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Halo nuclei 6He and 8He with the Coulomb-Sturmian basis
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The rapid Gaussian falloff of the oscillator functions at large radius makes them poorly suited for the description
of the asymptotic properties of the nuclear wave function, a problem which becomes particularly acute for halo
nuclei. We consider an alternative basis for ab initio no-core configuration interaction (NCCI) calculations, built
from Coulomb-Sturmian radial functions, allowing for realistic exponential falloff. NCCI calculations are carried
out for the neutron halo nuclei 6,8He, as well as for the baseline case 4He, with the JISP16 nucleon-nucleon
interaction. Estimates are made for the root-mean-square radii of the proton and matter distributions.
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I. INTRODUCTION

The ab initio theoretical description of light nuclei is
based on direct solution of the nuclear many-body problem
given realistic nucleon-nucleon interactions. In no-core con-
figuration interaction (NCCI) calculations [1–3], the nuclear
many-body problem is formulated as a matrix eigenproblem.
The Hamiltonian is represented in terms of basis states that
are antisymmetrized products of single-particle states for the
full A-body system of nucleons, i.e., with no assumption of an
inert core.

In practice, the nuclear many-body calculation must be
carried out in a truncated space. The dimension of the
problem grows combinatorially with the size of the included
single-particle space and with the number of nucleons in the
system. Computational restrictions therefore limit the extent
to which converged results can be obtained, for energies or for
other properties of the wave functions. Except for the very
lightest systems (A � 4), convergence is generally beyond
reach. Based on the still-unconverged calculations that are
computationally feasible, we seek to obtain a reliable estimate
of the true values of observables which would be obtained in
the full, untruncated space. Improved accuracy may be pursued
both through the development of bases which yield accelerated
convergence, as considered here, and by developing means by
which robust extrapolations can be made [4–10].

A prominent feature in light nuclei is the emergence of
halo structure [11,12], in which one or more loosely bound
nucleons surround a compact core, spending much of their
time in the classically forbidden region. A realistic treatment
of the long-range properties of the wave function has been
found to be essential for an accurate reproduction of the halo
structure [13].

However, NCCI calculations have so far been based almost
exclusively upon bases constructed from harmonic oscillator
single-particle wave functions. The harmonic oscillator radial
functions have the significant limitation that they display
Gaussian asymptotic behavior, i.e., falling as e−αr2

for large r .
The actual asymptotics for nucleons bound by a finite-range
force are instead expected to be exponential, i.e, falling as e−βr .

Observables that are sensitive to the large-distance asymp-
totic portions of the nuclear wave function present a special
challenge to convergence in NCCI calculations with a conven-
tional oscillator basis. Such “long-range” observables include
the root-mean-square (rms) radius—an essential observable
for halo nuclei—and E2 moments and transitions. The r2

dependence of the relevant operators in both cases prefer-
entially weights the larger-r portions of the wave function.
The results for these observables in NCCI calculations are in
general highly basis dependent [5,14,15].

The difficulties encountered in using an oscillator basis
to describe a system with exponential asymptotics may be
illustrated through the simple one-dimensional example of the
Schrödinger equation with a Woods-Saxon potential. In Fig. 1,
we see the results of solving for a particular eigenfunction in
terms of successively larger bases of oscillator radial functions.
In the classically forbidden region, where the potential is
nearly flat, the tail of the wave function should be exponential.
It should thus appear as a straight line on the logarithmic
scale in Fig. 1. Inclusion of each additional basis function
yields a small extension to the region in which the expected
straight-line behavior is reproduced. However, for any finite
number of oscillator functions, there is a radius beyond which
the calculated tail is seen to sharply fall below the true
asymptotics.

We are therefore motivated to consider alternative bases
which might be better suited for expanding the nuclear wave
function in its asymptotic region. The Coulomb-Sturmian
functions [17], which are obtained as solutions of the Sturm-
Liouville problem associated with the Coulomb potential,
constitute a complete set of square-integrable functions with
exponential asymptotics. These functions have previously
been applied to few-body problems in atomic [18–20],
hadronic [21–23], and nuclear [24] physics. The framework
for carrying out NCCI calculations with general radial basis
functions—and with the Coulomb-Sturmian functions, in
particular—has been developed in previous work [25].

In the present work, we apply the Coulomb-Sturmian
basis to NCCI calculations for the lightest neutron halo
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FIG. 1. The calculated wave function obtained when a problem
with exponential asymptotics—here, the Woods-Saxon problem is
taken for illustration—is solved in a finite basis of oscillator functions.
The radial probability density r2|ϕ(r)|2 is shown on a logarithmic
scale, so that exponential asymptotics would appear as a straight line.
The Woods-Saxon (WS) and harmonic oscillator (HO) potentials are
shown in the inset. (Solutions are for the Woods-Saxon 1s1/2 function,
with potential parameters appropriate to neutrons in 16O [16], with
maximal basis radial quantum numbers n as indicated.)

nuclei—6,8He—as well as to the baseline case 4He, for
which converged results can be obtained. Motivated by the
disparity between proton and neutron radial distributions in the
neutron-rich halo nuclei, we explore the use of proton-neutron
asymmetric bases, with different length scales for the proton
and neutron radial basis functions. We also examine the
possibility of extracting rms radii for the proton and matter
distributions based on a relatively straightforward estimate,
the “crossover point” [5,14], pending further development of
more sophisticated extrapolation schemes [26,27]. The bases
and methods are first reviewed (Sec. II), after which the
results for 4,6,8He are discussed (Sec. III), and radii extracted
via the crossover analysis are compared with experiment
(Sec. IV). Details of the calculation of rms radii for general
single-particle bases are given in the Appendix. Preliminary
results were reported in Ref. [28].

