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Nuclear clusters bound to doubly magic nuclei: The case of 212Po
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An effective α-particle equation is derived for cases where an α particle is bound to a doubly magic nucleus.
As an example, we consider 212Po with the α on top of the 208Pb core. We consider the core nucleus infinitely
heavy, so that the α particle moves with respect to a fixed center; that is, recoil effects are neglected. The fully
quantal solution of the problem is discussed. The approach is inspired by the Tohsaki-Horiuchi-Schuck-Röpke
wave function concept that has been successfully applied to light nuclei. Shell-model calculations are improved
by including four-particle (α-like) correlations that are of relevance when the matter density becomes low. In the
region where the α-like cluster penetrates the core nucleus, the intrinsic bound-state wave function transforms at a
critical density into an unbound four-nucleon shell-model state. Exploratory calculations for 212Po are presented.
Such preformed cluster states are very difficult to describe with shell-model calculations. Reasons for the different
physics behavior of an α-like cluster with respect to a deuteron-like cluster are discussed.
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I. INTRODUCTION

The shell model of nuclei has been proven as a very
successful concept, describing properly many features of the
structure of nuclei [1,2]. A mean-field potential is introduced,
defining single-nucleon states that are populated up to a
maximum energy that is the chemical potential or the Fermi
energy of the neutrons or protons, respectively. Pairing can
be included in a mean-field approach using a Bogoliubov
transformation among the single-particle orbits. In general,
the treatment of correlations is a difficult problem in a
single-nucleon mean-field approach beyond the two-particle
case with pairing. However, cluster formation may occur in
special situations, and the systematic treatment of correlations
beyond the mean-field theory is a great challenge in the actual
treatment of nuclear structure [3–15].

The problem of cluster formation in or on a nucleus is
that, besides the deuteron cluster, heavier clusters like t, 3He,
and α are very difficult to handle technically if one wants
to treat the relative motion of the cluster versus the core
nucleus correctly. In principle, this is a very complicated
three-, four-, etc., body problem. The solution should join two
limiting cases, the situation where the cluster is well inside
the core nucleus and a shell- model mean-field calculation
can be performed (Hartree-Fock-Bogoliubov) and the limit of
distant clusters. In the present work, we focus on four-particle
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(α-like) correlations. Because of spin-isospin degeneracy, such
correlations are quite strong and of relevance in low-density
nuclear systems [3–5].

The main ingredient is the introduction of a collective
variable, describing the center-of-mass (c.m.) motion of the
considered cluster, and variables that describe the intrinsic
motion. A suitable choice consists of Jacobian coordinates;
see Sec. III B for the four-particle case. The separation of
an energy eigenstate � of the few-particle cluster into a
contribution �(R), where R denotes the c.m. coordinate, and
an intrinsic part depending only on relative coordinates is strict
for a homogeneous system because the total momentum P is
conserved. This simple decomposition is not possible for finite
systems such as nuclei considered here. As shown in Sec. II,
in the general case of inhomogeneous systems, as, e.g., nuclei,
the intrinsic wave function ϕintr(ri − rj ,R) of the cluster (we
focus on four-nucleon clusters) also depends on the c.m.
position R. This is mainly attributable to the Pauli blocking
which depends on the local nucleon density near R. The
cluster (α-like) nucleonic wave function in momentum space
is blocked out inside the Fermi sphere. Also, the global form of
the four-particle wave function changes from a Gaussian-like
shape at low densities, where α-particle-like bound states are
formed, to a shape which corresponds to the wave function of
four single nucleons found in shell-model states; see Sec. IV
and [6].

The introduction of the c.m. coordinate R as a new dy-
namical collective degree of freedom simplifies the treatment
of correlated nuclear systems beyond the single-quasiparticle
approximation. Although the shell model gives a complete
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basis, the relevant coordinates are obtained only at the cost of
very high configurational mixing. As an example, the Tohsaki-
Horiuchi-Schuck-Röpke (THSR) ansatz [16] to describe the
Hoyle state in 12C is very successful because after separating
the c.m. motion of the α-like clusters from their intrinsic
motion, a simple form for the wave function can be given
which describes the Hoyle state in excellent approximation. In
contrast to the Brink ansatz, the c.m. motion should be treated
dynamically [7] with a full freedom of the wave function,
for instance, in what concerns its extension avoiding the
superposition of many states with α clusters fixed at different
positions.

The separation of the c.m. motion is crucial to simplify the
problem in the case of α-cluster formation. It has been applied,
besides in 8Be, also to other systems, like 16O or 20Ne [8,9]. It
is always of importance that not only the separation of the c.m.
motion from the intrinsic motion is performed, but also that the
Pauli blocking is respected by the full antisymmetrization of
the nucleonic wave function. Once these ingredients are taken
into account, the description is reasonable even in the case of
the deuteron. One may consider 6Li = α + d, 18F = 16O + d,
or 210Bi = 208Pb + d. However, as discussed in more detail
below, there exists a crucial difference between a two-body
cluster and the α-like cluster. Namely, as we have shown in
previous works [6,17], a quartet (α-particle) dissolves very
fast as a function of increasing baryonic density and around
nuclear-matter density nB,cluster ≈ n0/5, with n0 ≈ 0.15 fm−3

the saturation density, the α particle as a well-formed cluster
has disappeared. The deuteron is also dissolved as a bound
state, but Cooper pairing remains also at high densities. As
we know, standard pairing persists to much higher densities
and even beyond n0. Reasons for this difference between the
pairing and quartetting cases are given below. We want to
neglect the recoil of the core. Then a heavier nucleus like
212Po is a better choice, and the separation of the c.m. motion
refers only to the α-like cluster. Note that a similar problem to
separate different degrees of freedom arises also in other fields
such as the Born-Oppenheimer approximation in electron-ion
systems [18].

The treatment of correlations in nuclei with one α on
top of doubly magic nuclei such as in 212Po has a long-
standing tradition; see Refs. [10–15]. One α bound to the
doubly magic nuclei 16O to describe 20Ne was considered
using the generalized THSR wave function recently [8,9].
We use the implementation of correlations according to the
THSR approach [16], which is able to unify clustering in
nuclei with shell-model approaches, if the parameters of
the variational approach are chosen correspondingly. It is a
challenge to present nuclear structure calculations to give
a general in-medium description which contains both the
limit of cluster formation at low densities, i.e., outside the
nucleus, as well as the quasiparticle (shell-model) approach,
which is applicable at high densities, as already known from
nuclear-matter calculations in homogeneous systems [19];
see also [6] for the four-nucleon case.

Shell-model calculations tend to underestimate the decay
width of α emitting nuclei like 212Po substantially [20].
Preformation of α-like correlations is indispensable [21] to
explain the observed decay widths. Cluster states have been

considered already some time ago; see Ref. [22]. Only recently
have systematic approaches been considered which combine
the shell model with cluster model calculations; see [10,23] and
references given in there. The preformation amplitude obtained
there is in reasonable agreement with the experimental data;
the amount of {core + α} clustering amplitude in the parent
state of about 30% is found, which is much higher than
former microscopic estimates. A calculation using a modified
Woods-Saxon potential has been published recently [24]. In
spite of the fact that the form of the single-particle potential is
chosen ad hoc, the results are very reasonable. A microscopic
approach leading to this empirical pocket-structure mean-
field potential is, however, missing. Very recently [25] it
was shown that also in a restricted Hartree-Fock calculation
cluster formation can be described approximately; however,
the separation of the c.m. motion has to be performed in a
rigorous manner. For this, the single-particle approach must
be improved, treating few-particle correlations responsible in
forming bound states.

After explaining the separation of the c.m. motion in
Sec. II, α-like correlations are treated in Sec. III. Exploratory
calculations for 212Po are presented in Sec. IV, showing the
formation of a pocket in the effective α-cluster potential
near the surface of the doubly magic 208Pb core nucleus.
Discussions and conclusions are drawn finally in Sec. V.

II. THE c.m. AND INTRINSIC SCHRÖDINGER EQUATIONS

We consider a few-body cluster, in particular Ac nucleons
of mass m with two-body interaction Vij (ri ,rj ,r′

i ,r
′
j ). Further

details, such as isospin dependence of the interaction and of the
masses, are neglected so that mn ≈ mp = m. More details of
the interaction potential are discussed in the following sections.

To characterize the state of a system, we can introduce
the positions ri (coordinate space representation) or the
momenta pi (momentum space representation), whereas spin
and isospin are not considered explicitly. If the interaction
depends only on the relative positions ri − rj and there is
no external potential, the problem is homogeneous in space
and the total momentum is conserved. It is advantageous to
introduce new observables, the c.m. position R = ∑Ac

i ri/Ac,
the relative coordinates sj , j = 1 · · · Ac − 1, and, in partic-
ular, Jacobian coordinates. Canonically conjugate momenta
are the total momentum P = ∑Ac

i pi and the relative mo-
menta kj , j = 1 · · · Ac − 1. As an example, for Ac = 4 such
transformations to Jacobi-Moshinsky coordinates are given
in Sec. III B.

