

Concerning the electromagnetic properties, a good agree-
ment is also obtained between the theory and the experimental
data. However, some problems have been also found such
as (1) an overestimation of the actual B(E2) values, (2) the
results for the Qsp(2+

1 ) in 92–96Kr are in contradiction with
the experimental data, and (3) an overestimation of the E0
strength in some nuclei.

Finally, collective bands of different nature (axial, spherical,
and triaxial deformed, with more or less shape mixing,
γ bands, etc.) have been found in the individual spectra.
Shape coexistence is well reproduced in the neutron-deficient
isotopes and, in addition, is predicted to appear in the nucleus
98Kr and, to a lesser extent, in 94–96Kr isotopes.

As an outlook for a future work, the present results are
expected to be improved by adding extra degrees of freedom in
the intrinsic HFB-like basis; namely, time-reversal-symmetry–
breaking (cranking) states, parity-breaking states, explicit
quasiparticle excitations, proton-neutron pairing, and/or other
collective degrees of freedom such as pairing fluctuations. A
new functional whose parameters will be adjusted by using a
beyond-mean-field method is also desirable. However, all of
these improvements require major developments of the present
SCCM method and are beyond the scope of this work.

ACKNOWLEDGMENTS

This work was supported by the Ministerio de Economı́a
y Competitividad–Programa Ramón y Cajal 2012 No.
11420.

[1] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[2] R. B. Piercey, A. V. Ramayya, J. H. Hamilton, X. J. Sun, Z. Z.

Zhao, R. L. Robinson, H. J. Kim, and John C. Wells, Phys. Rev.
C 25, 1941 (1982).

[3] A. Giannatiempo, A. Nannini, A. Perego, P. Sona, M. J. G.
Borge, O. Tengblad, and the ISOLDE Collaboration, Phys. Rev.
C 52, 2444 (1995).

[4] C. Chandler et al., Phys. Rev. C 56, R2924 (1997).
[5] E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).
[6] R. B. Piercey et al., Phys. Rev. Lett. 47, 1514 (1981).
[7] A. Gade, D. Bazin, A. Becerril, C. M. Campbell, J. M. Cook, D.

J. Dean, D.-C. Dinca, T. Glasmacher, G. W. Hitt, M. E. Howard,
W. F. Mueller, H. Olliver, J. R. Terry, and K. Yoneda, Phys. Rev.
Lett. 95, 022502 (2005).

[8] E. Clément et al., Phys. Rev. C 75, 054313 (2007).
[9] J. J. Valiente-Dobón et al., Phys. Rev. C 77, 024312 (2008).

[10] H. Iwasaki et al. (unpublished).
[11] M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012).
[12] M. Albers et al., Nucl. Phys. A 899, 1 (2013).
[13] National Nuclear Data Center, Brookhaven National Laboratory,

http://www.nndc.bnl.gov/ensdf and references therein.
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