II. BASIS AND METHODS

A. Basis functions

The harmonic oscillator and Coulomb-Sturmian func-
tions both provide complete, discrete, orthogonal sets of
square-integrable functions, but with Gaussian and exponen-
tial asymptotics, respectively. The oscillator functions [29],
as used in conventional NCCI calculations, are given by
�nlm(b; r) = Rnl(b; r)Ylm(r̂)/r , with radial wave functions

Rnl(b; r) ∝ (r/b)l+1Ll+1/2
n [(r/b)2]e− 1

2 (r/b)2

, (1)

where b is the oscillator length. The Coulomb-Sturmian
functions [17] are given similarly by �nlm(b; r) =
Snl(b; r)Ylm(r̂)/r , with radial wave functions

Snl(b; r) ∝ (2r/b)l+1L2l+2
n (2r/b)e−r/b, (2)

FIG. 2. Radial functions (a) Rnl(b; r) of the harmonic oscillator
basis and (b) Snl(bl ; r) of the Coulomb-Sturmian basis, with bl given
by the node-matching prescription (6). These functions are shown
arranged according to the harmonic oscillator principal quantum
number N ≡ 2n + l (see text) and are labeled by l. The dotted curves
show the same functions dilated outward by a factor of

√
2 ≈ 1.414,

corresponding to a factor of 2 reduction in ��.

where b again represents a length scale. Further discussion may
be found in Ref. [25]. In both sets of functions (1) and (2), the
Lα

n are generalized Laguerre polynomials, the Ylm are spherical
harmonics, n is the radial quantum number, and l and m are
the orbital angular momentum and its z projection. Both sets
of radial functions are shown in Fig. 2, for comparison.

For the oscillator functions, the principal quantum number
N ≡ 2n + l defines the number of oscillator quanta associated
with the function, or the major shell to which it is assigned,
when considered in the context of an oscillator Hamiltonian
with corresponding length parameter b [16]. While the
particular combination of n and l represented by N has no
immediate physical significance for the Coulomb-Sturmian
functions, labeling the Coulomb-Sturmian functions by N , as
in Fig. 2(b), can still be of convenience for consistency with
the treatment of the oscillator functions.

For either basis, the nuclear single-particle basis states
|nljm〉 are defined by coupling of the orbital angular mo-
mentum with the spin, to give total angular momentum j .
The many-body basis is defined by taking antisymmetrized
products of these single-particle states.
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B. Hamiltonian and observables

The structure of the many-body calculation is independent
of the details of the radial basis. The choice of radial basis
enters the many-body calculation only through the values of
the Hamiltonian two-body matrix elements (or higher-body
matrix elements, if higher-body interactions are present),
which we must first generate as the input to the many-body
calculation. The choice of radial basis subsequently also enters
into the extraction of observables (electromagnetic moments
and transitions, radii, etc.), from the densities obtained in
the many-body calculation [16]. Here the relevant inputs are
the one-body or two-body matrix elements of the observable
operators with respect to the given basis.

The nuclear Hamiltonian for NCCI calculations has the
form H = Trel + V , where Trel is the Galilean-invariant, two-
body relative kinetic energy operator, and V is the nucleon-
nucleon interaction. A Lawson term [30] proportional to the
number Nc.m. of center-of-mass oscillator quanta may also
be included, to shift center-of-mass excitations out of the
low-lying spectrum. (The center-of-mass dynamics for NCCI
calculations with the Coulomb-Sturmian basis, including the
effect of a Lawson term, are investigated in Ref. [25].)
However, a Lawson term is not essential for the present
calculations, because we consider only the ground state,
and the calculations of observables (discussed below) make
use only of relative operators, which are, by construction,
insensitive to the center-of-mass degrees of freedom.

The relative kinetic energy decomposes into one-body and
two-body terms as

Trel ≡ 1

4AmN

∑
ij

′
(pi − pj )2

= 1

2AmN

⎡
⎣(A − 1)

∑
i

p2
i −

∑
ij

′
pi · pj

⎤
⎦ , (3)

where the prime on the summation
∑′

ij over nucleons indicates
i �= j , A is the nuclear mass number, and mN is the nucleon
mass. The one-body term may be calculated simply in terms
of one-dimensional radial integrals of the operator p2, with
respect to the radial basis functions. Because the two-body
term is separable, matrix elements of this term may likewise
be calculated in a straightforward fashion for any radial basis,
in terms of radial integrals of the operators p and angular
momentum recoupling coefficients [25].

Calculation of the two-body matrix elements for the interac-
tion, however, is more involved if one moves to a general radial
basis. The nucleon-nucleon interaction is defined in relative
coordinates. The oscillator basis is special, in that matrix
elements in a relative oscillator basis, consisting of functions
�nl(r1 − r2), can readily be transformed to the two-body
oscillator basis, consisting of functions �n1l1 (r1)�n2l2 (r2), by
the Talmi-Moshinsky transformation [29]. We therefore start
from the two-body matrix elements 〈cd; J |V |ab; J 〉 generated
with respect to the oscillator basis and only then carry out a
change of basis in the two-body space [31].