The introduction of the c.m. motion as a collective degree
of freedom is also of general importance if we consider
clusters (bound states) consisting of Ac particles. If the intrinsic
interaction is strong compared with external influences from,
e.g., core nuclei or homogeneous nuclear matter, such clusters
can be considered as new elementary particles as it may happen
at low density or when the cluster is quite far out in the surface
of a nucleus. Then, the dynamical behavior is only given by
the c.m. motion, whereas the intrinsic structure is nearly not
changing.
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In quantum theory, we try to subdivide the wave function
�(R,sj ) into two parts,

�(R,sj ) = ϕintr(sj ,R) �(R). (1)

This subdivision is unique [up to a phase factor �(R) →
eiα(R)�(R), ϕintr(sj ,R) → e−iα(R)ϕintr(sj ,R)] if, besides
the normalization

∫
dR dsj |�(R,sj )|2 ≡ ∫

d3R
∫

d3A−3sj

|�(R,sj )|2 = 1, one also imposes the individual normaliza-
tions (multiple integrals are not indicated explicitly within the
present section) ∫

dR |�(R)|2 = 1, (2)

and for each R ∫
dsj |ϕintr(sj ,R)|2 = 1. (3)

The Hamiltonian of a cluster may be written as

H =
(

− �
2

2Am
∇2

R + T
[∇sj

])
δ(R − R′)δ(sj − s′

j )

+V (R,sj ; R′,s′
j ), (4)

where the kinetic energy of the c.m. motion is explicitly given.
The kinetic energy of the internal motion of the cluster, T [∇sj

],

depends on the choice of the Jacobi coordinates (see Sec. III B
for A = 4). The interaction V (R,sj ; R′,s′

j ) contains the mutual
interaction Vij (ri ,rj ,r′

i ,r
′
j ) between the particles as well as

the interaction with an external potential (for instance, the
mean-field potential of the core nucleus) and is, in general,
nonlocal in space. We specify the interaction V (R,sj ; R′,s′

j )
when considering the α particle on top of a doubly magic
core nucleus in Secs. III and IV. At present, a local external
potential may be considered to explain the separation of the
c.m. motion.

To find stationary states, we take the expectation value of
(4) with (1) and minimize

δ

{∫
dR dsj dR′ ds ′

j �∗(R,sj )H�(R′,s′
j ) − E

∫
dR|�(R)|2

−
∫

dR F (R)
∫

dsj |ϕintr(sj ,R)|2
}

= 0. (5)

The variation of the wave function is not restricted after the
boundary conditions (2) and (3) are taken into account by the
Lagrange parameters E and F (R).

The variation with respect to �∗(R) yields the wave
equation for the c.m. motion

− �
2

2Am
∇2

R�(R) − �
2

Am

∫
dsjϕ

intr,∗(sj ,R)[∇Rϕintr(sj ,R)][∇R�(R)]

− �
2

2Am

∫
dsjϕ

intr,∗(sj ,R)
[∇2

Rϕintr(sj ,R)
]
�(R) +

∫
dR′ W (R,R′)�(R′) = E �(R), (6)

with the c.m. potential

W (R,R′) =
∫

dsj ds ′
j ϕintr,∗(sj ,R)

[
T

[∇sj

]
δ(R − R′)δ(sj − s′

j ) + V (R,sj ; R′,s′
j )

]
ϕintr(s′

j ,R
′). (7)

The variation of ϕintr,∗(sj ,R) at fixed R yields the wave equation for the intrinsic motion

− �
2

Am
�∗(R)[∇R�(R)][∇Rϕintr(sj ,R)] − �

2

2Am
|�(R)|2∇2

Rϕintr(sj ,R)

+
∫

dR′ ds ′
j �∗(R)

{
T

[∇sj

]
δ(R − R′)δ(sj − s′

j ) + V (R,sj ; R′,s′
j )

}
�(R′)ϕintr(s′

j ,R
′) = F (R)ϕintr(sj ,R). (8)

We emphasize that we should allow for nonlocal interactions.
In particular, the Pauli blocking considered below is nonlocal.
Also, the nucleon-nucleon interaction can be taken as a
nonlocal potential. To simplify the calculations, often local
approximations are used for the potentials. If in addition to
the external potential also further conditions have to be imple-
mented, further Lagrange multipliers are needed. For instance,
the antisymmetrization with respect to the states of the core nu-
cleus leads to a norm kernel N [26] to be considered in Sec. III.

III. THE α-PARTICLE CASE

A. Quasiparticle representation

We apply this formalism to the α-particle case, or, more
generally, to the correlation of four nucleons moving in a

nuclear system. The four nucleons are taken with different spin
or isospin (not indicated explicitly in the following), which
may form an α particle. The nucleon-nucleon interaction
VN−N is specified below; see Eq. (25). Concerning the nuclear
system, we consider first nuclear matter (Sec. III B). This
case is comparatively simple because it is homogeneous
and the total momentum P = ∑4

i pi of the few-particle
system is conserved. After that we consider finite nuclei.
For reasons to be discussed below, the formation of an α
particle bound to a doubly magic nucleus is of particular
interest.

In principle, the theoretical formulation of an α cluster on
top of a heavy doubly magic nucleus like 208Pb, the case to
be considered in this work, is rather straightforward. In the
so-called Tamm-Dancoff approximation (TDA), we consider
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the following Schrödinger equation:(
εn1 + εn2 + εn3 + εn4

)
�ν

n1n2n3n4

+1

2

∑
n′

1n
′
2

[
1 − f

(
εn1

)][
1 − f

(
εn2

)]
v̄n1n2n

′
1n

′
2
�ν

n′
1n

′
2n3n4

+ permutations = EνNn1n2n3n4�
ν
n1n2n3n4

. (9)

The εni
are the single-particle shell-model energies corre-

sponding to the mean-field potential of the 208Pb core, that
is, ĥi |ni〉 = εni

|ni〉, where ĥ is the single-particle Hamiltonian
of nucleons moving in the mean field of the lead core and
|ni〉 are the corresponding eigenfunctions. In this basis the
antisymmetrized matrix elements of the two-body force are
given by v̄n1n2n3n4 . Furthermore, the single-nucleon occupation
(τ = n,p) (Fermi-Dirac function at zero temperature) is
defined as

f
(
εnτ

) = 

(
μτ − εnτ

)
, (10)

and the projector on single-particle states above the doubly
magic core is given by the norm kernel

Nn1n2n3n4 = 〈n1n2n3n4|
(ĥ1 − μ1)
(ĥ2 − μ2)


(ĥ3 − μ3)
(ĥ4 − μ4)|n1n2n3n4〉, (11)

where 
(x) is the step function and the μi’s are the chemical
potentials of the valence nucleons. Of course, for the α-like
cluster considered here the chemical potentials are pairwise
equal.

The above four-particle Tamm-Dancoff equation is for-
mally easy. However, in the case of an α particle, i.e., an
asymptotically strongly bound cluster, the solution of this
equation is absolutely nontrivial. The problem lies in the fact
that one has to reproduce two limits correctly: On the one hand,
for the α particle being at large distances from the Pb core, the
solution should contain the correct asymptotic limit of a lead
core interacting only via the Coulomb force with an otherwise
unperturbed α. On the other hand, once the α-like four-nucleon
cluster gets inside the Pb core, its cluster aspect gets dissolved
and the four nucleons shall be described within the usual
shell-model approach. To have a consistent incorporation of
both limits is, as is well known, a very hard problem and has
only been achieved so far within crude approximations [12,24].
A further very important aspect of the α-particle cluster, to be
discussed in detail below in Sec. IV, is the fact that, in contrast
to the case of the deuteron, the binding of the α particle gets
lost quite abruptly once it enters the tail of the Pb core density.
We have studied this effect in quite some detail in a series
of earlier papers of α particles in low-density nuclear matter
[6,17]. We think that the effect persists in finite systems. One
could envisage to solve the above equation with a two-center
shell model, one for the α particle and the other for the lead
core. However, this procedure also is not free of problems
concerning, for instance, spurious center-of-mass motion, etc.
In this work we adopt a different strategy. Our focus is on how
the α particle is modified entering from the outside into the
region of finite density of the Pb core. We treat the c.m. motion
in local density approximation (LDA). However, the intrinsic
wave function of the α particle is considered fully quantal.