Specifically, the change of basis for interaction two-body
matrix elements is accomplished by the transformation

〈c̄d̄; J |V |āb̄; J 〉 =
∑
abcd

〈a|ā〉〈b|b̄〉〈c|c̄〉〈d|d̄〉 〈cd; J |V |ab; J 〉,

(4)

where we label single-particle orbitals for the oscillator basis
by unbarred symbols a = (nalaja) and those for the Coulomb-
Sturmian basis by barred symbols ā = (n̄a l̄a j̄a). (See Ref. [25]
for detailed definitions and normalization conventions.) The
coefficients 〈a|ā〉 are obtained from the one-dimensional
overlaps of the harmonic oscillator and Coulomb-Sturmian
radial functions, 〈Rnl|Sn̄l〉 = ∫ ∞

0 dr Rnl(bHO; r)Sn̄l(bCS; r). It
may be noted that the oscillator length bHO (with respect to
which the original oscillator two-body matrix elements of the
interaction are represented) will in general be different from the
length scale bCS of the Coulomb-Sturmian functions (defining
the basis for the many-body calculation).

The change-of-basis transformation in Eq. (4) is, in practice,
limited to a finite sum, e.g., with a shell cutoff Na,Nb,Nc,Nd �
Ncut. The cutoff Ncut must be chosen high enough to ensure
that the results of the subsequent many-body calculation are
cutoff independent, as verified by carrying out calculations
with differing cutoffs. The accuracy obtained for a given cutoff
may in general be expected to depend upon the oscillator and
Coulomb-Sturmian length parameters defining the initial and
final bases for the interaction, respectively, as well as upon
the characteristics of the interaction (e.g., softness), nuclear
eigenstates, and observables under consideration.

The radius observables considered in the study of halo
nuclei are the rms radii of the point-nucleon distributions: the
proton distribution radius rp, the neutron distribution radius rn,
and the combined matter distribution radius rm. The rms radii
of the proton, neutron, and matter distributions are related as
Ar2

m = Zr2
p + Nr2

n , and therefore only two out of three of these
may be considered as independent observables. Although rn is
perhaps conceptually linked most naturally to the neutron halo
structure, rp and rm are most commonly quoted, in recognition
of experimental considerations (see Sec. III A).

The radii are all taken relative to the center of mass
of the full set of nucleons, i.e., protons and neutrons in
aggregate, and are obtained from the expectation values of
the relative square-radius operators defined in Eq. (A1). Much
like the Trel operator of Eq. (3), these are two-body operators
that decompose into one-body and separable two-body parts,
involving

∑
i r2

i and
∑′

ij ri · rj , respectively, and evaluation
of matrix elements proceeds similarly [25]. Specific relations
needed for evaluating the two-body matrix elements of the
proton and neutron relative square-radius operators with
respect to an arbitrary basis may be found in the Appendix.

C. Basis length parameters and proton-neutron asymmetry

Any single-particle basis, including the bases defined in
Eq. (1) or (2), has, as a free parameter, an overall length scale,
which we may denote by b. For the oscillator basis, this scale
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is traditionally quoted as the oscillator energy ��, where

b(��) = (�c)

[(mNc2)(��)]1/2
. (5)

In deference to the convention of presenting NCCI results as a
function of �� as the basis parameter, we nominally carry over
this relation to define an �� parameter for general radial bases.
This �� has no direct physical meaning as an energy scale for
the Coulomb-Sturmian basis. However, the inverse square-root
dependence remains, so that a factor of 2 change in �� still
describes a factor of

√
2 change in length scale (illustrated for

both harmonic oscillator and Coulomb-Sturmian bases by the
dotted curves in Fig. 2).

Beyond an overall length scale, there is additional freedom
in length scales that may be exploited in constructing the basis.
The many-body basis states (antisymmetrized product states)
constructed from a single-particle basis are orthonormal so
long as the single-particle states are orthonormal. Orthogonal-
ity for single-particle states of different l or j follows entirely
from the angular and spin parts of the wave function. Only
orthogonality within the space of a given l and j follows
from the radial functions, e.g., for the Coulomb-Sturmian
functions, 〈n′l′j ′|nlj〉 = [

∫
dr Sn′l(b; r) Snl(b; r)] δl′lδj ′j . We

are therefore free to choose b independently, first, for each
l space (or j space), as bl (or blj ), and, second, for protons and
neutrons, as bp and bn.

The first observation raises the possibility, still to be
explored, of obtaining significant improvements in the efficacy
of the basis by optimizing the l dependence of the length
parameter. For now, we follow the choice of Ref. [25] for
the Coulomb-Sturmian functions, which is motivated by more
closely matching the Coulomb-Sturmian functions to the
oscillator functions in the small-r region. Specifically, bl is
chosen so that the first node of the n = 1 Coulomb-Sturmian
function for each l aligns with the first node of the n = 1
oscillator function for that l, which, from the zeros of the
Laguerre polynomials, yields the prescription

bl =
√

2

2l + 3
b(��). (6)

It is this prescription for bl that is shown in Fig. 2(b).
The second observation raises the possibility of proton-

neutron asymmetric length scales, which might be advanta-
geous for nuclei with significant disparities between the proton
and neutron distributions, in particular, halo nuclei. Therefore,
in the present work, we adopt

bl,p =
√

2

2l + 3
b(��), bl,n = β

√
2

2l + 3
b(��), (7)

where β sets an overall relative scale bn/bp. For example, if
the solid and dotted curves in Fig. 2(b) are taken to represent
the proton and neutron radial functions, respectively, then the
figure illustrates the case in which β ≡ bn/bp = √

2 ≈ 1.414.

TABLE I. The 4,6,8He proton and matter radii, as estimated from
the crossover point at the highest Nmax calculated (Nmax = 16 for 4,6He
and Nmax = 14 for 8He), for the harmonic oscillator basis (HO), the
Coulomb-Sturmian basis (CS), and the proton-neutron asymmetric
Coulomb-Sturmian basis with β = 1.414 (CS β). Experimental
values or ranges (see Sec. III A) are also given. All radii are in
femtometers.

4He 6He 8He

rp HO 1.4361 1.803 1.764
CS 1.4358 1.799 1.767

CS β – 1.810 1.784
Expt. 1.462(6) 1.934(9) 1.881(17)

rm HO 1.4335 2.314 2.390
CS 1.4332 2.315 2.425

CS β – 2.327 2.443
Expt. 1.46–1.66 2.23–2.75 2.38–2.61

III. CALCULATIONS FOR He ISOTOPES

A. Experimental background

The isotopes 6He and 8He are interpreted as halo nuclei,
consisting of a neutron halo surrounding an α core, as reviewed
in, e.g., Refs. [11,12]. The last neutrons in these isotopes
are only weakly bound, with two-neutron separation energies
of 0.97 and 2.14 MeV, respectively. The halo structure is
most notably evident in a sudden increase in the rms radii
of both the proton and matter distributions along the isotopic
chain, summarized in Table I (see also Fig. 8 below). Moving
from 4He to 6He, the measured rp increases by ∼32%.
This may be understood as resulting from the recoil of
the α core against the halo neutrons—i.e., the presence of
the halo neutrons on average displaces the center of mass
of the nucleus away from the center of mass of the α
particle—as well as possibly receiving a contribution from
core polarization or “swelling” [32]. An even greater, though
less precisely known, increase in rm reflects the extended
halo neutron distribution. The measured proton and matter
radii for 8He are comparable to those for 6He. It is worth
briefly summarizing the experimental situation—the origins
of the reported radii and their differences—before using it as a
baseline for comparison with the present ab initio predictions.

The proton radii rp are obtained experimentally with
comparatively high precision (better than 0.02 fm). The charge
radius of the stable isotope 4He can be measured directly
from electron scattering [33]. The charge radii of the unstable
isotopes 6,8He are determined indirectly from isotope shift
data [34,35] in combination with precise mass measure-
ments [36]. The rms radius of the point-proton distribution is
then deduced, after hadronic physics corrections [37], from the
nuclear charge radius. The experimental values for rp from the
evaluation by Lu et al. [32] are 1.462(6) fm for 4He, 1.934(9)
fm for 6He, and 1.881(17) fm for 8He.

The matter radii rm are obtained with considerably
greater uncertainties, from either nuclear interaction cross
sections [38] or proton-nucleus elastic scattering data [39].
These methods yield model-dependent and often contradictory
results along the He isotopic chain.
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Analyses of the interaction cross section data for 4He
via the Glauber model yield either rm = 1.57(4) fm [40] or
1.63(3) fm [41], depending on assumptions regarding the
parameters for the orbitals defining the matter distribution.
For 4He, rp and rm should be essentially identical by isospin
symmetry. However, these reported rm values are substantially
larger than and inconsistent, at the stated uncertainties, with
the measured rp = 1.462(6) fm. On the other hand, elastic
scattering yields rm = 1.49(3) fm [39], consistent with rp.

For 6He, the same Glauber analyses of the interaction
cross section data yield rm = 2.48(4) fm [40] or 2.33(4)
fm [41]. However, a few-body analysis, explicitly considering
6He as a correlated system consisting of a core plus two
valence neutrons, suggests a significantly larger value rm =
2.71(4) fm [42]. The elastic scattering data yield either rm =
2.30(7) fm, in an analysis assuming Gaussian asymptotics, or
2.45(10) fm, in an alternative analysis with extended (Hankel
function) tails [39].

Finally, for 8He, the Glauber analyses of interaction cross-
section data yield rm = 2.52(3) fm [40] or 2.49(4) fm [41]. The
analyses of elastic scattering data assuming different asymp-
totics yield rm = 2.45(7) or 2.53(8) fm [39], respectively.

Experimental ranges for rm encompassing the extreme
values (including uncertainties) of the reported analyses, and
identical to those adopted by Lu et al. [32], are 1.46–1.66 fm
for 4He, 2.23–2.75 fm for 6He, and 2.38–2.61 fm for 8He.
When we compare with theory, it is worth bearing in mind
that the narrower range of experimental rm values indicated
for 8He, relative to 6He, does not represent fundamentally
smaller experimental or model uncertainties, but rather simply
a narrower range of attempted model analyses. The few-body
analysis reported for 6He [42] is responsible for raising the
upper bound of the experimental range for this nucleus by
0.2 fm, while no corresponding analysis is available for 8He.

B. NCCI calculations

We carry out calculations for the isotopes 4,6,8He using
both the harmonic oscillator and Coulomb-Sturmian bases.
These calculations are based on the JISP16 nucleon-nucleon
interaction [43], plus the Coulomb interaction. The bare
interaction is used, i.e., without renormalization. The proton-
neutron M-scheme code MFDn [44–46] is employed for the
many-body calculations.

The harmonic oscillator many-body basis is normally
truncated according to the Nmax scheme, which limits the total
number of oscillator quanta as Ntot ≡ ∑

i Ni = ∑
i(2ni +

li) � N0 + Nmax, where N0 is the minimal number of oscillator
quanta for the given number of protons and neutrons. We
formally carry this truncation over to the Coulomb-Sturmian
basis for the calculations in the present work, although, as
noted in Sec. II A, N ≡ 2n + l no longer has significance as
an energy with respect to a mean field, nor does it lead to the
exact factorization of center-of-mass motion which is obtained
with an oscillator basis in Nmax truncation (e.g., Ref. [3]).
Results are calculated with truncations up to Nmax = 16 for
4,6He and Nmax = 14 for 8He, for both the harmonic oscillator
and Coulomb-Sturmian bases.