Within a quantum many-particle approach, the treatment
of the interacting many-nucleon system needs some approx-
imations which may be obtained in a consistent way from a
Green’s functions approach. In a first step, we can introduce
the quasiparticle picture where the nucleons are moving
independently in a mean field, described by a single-particle
Hamiltonian ĥ given above, with single-nucleon states |ni〉 as
the shell-model states of the 208Pb core. In the next step we go
beyond the quasiparticle picture and take the full interaction
within the Ac-particle cluster into account. In the case of four
nucleons considered here, we have for Eq. (9) in position space
the representation

[E4 − ĥ1 − ĥ2 − ĥ3 − ĥ4]�4(r1r2r3r4)

=
∫

d3r′
1 d3r′

2〈r1r2|B VN−N |r′
1r′

2〉�4(r′
1r′

2r3r4)

+
∫

d3r′
1 d3r′

3〈r1r3|B VN−N |r′
1r′

3〉�4(r′
1r2r′

3r4)

+ four further permutations. (12)

The six nucleon-nucleon interaction terms contain, besides the
nucleon-nucleon potential VN−N , also the blocking operator B,
which can be given in quasiparticle state representation. For
the first term on the right-hand side of Eq. (12), the expression

B(1,2) = [1 − f1(ĥ1) − f2(ĥ2)] (13)

results, which is the typical blocking factor of the so-called
particle-particle random-phase approximation [2]. The phase-
space occupation (we give the internal quantum state ν = σ, τ
explicitly)

fν(ĥ) =
occ.∑
n

|n,ν〉〈n,ν| (14)

indicates the phase space which, according to the Pauli
principle, is not available for an interaction process of a
nucleon with internal quantum state ν. Here we use the TDA
expression [1 − f1(ĥ1)][1 − f2(ĥ2)], which neglects the hole-
hole contributions which are of relevance in deriving the gap
equation if pairing is considered. In this way, our treatment
is similar to the study of Cooper pairs by Cooper [27],
which uses the TDA form of Eq. (13), only extended here
to the case of quartets. We do not consider the Bogoliubov
transformation introducing BCS quasiparticles so that we
discuss in the following the TDA expression. The Pauli
blocking factor can be given in the form of a projection
operatorPPauli = 1 − ∑occ.

n |n,ν〉〈n,ν| so that the quasiparticle
subspace used to form the cluster is orthogonal to the subspace
of the occupied shell-model states in the core nucleus. Then,
the norm kernel N can be dropped. In homogeneous matter,
the states below the Fermi energy are blocked out. In the LDA
used in the present work, the reduction of the phase space
owing to the Pauli principle is taken into account by the ansatz
for the wave function; see Eq. (37) below. Note, however, that
in the general case where the overlap between the occupied
shell-model states in the core nucleus and the wave function
of the α-like cluster remains finite, the norm kernel (9) and
(11) cannot be dropped. This problem shall be investigated in
future work. A systematic derivation of these expressions, also
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for the general case of finite temperatures, can be given using
the Matsubara Green’s function method [4,19].

Considering homogeneous nuclear matter characterized by
the nucleon densities nτ with τ = (n,p) (we drop the spin
variable σ ), the quasiparticle states are momentum eigenstates
so that the in-medium wave equation (12) becomes simpler
in momentum representation. The single-particle Hamiltonian
ĥi as well as the Pauli blocking operator B are diagonal in
momentum representation, and Eq. (12) reads for the α-like
state (we mark Fourier transformed quantities with a tilde)[

εmf
τ1

(p1) + εmf
τ2

(p2) + εmf
τ3

(p3) + εmf
τ4

(p4)
]
�̃4(p1p2p3p4)

+
∫

d3p′
1

(2π )3

∫
d3p′

2

(2π )3

{
1−fτ1

[
εmf
τ1

(p1)
]} {

1−fτ2

[
εmf
τ2

(p2)
]}

× ṼN−N (p1,p2; p′
1,p

′
2)�̃4(p′

1p′
2p3p4)

+ five permutations = E4(P)�̃4(p1p2p3p4). (15)

Here εmf
τ (p) = �

2p2/2m + V mf
τ (p) contains the quasiparticle

mean-field shift V mf
τ (p), and the Fermi function fτ (E) =

{exp[(E − μτ )/(kBT )] + 1}−1 becomes the step function

(EFermi,τ − E) for zero temperature T = 0, where EFermi,τ =
μτ denotes the Fermi energy of the neutrons or protons; see
Eq. (10). Note that Eq. (15) can be generalized for the case of
finite temperatures T . Then, the energy eigenvalue E4 as well
as the wave function �̃4 will depend in addition to nn, np also
on T . The solution of this four-particle in-medium equation
for homogeneous matter at arbitrary temperatures has been
investigated extensively; see [4,6,17,28,29].

We discuss the in-medium wave equation (15) more in
detail. The medium modifications originate from two effects.

(i) The self-energy shifts V mf
τ (p) contained in the single-

particle Hamiltonian ĥi . We denote these contributions
by the external part,

Ṽ (4),ext(p1p2p3p4) = V mf
τ1

(p1) + V mf
τ2

(p2)

+V mf
τ3

(p3) + V mf
τ4

(p4). (16)

(ii) The Pauli blocking terms that modify the nucleon-
nucleon interaction. We denote the interaction part
including the Pauli blocking by the intrinsic part

Ṽ (4),intr(p1p2p3p4,p′
1p′

2p′
3p′

4)

= {
1 − fτ1

[
εmf
τ1

(p1)
]} {

1 − fτ2

[
εmf
τ2

(p2)
]}

× ṼN−N (p1,p2; p′
1,p

′
2)δ(p3 − p′

3)δ(p4 − p′
4)

+ five permutations, (17)

the integrals in Eq. (15) being modified correspond-
ingly. In the account of the Pauli blocking in the
effective wave equation (15), it is indispensable to
have a conserving approximation which relates the

approximation for the single-nucleon self-energy to
the two-particle propagator [30]. Both the self-energy
in mean-field approximation and the Pauli blocking
given by the Fermi distribution are obtained in the
approximation of an uncorrelated medium. Higher-
order approximations to the in-medium few-particle
Green’s functions will improve the in-medium wave
equation allowing for correlations in the medium as
discussed in Sec. V.

B. α-like correlations in homogeneous nuclear matter

To solve the four-nucleon problem separating the c.m.
motion as a collective degree of freedom, we introduce
relative and c.m. Jacobi-Moshinsky coordinates (for details,
see Ref. [28]):

r1 = R + s/2 + s12/2, r2 = R + s/2 − s12/2,

r3 = R − s/2 + s34/2, r4 = R − s/2 − s34/2. (18)

In momentum space we have the conjugate Jacobi momenta:

p1 = P/4 + k/2 + k12, p2 = P/4 + k/2 − k12,

p3 = P/4 − k/2 + k34, p4 = P/4 − k/2 − k34. (19)

1. Zero-density limit: The free α particle

To be more transparent, we consider first the free α particle,
i.e., the zero-density case nB = 0. The ansatz (1) reads now
(we denote the free case by the index 0)

�0(R,s,s12,s34) = ϕintr
0 (s,s12,s34)�0(R). (20)

The Hamiltonian in position representation contains the
intrinsic kinetic energy

T4
[∇sj

] = − �
2

2m

∂2

∂s2
− �

2

m

∂2

∂s2
12

− �
2

m

∂2

∂s2
34

(21)

and the nucleon-nucleon interaction potential
V (4),intr(s,s12,s34; s′,s′

12,s
′
34) depending on intrinsic coordinates

only. The potential V (4),intr contains six pair interaction terms;
see Eq. (12), where the Cartesian coordinates are transformed
to Jacobian coordinates according to Eq. (18). In the
homogeneous system, there is no external force acting on the
α particle. Mean-field self-energy shifts and Pauli blocking
vanishes in the zero-density limit.

Because the interaction does not contain any dependence
on R, the intrinsic wave function ϕintr

0 (s,s12,s34) is also not
dependent on R [a trivial phase factor eiα(R) can be eliminated,
as discussed above, below Eq. (1)]. The system of wave
equations (6) and (8) is considerably simplified. With respect
to the application to homogeneous matter, it is convenient
to use the momentum representation. For the free α particle
(zero-density limit), Eq. (8) reads

�
2

2m

[
k2 + 2k2

12 + 2k2
34

]
ϕ̃intr

0 (k,k12,k34) +
∫

d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
Ṽ (4),intr(k,k12,k34; k′,k′

12,k
′
34)ϕ̃intr

0 (k′,k′
12,k

′
34)

= E(0)
α ϕ̃intr

0 (k,k12,k34) . (22)
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Here the four-nucleon interaction V (4),intr contains the six pair interactions in the free α cluster. The new Lagrange parameter
E(0)

α = F (R)/|�(R)|2 coincides with the intrinsic energy of the free α particle (of course, independent of R),

E(0)
α =

∫
d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

�
2

2m

[
k2 + 2k2

12 + 2k2
34

]∣∣ϕ̃intr
0 (k,k12,k34)

∣∣2

+
∫

d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
ϕ̃intr,*

0 (k,k12,k34)V (4),intr(k,k12,k34; k′,k′
12,k

′
34)ϕ̃intr

0 (k′,k′
12,k

′
34). (23)

The empirical value is E(0)
α = −Bα = −28.3 MeV.

In the free α-particle case, the c.m. potential W (R,R′),
Eq. (7), is local. According to Eq. (23), it reads W (R,R′) =
E(0)

α δ(R − R′) so that, in the zero-density case, Eq. (6) reads

�
2P 2

8m
�̃0(P) + E(0)

α �̃0(P) = E0(P) �̃0(P). (24)

Equation (22) is the Schrödinger equation for the intrinsic
motion of the α particle, and Eq. (24) is the Schrödinger equa-
tion for the c.m. motion. The Lagrange parameter E0(P) ≡
�

2/(8m)P 2 + E(0)
α has the meaning of the total energy of the

α particle.
The wave functions �0(R),ϕintr

0 (s,s12,s34) or their Fourier
transforms follow, solving the Schrödinger equations. The
solution for the c.m. motion, Eq. (24), is trivial in the case
of homogeneous matter. In position representation results a
plain wave with wave vector P. To solve the wave equation for
the intrinsic motion (22) we have to define the interaction. We
choose a separable interaction [6] with Gaussian form factor,

VN−N (p1,p2; p′
1,p

′
2)

= λe−(p1−p2)2/4γ 2
e−(p′

1−p′
2)2/4γ 2

δ(p1 + p2 − p′
1 − p′

2), (25)

and find the approximate solution from a variational approach.
In particular, for Gaussian wave functions as a simple

variational ansatz, the c.m. motion can be easily separated.
For vanishing c.m. motion, P = 0, we have for the internal
wave function

ϕ̃intr
0 (p1,p2,p3,p4)

= 1
norme−(p2

1+p2
2+p3

3+p2
4)/b2

δ(p1 + p2 + p3 + p4), (26)

with the normalization
∑

p1,p2,p3,p4
|ϕ̃intr

0 (p1,p2,p3,p4)|2 = 1,
or, explicitly,

ϕ̃intr
0 (k,k12,k34) = 26(2π )9/4

b9/2
e−2k2

12/b
2
e−2k2

34/b
2
e−k2/b2

. (27)

With potential parameters λ = −1449.6 MeV fm3 and γ =
1.152 fm−1 in Eq. (25), the binding energy and rms radius
of the free α particle are reproduced, using the Gaussian

variational ansatz for the intrinsic motion. To show this, we
calculate the intrinsic energy according to Eq. (23),

Ê(0)
α (b) = 9

8

�
2

m
b2 + 6λ

γ 6b3

π3/2(b2 + 2γ 2)3
, (28)

with a minimum E(0)
α = −28.3 MeV for the ground-state

energy at b = 1.034 fm−1. The parameter b reproduces

the nucleonic point rms radius
√

〈r2〉 = 1.45 fm as b2 =
9/(4〈r2〉) = 1.069 fm−2.

2. α-like correlations in homogeneous nuclear
matter at finite densities

We continue to discuss the case of homogeneous nuclear
matter, which is of relevance when we later introduce a local-
density approach. In homogeneous systems, the separation
of the c.m. motion is exact because the c.m. momentum is
conserved. Because there the effective c.m. potential W (R,R′)
depends only on R − R′ and, thus, gradient terms like ∇R ϕintr

can be dropped, we have from Eq. (6)

− �
2

8m
∇2

R�(R) +
∫

d3R′ W (R − R′)�(R′) = E4 �(R).

(29)

After Fourier transformation (remember, the transformed
quantities are marked with a tilde), we have[

− �
2

8m
P2 + W̃ (P)

]
�̃(P) = E4(P) �̃(P). (30)

To identify different contributions to the effective c.m. po-
tential W̃ (P), we consider the in-medium wave equation (15)
given in momentum representation. The eigenvalue E4(P) will
depend on the total momentum P not only owing to the kinetic
energies of the single-nucleon states, P 2/(8m) but also owing
to the mean-field shifts V mf

τ (p) that may be absorbed into the
chemical potential in the rigid shift approximation, as well as
owing to the Pauli blocking terms fτ [εmf

τ (p)] [approximately,
this dependence of E4(P) on P can be described introducing
an effective mass of the α-like cluster].

The wave equation for the intrinsic motion (8) becomes
also simplified in homogeneous systems,

T4
[∇sj

]
ϕintr(sj ,R) +

∫
d3R′ d9s ′

jV
(4)(R,sj ; R′,s′

j )
�(R′)
�(R)

ϕintr(s′
j ,R

′) = F (R)

|�(R)|2 ϕintr(sj ,R). (31)

Whereas the intrinsic kinetic energy T4[∇sj
] is given by (21), the interaction V (4)(R,sj ; R′,s′

j ) contains in addition to the mutual
interaction also the medium effects, in particular, the self-energy shifts and the Pauli blocking terms. For homogeneous systems
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it is convenient to pass over to momentum representation. With the Jacobi-Moshinsky momenta (19), Eq. (15) reads now
[cf. Eqs. (8) and (22)]

�
2

2m

[
k2 + 2k2

12 + 2k2
34

]
ϕ̃intr(k,k12,k34,P) +

∫
d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
Ṽ (4)(k,k12,k34; k′,k′

12,k
′
34; P)ϕ̃intr(k′,k′

12,k
′
34,P)

= W̃ (P)ϕ̃intr(k,k12,k34,P). (32)

Here we have used that for homogeneous systems the interac-
tion term Ṽ (4) is diagonal with respect to the total momentum
P. The new Lagrange parameter W̃ (P) is the Fourier transform
of F (R)/|�(R)|2 and can be considered as the intrinsic energy
of the four-nucleon system.

The effective in-medium interaction
Ṽ (4)(k,k12,k34; k′,k′

12,k
′
34; P) contains the external part

(16) as well as the intrinsic part (17) (to be transformed to
Jacobi-Moshinsky momenta). In addition to the terms which
describe the intrinsic motion of the free α particle, additional
contributions arise from the single-nucleon self-energy shift
V mf

τ and the Pauli blocking term fτ [εmf
τ (p)]. Accordingly, we

decompose the effective c.m. potential,

W̃ (P) = W̃ ext(P) + W̃ intr(P), (33)

into an external part W̃ ext(P), collecting the mean-field shifts
V mf

τ of the surrounding matter, and an intrinsic part W̃ intr(P)
which contains the intrinsic kinetic energy as well as the mutual
interaction of the constituents including the Pauli blocking. As
seen from Eqs. (15) and (16), the quasiparticle mean-field shift
V mf

τ (p) gives the first contribution,

W̃ ext(P) =
∫

d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3
|ϕ̃intr(k,k12,k34,P)|2

×
[
V mf

τ1

(
P
4

+ k
2

+ k12

)
+ V mf

τ1

(
P
4

+ k
2

− k12

)

+V mf
τ1

(
P
4

− k
2

+ k34

)
+ V mf

τ1

(
P
4

− k
2

− k34

)]
,

(34)

to the Fourier transform of the four-particle c.m. potential
W (R,R′), Eq. (7), which depends for homogeneous systems
only on R − R′. This term acts on the free nucleons in
quasiparticle states, as well as on the bound nucleons in the
cluster. If the momentum dependence of the mean-field shift
V mf

τ (p) can be neglected (rigid shift approximation), both the
scattering states as well as the bound four-nucleon states are
shifted by the same amount. Then, the contribution to the shift
of the binding energy (the difference between scattering-state
and bound-state energies) is canceled. Simple approximations
for the mean-field shifts in homogeneous matter are, e.g., given
by Skyrme forces or relativistic mean-field energy shifts and
are not discussed here in detail. Let us mention, however, that
the mean-field shifts are most of the time incorporated into a
rigid shift not depending on p and an effective mass, which
give only a small contribution; see [28] for further details.
For finite nuclei, expressions for the mean-field shift like the
Woods-Saxon potential are given in Sec. IV.

A second contribution to the influence of the surrounding
matter on the four-nucleon system in Eq. (15) is attributable to
Pauli blocking, given by the occupation fτ [εmf

τ (p)] of single-
quasiparticle nucleon states. As already given above Eq. (10)
and below Eq. (15), in homogeneous matter (no dependence
on R), we adopt the single-nucleon occupation (τ = n,p) as

fτ,p = fτ

[
εmf
τ (p)

] = f (p; μτ ,T = 0) = 

[
μτ − εmf

τ (p)
]
.

(35)

The chemical potentials μτ coincide at zero temperature with
the Fermi energy, μτ = EFermi,τ = (�2/2m)(3π2nτ )2/3 and are
determined by the respective densities.

The evaluation of the Pauli blocking term for arbitrary
temperatures and arbitrary c.m. momenta P has been given
in Ref. [29]. Some special results for the zero temperature
case that are not discussed in Ref. [29] are given below. For
the Pauli blocking, we consider the wave equation (15) for zero
total momentum, p1 + p2 + p3 + p4 = 0. Note again that we
replaced the RPA blocking term [1 − fτ1 (εp1 ) − fτ2 (εp2 )] with
the TDA term [1 − fτ1 (εp1 )][1 − fτ2 (εp2 )], which excludes the
participation of already occupied single-particle states (below
the Fermi surface) from the propagation of the four-nucleon
state. The medium is treated as uncorrelated, and also the
formation of a BCS state is excluded.

3. Energy of intrinsic motion in homogeneous matter at P = 0

We can expand W̃ (P) with respect to P but in this work we
only evaluate the terms for P = 0. For the external part W̃ ext(P)
the higher orders in P are zero if the mean-field potential is
local. In general, as is well known, within a gradient expansion
the next term can be absorbed introducing effective masses. In
particular, the mean-field shift V mf

τ (p) in a homogeneous sys-
tem can be treated this way, leading to a rigid shift V mf

τ (0) and
to the introduction of an effective nucleon mass m∗. We discuss
here only the lowest order of the expansion with respect to the
single-nucleon momentum p. The introduction of the effective
nucleon mass is straightforward; see Ref. [28], where corre-
sponding expressions for the homogeneous case are given.