C. Results for 4He

Let us first consider the calculations for 4He as the baseline
case. The computed ground-state energies and proton radii
are summarized in Fig. 3. Recall that there is no physical
meaning in comparing �� values directly between oscillator
and Coulomb-Sturmian bases, but that ratios of �� values
within a basis are meaningful, serving to indicate the ratio
of length scales (Sec. II C). Results are therefore shown
consistently over a factor of 4 range in ��, i.e., representing
a doubling in basis length scale, for all bases in the present
work, to facilitate comparison across different bases, and a
logarithmic scale is used for ��.

Energy convergence is reached for the harmonic oscillator
basis, as evidenced by approximate Nmax and �� independence
of the higher Nmax results over a range of �� values, in
Figs. 3(a) and 3(b). Convergence is obtained at the ∼10 keV
level by Nmax = 14. The binding energies for 4He computed
with the Coulomb-Sturmian basis lag significantly behind
those obtained with the oscillator basis, by about two steps
in Nmax. This should perhaps not be surprising, given that 4He
is tightly bound, and the structure can thus be expected to
be driven by short-range correlations rather than asymptotic
properties.

It is important to note that stability with respect to the
cutoff in the change-of-basis transformation (4) has been
obtained—calculations with Ncut = 9, 11, and 13 are virtually
indistinguishable in Figs. 3(b) and 3(d). The transformation
has been carried out from oscillator basis interaction matrix
elements at ��int = 40 MeV.

Convergence of the computed rms radii, for both the
oscillator and Coulomb-Sturmian bases, is again indicated by
approximate Nmax and �� independence over a range of ��
values, which appears as a shoulder in the curves of Figs. 3(c)
and 3(d). The vertical bars in Figs. 3(c) and 3(d) indicate the
spread in radii obtained (at the highest Nmax) over the range
of �� plotted, to aid comparison. The �� dependence for
the Coulomb-Sturmian calculations appears to be moderately
shallower over the range shown, which spans a factor of 4
in �� for each basis. However, it should be borne in mind
that, because the slopes of the curves in Figs. 3(c) and 3(d)
vary significantly with ��, the spread in radii is sensitive to
the particular range of �� values chosen, e.g., whether this
range is centered on the variational minimum of the energy
calculations or on the crossover point discussed below in Sec.
IV (it is more simply chosen for purposes of presentation in this
and subsequent figures) and how wide a range is considered.

D. Results for 6,8He

Let us now consider the calculations for the halo nuclei
6,8He. The computed ground-state energies, proton radii, and
matter radii are shown in Figs. 4 and 5. Results are included
(at the right in each figure) for a Coulomb-Sturmian basis with
proton-neutron asymmetric length scales (Sec. II C) in the ratio
β ≡ bn/bp = 1.414, which is comparable to the ratio rn/rp of
neutron and proton distribution radii for these nuclei.

Energy convergence in the Coulomb-Sturmian basis lags
that of the harmonic oscillator basis, but less dramatically
than seen above for 4He. A basic three-point exponential
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FIG. 3. (Color online) The calculated 4He ground-state energy (top) and rms proton radius rp (bottom), using the conventional oscillator
(left) and Coulomb-Sturmian (right) bases. These are shown as functions of the basis �� parameter, for Nmax = 4 to 16 (as labeled) and
for transformation cutoffs Ncut = 9, 11, and 13 (Coulomb-Sturmian basis only, indicated by dashing, curves nearly indistinguishable). The
converged values obtained with the JISP16 interaction are indicated by dashed horizontal lines. The spreads in radius values over this �� range,
at the highest Nmax, are indicated by vertical bars (bottom).

extrapolation [6] of the energy with respect to Nmax, at each
�� value, is indicated by the open symbols in Figs. 4 (top)
and 5 (top). The extrapolated energy is remarkably ��-
independent in the β = 1.414 calculations, although it should
be noted that there is still some Nmax dependence as well. The
extrapolated energy appears to be approximately consistent
with the harmonic oscillator extrapolations. (The dashed line
indicates the best extrapolated value from harmonic oscillator
basis calculations from Ref. [47], up to Nmax = 18 for 6He
or Nmax = 14 for 8He, using a three-point extrapolation at the
�� determined by the variational energy minimum, yielding
binding energies of 28.803(6) and 29.9(2) MeV for these
isotopes, respectively.) However, such extrapolations must be

viewed with caution, because both theoretical arguments and
empirical studies suggest that functional forms other than an
exponential in Nmax may be more appropriate, over at least
portions of the �� range [7–9].

Because 6He and 8He are weakly bound neutron halo nuclei,
small differences in the calculated binding energy may be
expected to have large effects on the calculated structure, in
particular, whether or not a bound state is even obtained. While
the JISP16 interaction does bind both 6He and 8He against
two-neutron decay, it does so with two-neutron separation
energies of only 0.504(6) and 1.1(2) MeV, respectively, based
on the best extrapolations of Ref. [47], thus underbinding both
nuclei relative to the experimental values (see Sec. III A). The
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FIG. 4. (Color online) The calculated 6He ground-state energy (top) and rms proton radius rp and matter radius rm (bottom), using the
conventional oscillator basis (left), Coulomb-Sturmian basis (center), and proton-neutron asymmetric Coulomb-Sturmian basis with β = 1.414
(right). These are shown as functions of the basis �� parameter, for Nmax = 6 to 16 (as labeled). Exponentially extrapolated energies from the
present calculations are indicated by open symbols, the best extrapolated energy from Ref. [47] is indicated by the dashed horizontal line, and
the 4He + 2n breakup threshold obtained with JISP16 [47] is marked by the solid horizontal line (top panels). The spreads in radii over this
�� range, at the highest Nmax, are indicated by vertical bars (bottom panels).