The in-medium wave equation (15) can be given in a
Hermitian form and can be solved with a variational approach.
After a projected product ansatz, self-consistent equations
to solve the single-nucleon wave function are considered in
Ref. [17]. For simplicity, here we use a Gaussian ansatz
[see Eq. (27)] that reads

ϕ̃intr(p1,p2,p3,p4) = 1
normϕτ1 (p1)ϕτ1 (p2)ϕτ1 (p3)ϕτ1 (p4)

× δ(p1 + p2 + p3 + p4), (36)
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with

ϕτ (p) = e−p2/b2

[p − pFermi,τ ], (37)

so that the Fermi sphere pFermi,τ = (3π2nτ )1/3 is blocked out
and b is a variational parameter. To simplify the calculations we
average the Fermi energies with respect to the isospin τ = n,p
(symmetric matter), so that we perform the calculations for an
excluded Fermi sphere pFermi = (3π2nB/2)1/3 with the total
baryon density nB = nn + np.

Within the variational calculation, we have to evaluate the
norm of the trial function (37) as well as the kinetic and poten-
tial energy. The Pauli blocking is already taken into account
by the choice of the trial wave function and must not be con-
sidered anymore. After transforming to the internal Jacobian
coordinates k,k12,k34, one has to perform multiple integrals;
see Appendix A.

The intrinsic motion of the four-nucleon system contains the
kinetic energy and the interaction energy within the cluster,
taking into account Pauli blocking. Besides the shift W̃ ext,
which acts on the nucleons both in the scattering (single-
nucleon) states as well as in bound states, the dependence
of the effective c.m. potential (7) W̃ = W̃ ext + W̃ intr on the
c.m. momentum P and the baryon density is determined by
the internal part W̃ intr, which is sensitive to the formation of
bound states. The dependence of W̃ intr(P) on P is attributable
to the Pauli blocking term B and has been considered in detail
in Ref. [29]. Here we restrict ourselves to the value W̃ intr at
P = 0. Using Eq. (32), we separate the mean-field shifts from
Ṽ (4)(k,k12,k34; k′,k′

12,k
′
34; P), which give the contribution

W̃ ext. The in-medium equation for the intrinsic part of the
α-particle wave function is given by

(
W̃ intr − �

2

2m

[
k2 + 2k2

12 + 2k2
34

])
ϕ̃intr

4 (k,k12,k34) =
∫

d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
V intr

4 (k,k12,k34,k′,k′
12,k

′
34,P = 0)ϕ̃intr

4 (k′,k′
12,k

′
34),

(38)

where the four-nucleon interaction term V intr
4 contains also the Pauli blocking terms for P = 0; see Eqs. (12) and (13). The

explicit form is obtained from

V intr
4 (p1,p2,p3,p4,p′

1,p
′
2,p

′
3,p

′
4) = [1 − f (p1)][1 − f (p2)]VN−N (p1,p2; p′

1,p
′
2)δ(p3 − p′

3)δ(p4 − p′
4) + five permutations (39)

after transforming to Jacobian momenta (19). A solution of this equation within a variational approach is described for the free
α particle in Sec. III B 1. We do the same at finite density with the variational ansatz (36) and (37); see also Appendix A. In
contrast to the expression (23) for the zero-density case, for arbitrary P the minimum of

W̃ (P) = �
2

2m

∫
d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

[
k2 + 2k2

12 + 2k2
34

]|ϕ̃intr(k,k12,k34,P)|2 + W̃ ext(P)

+
∫

d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
ϕ̃intr,∗(k,k12,k34,P)V intr

4 (k,k12,k34,k′,k′
12,k

′
34,P)ϕ̃intr(k′,k′

12,k
′
34,P) (40)

has to be found with Eqs. (36) and (37) and b again is the
single variational parameter. W̃ ext(P) is given by (34) and V intr

4
is given by (39) with arbitrary P.

In contrast to the free α-particle case detailed in Sec. III B 1,
the eigenvalue W̃ intr now becomes dependent on the density
which enters the Pauli blocking via the Fermi momentum. The
results are shown in Fig. 1. An interpolation formula which
reproduces these results is given below in Eq. (45).

We discuss the result for W̃ intr in more detail. To add
four nucleons (neutrons and protons, two spin orientations)
to nuclear matter with density nτ , we consider two cases
which are based on the scenario which we described in the
Introduction; that is, the α particle as a bound state only exists
in the far surface. As soon as the α enters the region of higher
density, its binding fades away and the four nucleons go over
into shell-model states (eventually with pairing). Therefore,
we see the following.

(i) At first, the four nucleons are treated as free, uncor-
related particles which correspond to the shell-model
states. If uncorrelated, free nucleons are introduced in
nuclear matter with density nτ ; this can happen only
above the Fermi energy so that the minimum energy to

add four uncorrelated nucleons is
W̃ intr,free[nτ ] = 2EFermi(nn) + 2EFermi(np)

= �
2

m
[(3π2nn)2/3 + (3π2nn)2/3]. (41)

The four nucleons are introduced at the corresponding
Fermi energy with zero total momentum. Only the
kinetic energy is needed to determine the edge of the
continuum of scattering states. This four-particle en-
ergy for single-nucleon states is shown for symmetric
matter (nn = np = nB/2) in Fig. 1 with the (blue) line
starting at zero energy.

(ii) Below the continuum of scattering states, bound
states may occur in the four-nucleon system at very
low densities. In the zero-density limit, we have the
formation of the α particle at the bound-state energy
E(0)

α = −28.3 MeV for the internal motion, the energy
of the c.m. motion vanishes at P = 0. The energy of the
four-nucleon bound state is shifted at finite density of
the surrounding nuclear matter owing to Pauli blocking
so that

W̃ intr,bound[nτ ] = E(0)
α + W̃ Pauli(nτ )

= −28.3 MeV + W̃ Pauli(nτ ). (42)
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FIG. 1. (Color online) Internal four-nucleon energy (no c.m.
motion) in a medium with nucleon density nB = nn + np . The
continuum edge of free single-particle states is given by 4EFermi

[Eq. (41)]. At zero baryon density, the four-nucleon energy is given
by the binding energy of the α particle, E0

α = −B0
α = −28.3 MeV.

With increasing density, the binding energy B0
α is decreasing owing

to the Pauli blocking [Eq. (42)] (stars). The four-nucleon bound state
disappears at nB ≈ 0.03 fm−3. A fit to the calculated values, Eq. (45),
is also shown.

The Pauli blocking shift W̃ Pauli(nτ ) for nuclear matter
is caused by the terms containing the phase-space
occupations fτ (E).

The minimum of the energy leads, with increasing density,
to a wave function ϕ̃τ (p) which has near the Fermi momentum
a sharp maximum for the distribution of the occupation of the
single-nucleon states. It is expected for any added nucleons
that, at minimum energy, it occupies the Fermi momentum
if the interaction is neglected. We obtain a solution at the
continuum edge of single-particle states at high densities,
whereas below a critical value nB,cluster ≈ 0.03 fm−3 a bound
state is formed. The corresponding energies as a function of
density are shown in Fig. 1 with the red asterisks. Note that
the sharp appearance of a bound state at a critical density
where blue and red lines cross is possibly a consequence of
the simple variational ansatz that contains only one parameter
b. Until now, there is no exact solution of the four-particle
problem near the so-called Mott point [4] where, owing to
Pauli blocking, the bound state is dissolved in the continuum of
scattering states. The same applies also for finite temperatures,
discussing, for instance, the disappearance of quartetting with
increasing density [6], which seems to be a sharp transition to
pairing. In principle, one cannot exclude, however, a fast but
smooth merging of both solutions.

The variational approach with the ansatz (37) contains the
width parameter b, which is shown as function of the baryon
density in Fig. 2. Below nB,cluster ≈ 0.03 fm−3, where an α-like
bound state exists, the change in the width parameter is small.
At the critical density nB,cluster the uncorrelated four-nucleon
solution becomes favorable, and the solution of the variational
approach jumps to the corresponding minimum of energy.
Above nB,cluster, the local minimum of the energy as function
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FIG. 2. (Color online) Width parameter b according to Eq. (37)
as function of the baryon density. Below nB ≈ 0.03 fm−3 a bound
state (α-like) arises (full line). Above nB ≈ 0.03 fm−3, a resonance
occurs; see Fig. 1 (dotted line).

of b is also shown in Fig. 2 which may be interpreted as
a resonance. This particular behavior of the cluster wave
function has also been observed in other approaches (see
Ref. [17]), as well as in an effective four-body equation of
the Alt-Grassberger-Sandhas (AGS) type that includes the
dominant medium effects, i.e., self-energy corrections and
Pauli blocking in a consistent way [31], so that it is assumed
to be valid, also improving the variational approach.

As just discussed, in contrast to the two-nucleon case where
the pairing solution exists also in the degenerate case, the α-like
four-nucleon bound state may disappear abruptly at nB,cluster,
which can be explained considering the density of states near
the Fermi energy [6]. Let us discuss this difference in more
detail. Supposing that the c.m. of the particles is at rest (P = 0),
we obtain for the two-particle case the level density

g2(ω = 2μ) ∝
∫

d3P

∫
d3kn̄P/2−kn̄kδ(2μ−eP/2−k−ek)δ(P)

= ∝ √
μ, (43)

where n̄k = 1 − nk with nk = 
(μ − ek) and ek = k2

2m
.

Analogously, we obtain for the four-particle level density
at the Fermi energy with total c.m. at rest

g4(ω = 4μ) ∝
∫

d3Pd3P ′d3kd3k′n̄P/2−kn̄P2+kn̄P′2−k′ n̄P′/2+k′

×δ(4μ−eP/2−k−eP/2+k−eP′/2−k′ − eP′/2+k′ )

× δ(P + P′) = 0. (44)

We see that in the four-particle case, for positive μ, energy
conservation and the phase-space constraint cannot be fulfilled
simultaneously and, thus, no four-particle correlations can
build up around the Fermi energy. This is a quite dramatic
difference to the two-particle case, where the level density
remains finite at the Fermi level. For negative μ, i.e., for the
case where there is binding, the Fermi step nk is zero and
no qualitative difference between two- and four-particle cases
exists. The two-particle case is, therefore, very exceptional
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with respect to all heavier clusters. Therefore, when the α
particle approaches the 208Pb core, the internal structure of
the α-like cluster remains relatively stable until it is dissolved
quite abruptly at the critical density nB,cluster = 0.03 fm−3,
which is very low. In addition to the deformation by the
Fermi momentum, described above, saying that no states in
momentum space are occupied below the Fermi level, the
change in the variational parameter b, which describes the
width of the Gaussian wave function, is moderate. It changes
from its value b = 1.034 fm−1 at nB = 0 to b = 0.84 fm−1

at nB,cluster = 0.03 fm−3, which means that the α-particle size
increases by about 20%.

In conclusion, considering homogeneous nuclear matter,
additional nucleons (two neutrons, two protons) can form an
α-like cluster. In the zero-density limit the binding energy
amounts to 28.3 MeV. As soon as the density takes a finite
value, owing to the Pauli blocking, the binding energy is
shifted. Bound states are possible for nB � 0.03 fm−3. To give
a simple relation for the dependence on the baryon density, the
fit formula derived within a variational approach to solve the
in-medium four-nucleon wave equation,

W̃ Pauli(nB) = 4515.9 nB − 100 935 n2
B + 1 202 538 n3

B, (45)

can be used, nn = np = nB/2. For nB � 0.03 fm−3, no bound
state is formed, and the four nucleons added to nuclear matter
are implemented on top of the Fermi energy μ; see Fig. 1.

The intrinsic wave function (36) and (37) is R dependent via
the Fermi momentum if the inhomogeneous case is considered,
for instance, an α particle on top of a heavy nucleus whose c.m.
position is fixed at Rcore = 0. Also, the intrinsic energy W (R)

introduced in Eq. (6) becomes dependent on R via nτ (R). This
is discussed in Sec. IV with the introduction of an effective
potential for the α-like state near the lead core in 212Po.

C. α-like correlations in a nucleus,
Thomas-Fermi approximation

Now we discuss the formation of α-like correlations for
a finite nuclear system, in particular, the nucleus 212Po
considered below. A mean-field potential V mf

τ (r) acts on the
nucleons, taken as local and depending on isospin τ . As
is well known from the shell model, a harmonic oscillator
potential or a Woods-Saxon like potential can be used to
determine single-nucleon orbits that are occupied up to the
Fermi energy. Often this potential is considered as a local one,
only depending on the nucleon coordinate r. For comparison,
in the homogeneous case considered before, any dependence
on r disappears, and the mean-field contribution is a constant
that can be added to the intrinsic energy.

The solution of the four-nucleon system using the c.m.
coordinate R as a new degree of freedom as well as relative
coordinates is not as simple as in the homogeneous case. We
start from the general expressions given in Sec. II. In particular,
we neglect the terms containing ∇Rϕintr

4 (sj ,R) so that Eqs. (6)
and (8) reduce to

− �
2

8m
∇2

R�(R) +
∫

d3R′ W (R,R′) �(R′) = E4 �(R),

(46)

with the effective c.m. potential

W (R,R′) =
∫

d9sj d9s ′
j ϕ

intr,∗
4 (sj ,R)

{
T4

[∇sj

]
δ(R − R′)δ(sj − s′

j ) + V4(R,sj ; R′,s′
j )

}
ϕintr

4 (s′
j ,R

′). (47)

The in-medium four-particle interaction V4(R,sj ; R′,s′
j ) follows from Eq. (15). Besides the intrinsic nucleon-nucleon interaction

VN−N , it contains also two medium effects, the quasiparticle mean-field shift V mf
τ (r), which leads to the contribution W ext(R,R′)

[see Eqs. (34) and (50) below], and the Pauli blocking terms ∝fτ (εmf
τ )VN−N , which leads to the contribution W Pauli(R,R′); see

Eqs. (38) and (42). Both contributions W ext(R,R′), W Pauli(R,R′) depend on the density of the nuclear medium and vanish for the
free α-particle case. In general, these medium contributions are nonlocal and depend on R,R′.

The variation of the functional (5) with respect to ϕ
intr,∗
4 (sj ,R) at fixed R yields∫

d3R′ d9s ′
j

{
T4

[∇sj

]
δ(R − R′)δ(sj − s′

j ) + V4(R,sj ; R′,s′
j )

} �(R′)
|�(R)|2 ϕintr

4 (s′
j ,R

′) = Eintr
4 (R)ϕintr

4 (sj ,R), (48)

where we introduced the intrinsic energy Eintr
4 (R) = F (R)/|�(R)|2 in analogy to Eqs. (23) and (32). In contrast to the free

α-particle energy E(0)
α , the intrinsic energy contains in-medium effects and depends on the c.m. position R. If the effective c.m.

potential W (R,R′) is taken in local approximation, we have W (R,R′) = Eintr
4 (R)δ(R − R′).

In general, these equations are nonlocal in R space owing to the potential energy V4(R,sj ; R′,s′
j ), which contains the mean-field

contribution V ext
4 defined below as well as the intrinsic interaction V intr

4 within the four-nucleon cluster [cf. also Eqs. (16)
and (17)],

V4(R,sj ; R′,s′
j ) = V ext

4 (R,sj ; R′,s′
j ) + V intr

4 (R,sj ; R′,s′
j ). (49)

We discuss both contributions separately together with some approximations.
Usually, the mean field of the nucleus is taken as local in position space, neglecting momentum dependence which makes

also W ext(R,R′) local. Below we use the Woods-Saxon potential V mf
τ (r) that depends on the position ri of the four nucleons,

τ = n,p. Transforming to Jacobi coordinates we have for the interaction with an external (mean-field) potential

V ext
4 (R,sj ; R′,s′

j ) = [
V mf

τ1

(
R + 1

2 s + 1
2 s12

) + V mf
τ2

(
R + 1

2 s − 1
2 s12

) + V mf
τ3

(
R − 1

2 s + 1
2 s34

) + V mf
τ4

(
R − 1

2 s − 1
2 s34

)]
× δ(R − R′)δ(s − s′)δ(s12 − s′

12)δ(s34 − s′
34). (50)
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For the effective c.m. potential W (R,R′) = W ext(R)δ(R −
R′) + W intr(R,R′) we have the mean-field contribution

W ext(R) =
∫

d3s d3s12 d3s34

∣∣ϕintr
4 (sj ,R)

∣∣2
V ext

4 (R,sj ; R,sj ).

(51)
Similar to the introduction of a double-folding potential, the ef-
fective c.m. interaction term owing to the mean-field potential
follows after averaging with the intrinsic density distribution.

As a further component to the effective c.m. potential
energy, the Pauli blocking appears. The Pauli principle, as
consequence of antisymmetrization, means that states below
the Fermi energy are blocked if further nucleons are added
to the lead core (we consider 212Po). We denote this as the
intrinsic four-particle energy W̃ intr[nτ (R)] [Eqs. (38) and (39),
and, more explicitly, Eqs. (42) and (45)] of the intrinsic
motion which is a functional of the nucleon density nτ (R)
of the surrounding medium. We obtain these local-density
expressions within a more general approach which is able to go
also beyond the LDA and makes the terms that are neglected
in the LDA more transparent. In principle, the full quantal
solution may be possible. Here we consider the Thomas-Fermi
approximation as a simple approximation to the LDA. The
reader not interested in the technical details of how to get to
LDA and the approximations involved, can jump directly to
Eq. (55), where the same expression for the intrinsic energy as
in (40) is given, only in LDA.

The intrinsic interaction including blocking terms B reads
in position space (i = 1, . . . ,4) [cf. Eq. (39) in momentum
representation]

V intr
4 (ri ; r′

i) =
∫

d3r ′′
1 d3r ′′

2 〈r1r2|
[
1 − f1

(
εn1

)][
1 − f2

(
εn2

)]
× |r′′

1r′′
2〉〈r′′

1r′′
2|VN−N |r′

1r′
2〉δ(r′

3 − r3)δ(r′
4 − r4)

+ five permutations, (52)

where 〈r1|f1(εn1 )|r′〉 which is defined with the single-nucleon
quasiparticle states ψn(r), is given in a local approximation in
the following.