2n thresholds based on the binding energies obtained with the
JISP16 interaction are indicated in Figs. 4 (top) and 5 (top) by
the solid horizontal line. For 6He, convergence of the energies
to the point that the variational minimum (with respect to
��) lies below this threshold is obtained between Nmax = 12
and 14 for the oscillator basis calculations [Fig. 4(a)] or
between Nmax = 14 and 16 for the Coulomb-Sturmian basis
calculations [Figs. 4(b) and 4(c)]. For 8He, the variational
minimum falls below the 2n threshold between Nmax = 10
and 12 for the calculations with the oscillator basis [Fig. 5(a)],
while the variational minimum energies obtained with the
Coulomb-Sturmian basis are still just shy of the threshold

for the largest space considered (Nmax = 14). In making these
comparisons, it should be noted that there is little difference in
the variational mimimum energies obtained with the β = 1 or
β = 1.414 calculations, which, e.g., differ by only ∼0.01 MeV
for 6He at Nmax = 16 [Figs. 4(b) and 4(c)] or ∼0.04 MeV for
8He at Nmax = 14 [Figs. 5(b) and 5(c)]. For both isotopes, the
greatest variational gain in binding energy is actually obtained
for an intermediate value for the ratio of proton and neutron
basis length scales, β ≈ 1.1–1.2 (not shown).

Comparing the results for radii obtained with the different
bases, for 6He [Fig. 4 (bottom)] and 8He [Fig. 5 (bottom)],
we see that Coulomb-Sturmian calculations (for either β =
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FIG. 5. (Color online) The calculated 8He ground-state energy (top) and rms proton radius rp and matter radius rm (bottom), using the
conventional oscillator basis (left), Coulomb-Sturmian basis (center), and proton-neutron asymmetric Coulomb-Sturmian basis with β = 1.414
(right). These are shown as functions of the basis �� parameter, for Nmax = 4 to 14 (as labeled). Exponentially extrapolated energies from the
present calculations are indicated by open symbols, the best extrapolated energy from Ref. [47] is indicated by the dashed horizontal line, and
the 6He + 2n breakup threshold obtained with JISP16 [47] is marked by the solid horizontal line (top panels). The spreads in radii over this
�� range, at the highest Nmax, are indicated by vertical bars (bottom panels).

1 or β = 1.414) again yield a moderately shallower ��
dependence than obtained with the harmonic oscillator basis
over a wider interval in ��. On the other hand, the harmonic
oscillator basis results give more of an appearance of localized
shouldering.

IV. RADIUS ANALYSIS

In examining the dependence of the calculated radii for the
He isotopes (Figs. 3–5) on Nmax and ��, there is qualitatively
similar behavior across the bases. The curves for the radii
as functions of ��, at different Nmax, give the appearance
of approximately “converging” to a common intersection

point, at an �� value somewhat below that of the variational
minimum in the energy. The observation that, at lower ��,
the calculated radii decrease with Nmax, while, at higher ��,
the calculated radii increase with Nmax, leaving the calculated
radius essentially independent of Nmax at the crossover ��,
might be taken to suggest that the crossover provides a
reasonable estimate of the true converged radius.

It was therefore proposed in Refs. [5,14] that the radius can
be estimated—even before convergence is well developed—by
the crossover point. (Closer inspection reveals that there is no
common intersection point in any strict sense: if we consider
the curves obtained for successive values of Nmax, the �� value
at which these curves cross drifts by several MeV as Nmax
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FIG. 6. The 4He ground-state rms proton radius rp , as estimated
from the crossover point (see text), calculated for the harmonic
oscillator and Coulomb-Sturmian bases (as indicated in the legend).
The relative deviations from the converged value may be read from
the right-hand axis.

increases, generally towards lower ��. Nonetheless, we may
consider crossovers between the curves at successive values
of Nmax.) This is an admittedly ad hoc prescription, rather
than a theoretically motivated extrapolation. However, while
the approach was originally presented simply in the context
of NCCI calculations with the harmonic oscillator basis, we
can now test this approach further and verify consistency
by comparing results obtained from bases with substantially
different underlying single-particle radial functions.

We can most directly test the crossover prescription—for
both oscillator and Coulomb-Sturmian bases—in the case of
4He, where the final converged value is known. The crossover
radii are shown as a function of Nmax, for both bases, in Fig. 6.
The curves (of radius as a function of �� at fixed Nmax) used in
deducing these crossovers are computed by cubic interpolation
of the calculated data points at different ��. The crossovers
already serve to estimate the final converged value to within
∼0.05 fm at Nmax = 6.1 The main merit of the approach
appears to be that, in the face of calculated values for the radius
that depend smoothly and strongly on the basis parameter ��,
it appears to select out the converged value more rapidly than,
e.g., simply choosing to evaluate the radius at the �� value
that yields the variational minimum in the energy.

The extracted crossover radii for 6,8He are shown, as
functions of Nmax, in Fig. 7. The radii obtained for the
Coulomb-Sturmian calculations with different ratios of neu-
tron and proton length scales (β = 1 and 1.414) track each
other closely from Nmax ≈ 8 onward, agreeing with each
other to within ∼0.1 fm. For rp, the values are stable with
respect to Nmax and agree with the values obtained from the
harmonic oscillator basis crossover as well. For rm, it appears
that the values might be drifting systematically upward with

1A similar crossover analysis, not shown in Fig. 6, may be carried
out for the matter radius of 4He, yielding marginally smaller values
(by ∼0.003 fm), because the neutrons are not subject to Coulomb
repulsion.