We can introduce Jacobi coordinates to separate
the c.m. motion and perform a Fourier transformation
to momentum representation. As above, the nucleon-
nucleon interaction can be taken in a separable form so
that

〈r′′
1r′′

2|VN−N |r′
1r′

2〉δ(r′
3 − r′′

3)δ(r′
4 − r′′

4)

=
∫

d3k′
12

(2π )3

d3k′′
12

(2π )3
eis′′

12·k′′
12−is′

12·k′
12VN−N (k′′

12; k′
12)

× δ(s′ − s′′)δ(s′
34 − s′′

34)

= 〈s′′,s′′
12,s

′′
34|VN−N |s′,s′

12,s
′
34〉. (53)

More difficult is the treatment of the Pauli blocking term
B, which is an exchange term and nonlocal in position space.
We delegate it to Appendix B, where the corresponding
approximations are given. In future work we may eliminate
some of the approximation made here.

We recover in Thomas-Fermi approximation the expression
for the shift given in the homogeneous case, only with the
parametric dependence on the c.m. position R via the baryon
density nB(R). Though we gave here the whole series of
approximations leading in the end to LDA or TF expressions,
where, in principle, corrections can be evaluated, we give
below general arguments in favor of such a local procedure
for the c.m. motion of the α particle.

After the local approximation with respect to R was
introduced, we solve Eq. (48) within a variational approach.
With Eq. (51), which contains also the intrinsic wave function,
the minimum of the functional

[
W ext

4 (R) +
∫

d9sj ϕ
intr,∗
4 (sj ,R)T4

[∇sj

]
ϕintr

4 (sj ,R)

+
∫

d9sjd
9s ′

j d
9s ′′

j ϕ
intr,∗
4 (sj ,R)B(R,sj ,s′

j ) V
(4)
N−N (s′

j ,s
′′
j )ϕintr

4 (s′′
j ,R)

] [∫
d9sj

∣∣ϕintr
4 (sj ,R)

∣∣2
]−1

= Eintr
4 (R), (54)

within a given set of functions ϕintr
4 (sj ,R) gives an approximation for the intrinsic wave function and the intrinsic energy. The Pauli

blocking term B depends on the position R. In the approximation considered here, it is diagonal in momentum representation,
and the dependence on sj ,s′

j follows after Fourier transformation, as shown in Eq. (B9).
In the following section we perform exploratory calculations with the separable interaction given above. It is of advantage

to use a mixed representation where the intrinsic part is given in momentum representation. Again we use the Fermi blocked
Gaussian ansatz (37) for the intrinsic wave function with the width parameter as the only variational input (which becomes density
dependent and, via the local density, also R dependent). The intrinsic interaction and the Pauli blocking give contributions to
the potential owing to the interaction between the nucleons 1 and 2 (the other five follow from permutations and give rise to the
factor six below). Explicitly, Eq. (54) reads[

W ext(R) + �
2

2m

∫
d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

[
k2 + 2k2

12 + 2k2
34

] ∣∣ϕ̃intr
4 (k,k12,k34,R)

∣∣2

+ 6
∫

d3k

(2π )3

d3k12

(2π )3

d3k′
12

(2π )3

d3k34

(2π )3
ϕ̃

intr,∗
4 (k,k12,k34,R)

[
1 − f1

(
R,

k
2

+ k12

)] [
1 − f2

(
R,

k
2

− k12

)]

×VN−N (k12,k′
12)ϕ̃intr

4 (k,k′
12,k34,R)

] [∫
d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

∣∣ϕ̃intr
4 (k,k12,k34,R)

∣∣2
]−1

= Eintr
4 (R). (55)
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This is now the LDA version of Eq. (40). We emphasize
that the approach given here makes it possible to improve on
LDA. In particular, the Pauli blocking is only approximately
determined by the baryon density nB(R) at the c.m. position R.
As discussed in context with Eq. (B7), the baryon density and,
correspondingly, the Fermi momentum pFermi(nB) have to be
averaged over the neighborhood of R corresponding to the spa-
tial extension of the intrinsic wave function ϕintr

4 (s,s12,s34,R).
An improvement of the LDA is, e.g., given if for f

Wigner
1 the

actual position such as R + (s + s12)/2 is taken.
The interaction term contains the Pauli blocking,

which is simple in momentum representation because it is
diagonal in that representation. For P = 0 we used within
a variational approach a Gaussian internal wave function
ϕ̃intr

4 (k,k12,k34; R), where in the phase space {k,k12,k34} the
volume |k + k12/2| � kFermi(R), |k − k12/2| � kFermi(R),
|k + k34/2| � kFermi(R), and |k − k34/2| � kFermi(R) is
excluded. Consequently, the variational ansatz for the internal
wave function should vanish within that excluded volume.
The blocking term is taken in local-density (Fermi gas)
approximation. The nucleon-nucleon interaction VN−N

without blocking terms gives the bound-state energy of the
α particle E(0)

α = −28.3 MeV. We separate this part so that
W int

4 (R) = E(0)
α + W Pauli(R). The dependence of W Pauli(R) on

the surrounding baryon density nB(R) is given by Eq. (45).
This nucleon density nB(R) is determined by the core nucleus,
which may be described in shell-model approximation.

Note that the Thomas-Fermi approximation given here, i.e.,
the introduction of a “local momentum,” is possible because
the inverse width parameter b of the intrinsic wave function of
the α-like bound state remains nearly unchanged; it is reduced
only by 17% when it merges with the quasicontinuum of
shell-model single quasiparticle states. This means that the α
particle, even up to the breakup point, remains a rather compact
entity with small extension, of the same order as the surface
width of the core nucleus entailing that a local approach can be
used at least as a first reasonable attempt. This is quite opposite
to the pairing case, where the size of the Cooper pairs can be as
large as the nucleus itself, invalidating a LDA approach. The
derivation given here makes it possible to go beyond LDA if
the corresponding approximations are improved. In principle,
also a fully quantal solution can be envisaged.

IV. EXPLORATORY CALCULATIONS

For demonstration we consider 212Po, i.e., an α particle
on top of the doubly magic 208Pb core nucleus [32]. We take
Woods-Saxon mean-field potentials [24,33,34], which are used
for the description of nuclei in the lead region. In particular,
for the neutrons of the 208Pb core we use

V mf
n (r) = − 40.6

1 + e(r−Rn)/a
, (56)

with Rn = 1.347A1/3 = 7.891 fm and a = 0.7 fm. For the
protons we take

V mf
p (r) = − 58.7

1 + e(r−Rp)/a + V Coul(r), (57)
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FIG. 3. (Color online) Coulomb potential and isospin-dependent
Woods-Saxon potentials for the 208Pb core.

with Rp = 1.275A1/3 = 7.554 fm and a = 0.7 fm. The
Coulomb potential produced by the lead core is taken for a
homogeneously charged sphere as (units in MeV, fm)

V Coul(r) = 82
1.44

r
, r > Rp;

V Coul(r) = 82
1.44

Rp

[
3

2
− 1

2

r2

R2
p

]
, r < Rp. (58)

These potentials are shown in Fig. 3; see also Fig. 2 of Ref. [24].
On the two-neutron, two-proton cluster (α-like cluster)

acts the potential given by Eqs. (51) and (50). As a local
approximation we take the mean-field potential at the c.m.
position R, i.e., 2V mf

n (R) + 2V mf
p (R) + 2V Coul(R), to simplify

the calculations, but avoid performing the spatial average with
the intrinsic wave function. The correction

�V ext(R) = W ext(R) − [
2V mf

n (R) + 2V mf
p (R) + 2V Coul(R)

]
,

(59)

owing to the average over the intrinsic wave function
in W ext(R) is of interest in the low-density region nB �
0.03 fm−3, where α-like bound states can be formed, but it
is assumed to be small because the potentials are smooth
and the α particle is well localized in coordinate space so
that this correction �V ext(R) can be neglected. The local
approximation where the mean-field potential W ext(R) is
replaced by the sum of the mean-field potentials of the four
constituents at the c.m. position R can be improved by taking
into account the correction �V ext(R).

For the internal part W intr
4 (R) of the c.m. potential we have

to estimate the baryon density nB(R) that is responsible for
the Pauli blocking. To be consistent within the local-density
approach given here, we use the Thomas-Fermi approximation
in the average baryon potential W ext

4 (R)/4,

nB(R) = 2

3π2

[
2m

�2

(
μ − 1

4
W ext

4 (R)

)]3/2

. (60)
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FIG. 4. (Color online) Local effective potential W (R) (62) (red
solid line) with respect to the lead 208Pb core for the Woods-Saxon-
like distribution (59), A = 208. The Thomas-Fermi density and the
Fermi energy 4EFermi of the four added nucleons is shown, as is the
measured energy (Q value) of the emitted α particle. The distance
at which the density becomes the critical value nB = 0.0292 fm−3

where the α particle is dissolved is indicated.

From the mass number A = ∫
nB(R)d3R = 208 of the core

nucleus, the value μ = −5.504 MeV is obtained for the
chemical potential (Fermi energy).