FIG. 7. The (a) 6He and (b) 8He ground-state rms proton radius
rp (lower curves) and matter radius rm (upper curves), as estimated
from the crossover point (see text), calculated for the harmonic
oscillator basis, the Coulomb-Sturmian basis, and the proton-neutron
asymmetric Coulomb-Sturmian basis with β = 1.414 (as indicated
in the legend).

Nmax, although they do remain within an ∼0.2 fm range
from Nmax = 8 to the highest Nmax calculated. Therefore,
although we can extract a result based on this highest Nmax (as
discussed below), it is not possible to give a definitive value
for rm.

An overview of the predicted evolution of the radius
observables along the He isotopic chain, and a comparison
with experimental values, is provided in Fig. 8. (Although the
dependence of the extracted crossover radius on Nmax was
shown in Figs. 6 and 7, here it is helpful to directly see the
stability of each radius with respect to Nmax, by overlaying
the results obtained for the three highest successive Nmax

values, with the largest symbol indicating the result for the
highest Nmax value.) The radii obtained at the highest Nmax,
for each basis, are summarized in Table I. For each radius
considered, the values obtained from the calculations with
different bases are consistent to within ∼0.02 fm, or ∼0.05 fm
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FIG. 8. The 4He proton radius and 6,8He proton and matter
radii, as estimated from the crossover point, for the harmonic
oscillator basis, the Coulomb-Sturmian basis, and the proton-neutron
asymmetric Coulomb-Sturmian basis with β = 1.414. For each of
these bases, the extracted radii are shown for the highest three
successive Nmax values (12 � Nmax � 16 for 4,6He or 10 � Nmax �
14 for 8He), in some cases visually indistinguishable, with the largest
symbol indicating the highest Nmax value. Experimental values or
ranges are shown as horizontal bands.

in the case of the 6He matter radius.2 The radii for these light
nuclei are also accessible to other ab initio methods—results
have recently been reported based on the effective interaction
hyperspherical harmonic method [52] and Green’s function
Monte Carlo method [32] and could be extracted from calcu-
lations based upon the no-core shell model/resonating group
method [53]—suggesting the possibility of benchmarking
calculations carried out for the same interaction under different
calculational approaches and extrapolation schemes [26,27].

The proton radius calculated for 4He matches the exper-
imental result to within ∼0.02 fm. Indeed, this is perhaps
an unreasonably good level of agreement to expect from
imperfectly known internucleon interactions. In any case,
it is at the same scale as systematic uncertainties in the
experimental corrections for the proton size from hadronic
physics [32].

The present calculations with the JISP16 interaction quali-
tatively reproduce the observed jump in radii. From 4He to 6He,
the calculated rp increases by 25%—quantitatively somewhat
short of the measured 32% increase—then remains essentially
unchanged for 8He. The calculated rm increases by 62% from
4He to 6He, again remaining essentially unchanged for 8He.

2The present values for the 6,8He radii are consistent with esti-
mates [48] obtained, from the same NCCI calculations, by infrared
oscillator basis extrapolation methods of the type proposed in
Refs. [8,9,27]. (The detailed results are sensitive to the range of Nmax

and �� values included in the extrapolation procedure, as well as
to the prescription used for the infrared cutoff parameter [49].) The
present values are also consistent with estimates rp = 1.84(8) fm
and rm = 2.43(19) fm obtained from calculations for 6He using
Woods-Saxon bases, under the JISP16 interaction, in Refs. [50,51].

These matter radii are in good agreement with the elastic
scattering measurements (Sec. III A), i.e., with the lower end
of the experimental range.

V. CONCLUSION

The present work is, in various respects, an investigation of
computational methods (alternative radial bases for the NCCI
approach), an investigation of analysis methods (for extracting
an estimator of the converged radius from still-unconverged
calculations), and an investigation of a physical problem (ab
initio prediction of halo structure in the He isotopes).

From the computational viewpoint, the NCCI approach has
been applied with bases incorporating realistic exponential
asymptotics (the Coulomb-Sturmian functions) and proton-
neutron asymmetry (in recognition of the physical asymmetry
of the system). Calculations with the Coulomb-Sturmian basis
are found to be valuable in predicting rms radius observables
for the He isotopes subject to the JISP16 interaction. Con-
vergence of the binding energy is moderately slower than
with the harmonic oscillator basis. This appears to be at
least partially offset by more stable extrapolation properties
when the basic exponential extrapolation scheme is used.
Calculations of the rms radii of 6,8He appear to show improved
�� independence with the Coulomb-Sturmian basis. However,
for both observables, more complete, theoretically motivated
extrapolation studies are needed.

It would seem that a principal underlying challenge to
devising an appropriate expansion basis is the compromise
involved in addressing both the core nucleons and the
halo nucleons with basis functions sharing the same length
parameter, and thus the same rate of exponential falloff in
the asymptotic region. A single-particle basis encompassing
functions with differing length scales (as encountered in
atomic electron-structure calculations [54]) might be expected
to provide greater efficiency in describing the halo structure.
Further optimization of the Coulomb-Sturmian basis is also
likely possible through variation of the l dependence of the
length parameters, potentially yielding improved convergence
(analogous optimizations are again important for rapid con-
vergence in electron-structure calculations).

In the present work, perhaps the most direct benefit of going
beyond the oscillator basis lies simply in being able to compare
calculations obtained with qualitatively different basis sets and
thereby to verify the robustness of the estimated observable
values extracted from still-unconverged calculations. The
crossover prescription for radius observables, although ad hoc,
is found to yield consistent results, to within ∼0.02–0.05 fm,
between bases with substantially different underlying single-
particle radial functions.

These results give estimates for the proton and matter radii
of the He halo nuclei, based on ab initio calculations, with
the JISP16 interaction. The distinctive trend in radii along the
He isotopic chain, indicative of the onset of halo structure, is
qualitatively reproduced. More quantitatively, the proton radii
of the halo isotopes are underestimated, relative to experiment,
while the calculated matter radii favor the lower end of the
experimental range.
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APPENDIX: PROTON AND NEUTRON SQUARE-RADIUS
OPERATORS

The rms radii of the point-nucleon proton, neutron, or
matter distributions, relative to the center of mass (Sec. II),
are calculated as rp ≡ 〈r2

p〉1/2, rn ≡ 〈r2
n〉1/2, or rm ≡ 〈r2

rel〉1/2,
in terms of relative squared radius operators, which are defined
by [52]

r2
p = 1

Np

∑
i

δp,i(ri − R)2,

r2
n = 1

Nn

∑
i

δn,i(ri − R)2,

r2
rel = 1

A

∑
i

(ri − R)2,

(A1)

in terms of the center-of-mass position operator

R = 1

A

∑
i

ri , (A2)

where we define the shorthands δp,i = 1
2 (1 + τz,i) and δn,i =

1
2 (1 − τz,i) (with τz = +1 for protons and −1 for neutrons) to
select proton and neutron indices, respectively, and we denote
the proton and neutron numbers by Np (≡Z) and Nn (≡N )
to provide greater uniformity between the expressions for the
proton and neutron radii below. The operators in Eq. (A1) are
two-body operators, due to the subtraction of the center-of-
mass coordinate. Thus, to calculate their expectation values
within a many-body wave function, the two-body matrix
elements of these operators are required, with respect to the
basis for the calculation. In this Appendix, we summarize
certain operator relations needed for evaluating the two-body
matrix elements of these operators.

The r2
rel operator, as defined in Eq. (A1), can be reexpressed

in forms more suitable for evaluation of two-body matrix
elements, as outlined in Appendix A of Ref. [25]. On the one
hand, r2

rel can be expressed in the standard form for a two-body
operator, i.e., as a double sum over distinct particle indices, as

r2
rel = 1

2A2

∑
ij

′
(ri − rj )2, (A3)

which we use below. On the other hand, expanding the square
in Eq. (A1) or (A3) gives an alternate expression for r2

rel in
terms of one-body and separable two-body parts:

r2
rel = (A − 1)

A2

∑
i

r2
i − 1

A2

∑
ij

′
ri · rj . (A4)

This latter expression may be used to evaluate the two-body
matrix elements 〈cd; J |r2

rel|ab; J 〉 in a straightforward fashion,
from the radial integrals of the r and r2 operators with respect
to the given single-particle basis, as elaborated in Sec. III D of
Ref. [25].

The two-body matrix elements of the operators r2
p and r2

n

may, conveniently, be deduced from those already obtained for
the operator r2

rel. To establish the relationship, it is helpful to
first define the restrictions of r2

rel to the proton-proton, proton-
neutron, and neutron-neutron sectors:

r2
rel,pp = 1

2A2

∑
ij

′
δp,iδp,j (ri − rj )2,

r2
rel,pn = 1

2A2

∑
ij

′
(δp,iδn,j + δn,iδp,j )(ri − rj )2,

r2
rel,nn = 1

2A2

∑
ij

′
δn,iδn,j (ri − rj )2.

(A5)

Thus,

r2
rel = r2

rel,pp + r2
rel,pn + r2

rel,nn. (A6)

These operators are convenient to consider in the eval-
uation of two-body matrix elements, because their matrix
elements are simply connected to those of r2

rel. The matrix
elements of r2

rel,pp are obtained by restricting those of r2
rel

to the proton-proton sector, i.e., 〈cd; J |r2
rel,pp|ab; J 〉pp =

〈cd; J |r2
rel|ab; J 〉pp, with matrix elements in other sectors

vanishing. Similarly, the matrix elements of r2
rel,pn are obtained

by restricting those of r2
rel to the proton-neutron sector, and the

matrix elements of r2
rel,nn are obtained by restricting those of r2

rel
to the neutron-neutron sector. Then, the relative square-radius
operators of interest are expressed in terms of these as

r2
p = (2A − Np)

Np

r2
rel,pp + (A − Np)

Np

r2
rel,pn − r2

rel,nn, (A7)

and, interchanging labels (p ↔ n),

r2
n = −r2

rel,pp + (A − Nn)

Nn

r2
rel,pn + (2A − Nn)

Nn

r2
rel,nn. (A8)

The equivalence of the expressions for r2
p and r2

n in Eq. (A1) to
those in Eqs. (A7) and (A8) may be verified in a straightforward
fashion [e.g., by expanding the squares in both expressions, so
that the resulting expressions contain only one-body and sep-
arable two-body terms as in Eq. (A4), and comparing terms].
The relations (A7) and (A8) immediately allow the two-body
matrix elements of r2

p and r2
n to be obtained in terms of those

of r2
rel. For instance, from the first term of Eq. (A7), we read off

〈cd; J |r2
p|ab; J 〉pp = [(2A − Np)/Np]〈cd; J |r2

rel|ab; J 〉pp.
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[2] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62, 054311
(2000).
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