We consider the case of inhomogeneous nuclear matter
where, compared with the homogeneous case, the c.m. motion
is not trivial. Instead of Eq. (30) for the homogeneous case,
we have now from Eq. (6)[

− �
2

8m

∂2

∂R2
+ W (R)

]
�(R) = E4�(R), (61)

with

W (R) = Eintr
4 (R) = W ext(R) + W intr(R)

= W ext(R) + E(0)
α + W Pauli(R). (62)

Note that, in general, the effective c.m. potential W (R) is not
local in space but depends on two variables R and R′.

The effective c.m. potential W (R) is shown in Fig. 4. At
large distances, only the bound-state energy of the free α par-
ticle remains, limR→∞ W (R) = E(0)

α = −B(0)
α = −28.3 MeV.

For finite distances R > 14 fm, the Coulomb repulsion
between the α particle and the lead core dominates the effective
potential. Below R ≈ 14 fm, the mean-field [4V mf(R)] of
the lead core becomes relevant, tempting to attract the α
particle. At distances inside the Coulomb barrier, the intrinsic
four-nucleon energy shifts strongly downward. As soon as the
core nucleons have a finite density (within the Thomas-Fermi
model at R ≈ 8.46 fm), the blocking of the α particle acts.
The shift W Pauli(R) reduces the binding energy at distances
R where the densities of the α particle and the core nucleus
overlap. The bound state disappears if the baryon density nB

approaches the value nB,cluster = 0.0292 fm−3, which happens
at Rcluster ≈ 7.72 fm. At this point, the four-nucleon system has
the (local) Fermi energy [Eq. (41)], with 4μ ≈ −22.016 MeV,
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FIG. 5. (Color online) Insertion of Fig. 4.

which is the edge of the quasiparticle continuum. At higher
densities, the solution of the four-nucleon problem is given by
the single-nucleon shell states, and the empty states above the
Fermi energy EFermi,τ = μτ are occupied by the added four
nucleons on top of the 208Pb core. An interesting result is the
occurrence of a “pocket” near R ≈ 8.5 fm in the effective α
potential W (R). Details are shown in the insertion in Fig. 5.

The calculations can be improved using a more detailed
nucleon-nucleon interaction VN−N for the α particle such as
the Volkov force. Furthermore, the intrinsic wave function can
be improved within the variational approach similar to the
treatment given in Ref. [6], so that the α-like cluster becomes
more stable and the transition to the continuum states becomes
smoother. The Pauli blocking is overestimated using P = 0.
A more appropriate expression for the Pauli blocking should
also consider finite c.m. momenta for the bound, α-like cluster
state; see Ref. [29].

The wave function �(R) is calculated solving the corre-
sponding Schrödinger equation (61). The pocket of W (R)
shown in Fig. 4 is quite deep (−51.3 MeV at R = 8.46 fm) and
a bound state at −32.47 MeV appears. The reason for the sharp
minimum is the sharp disappearance of the nucleon density in
the Thomas-Fermi model at the distance R = 8.46 fm where
the mean-field potential V mf(R) coincides with the chemical
potential. More realistic nucleon densities of heavy nuclei
show longer tails so that the Pauli blocking acts already at
larger values of R. Nevertheless, we used the Thomas-Fermi
model for our exploratory calculations because the physical
background for the appearance of the potential pocket becomes
more transparent. Future calculations have to improve this
approximation so that the density distribution in the tail that is
of relevance in our approach is treated quantum mechanically.
See Appendix C for further discussions.

V. DISCUSSION AND CONCLUSIONS

The physics of cluster formation in homogeneous matter is
reasonably well understood; however, the numerical treatment
is quite complex (see Refs. [6,17]). There, the c.m. momentum
is a good quantum number so that the separation into the c.m.
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motion and the relative motion is simple. In addition to the
formation of clusters which are modified by the surrounding
matter, we have also the formation of quantum condensates
such as pairing and quartetting.

In the present work, we consider cluster formation in inho-
mogeneous nuclear systems, in particular, α-like clustering in
heavy nuclei. We treated the particular situation where only a
single α particle sits on top of a doubly magic nucleus which,
thus, can be treated as a shell-model core (Fermi gas). In
particular, we considered 212Po, that is, one α on top of the
208Pb core. The α particle as a cluster plays a rather particular
role among possible clusters. The physics of the deuteron is
very different, as explained in the main text. Heavier clusters
may be treated with the fission-fusion scenario. At which
mass number of the cluster the transition from our present
description to the latter one occurs is not very clear. In any
case, the α particle is by itself a doubly magic nucleus (the
lightest) and, therefore, very stable with its first excited state
at ∼20 MeV. However, as we have shown in earlier works [29],
light clusters including the α particle are extremely sensitive
to Pauli blocking from surrounding matter. Already at a fifth
of saturation density, the α particle more or less suddenly
becomes dissolved and gets mixed up with the surrounding
Fermi gas. Translated to our α + 208Pb case, this means that an
α approaching the Pb core stays a compact almost elementary
particle until it feels the tail of the Pb density at around ρ0/5.
There it quite suddenly dissolves and its four nucleons go
over into single-particle shell-model states with, eventually,
pair correlations in the open shells on top of the 208Pb core.
However, before its dissolution, the α particle already feels
the attraction of the mean field of the core, so that one can
understand the formation of a potential pocket at the surface
of the Pb core.

As we know, the description of a well-defined cluster on
top of a core nucleus is extremely difficult in a one-center
shell-model description. Therefore, the main ingredient of this
work is the introduction of the c.m. motion as a collective
degree of freedom and an intrinsic motion that characterizes
the cluster. To go beyond the single-quasiparticle approach,
four-nucleon correlations are then described by an in-medium
Schrödinger equation. Besides the mean field, the crucial
effect of the surrounding nuclear system is Pauli blocking
as a consequence of antisymmetrization. As just explained,
an α-like bound state can exist in nuclear matter only at low
densities, nB � nB,cluster ≈ 0.03 fm−3 and will be dissolved
at higher densities into nearly free single-quasiparticle states
forming the continuum of scattering states. It is clear that
in a heavy nucleus only states near the Fermi energy can
form an α-like cluster because only these single-particle states
extend to the low-density regions at the surface of the nucleus.
Deeper mean-field energy levels are situated in the region of
higher densities. There, the role of cluster formation becomes
irrelevant because of strong Pauli blocking.

The introduction of the c.m. motion and the intrinsic motion
for clusters in nuclei, with full antisymmetrization of the
nucleon wave function, was investigated within the THSR
approach for light, low-density nuclei [7,16]. This gives a
simple and adequate description of the properties of nuclei with
cluster structure such as the Hoyle state. We reconsidered the

preformation of α-like correlations within a generalized THSR
approach which considers a fully antisymmetrized state of an
α-like cluster and the core nucleus. The c.m. motion of both
constituents has to be treated in a consistent way. In contrast to
our recent calculation for 20Ne [8,9], we here replaced the wave
function of the doubly magic core nucleus with a shell-model
wave function. Furthermore, we neglected the c.m. motion of
the core nucleus because we treat a heavy system. However,
for the nonlocalized α particle the c.m. motion is taken into
account. After separation of the intrinsic motion within the α
cluster, an effective potential has been derived which describes
the c.m. motion of the α cluster under the influence of Pauli
blocking with the surrounding medium.

The approach presented in this work to include few-
nucleon correlations, in particular, bound states, is based on
a first-principles approach to nuclear many-body systems.
However, several approximations have been performed to
make the approach practicable and to make the physical
content transparent. In particular, derivatives of the intrinsic
wave function ϕintr

4 (sj ,R) with respect to the c.m. coordinate
R have been neglected. For the nucleon-nucleon interaction
VN−N a simple separable potential was taken, and Woods-
Saxon-like expressions have been used for the mean-field
potential V mf

τ (r). Furthermore, the effective c.m. potential
V c.m.

4 (R) is taken in local approximation, and instead of the
correct self-consistent mean-field single-particle states for a
nucleus, the Thomas-Fermi (TF) model as a LDA was used.
In general, the Pauli blocking as an exchange term leads to a
nonlocal single-particle potential. These approximations can
be improved in more sophisticated future calculations. The
TF approximation for the c.m. motion of the α particle can
be justified from the fact that, before its abrupt dissolution,
the α particle is still quite compact in extension, its radius
having increased by only about 20%. Therefore, the extension
of the α particle is never much larger than the surface width of
the Pb core qualifying the TF approximation as a reasonable
lowest-order approach.

The intrinsic energy, called W (R), of the α particle, thus
becomes a function of the distance R of the center of the core
nucleus. It has two contributions. The effect of W Pauli(R) is to
reduce the attractive shift W ext(R) + E(0)

α of the four-nucleon
cluster at distances R where the densities of the α particle
and the core nucleus overlap. It compensates the binding
energy if the nucleon density nB(R) exceeds about 1/5 of
the saturation density. This gives a microscopic derivation
for the potential inferred by Delion and Liotta [24]. The
approach [24] considers a fixed position of the α particle as
described by the pocket at a fixed position. This resembles
the adiabatic approach in describing fission of 212Po into two
daughter nuclei. The approach presented here considers the
nonlocalized α particle where the c.m. motion is expressed
by the wave function �(R). The corresponding in-medium
Schrödinger equations for the c.m. motion and the intrinsic
motion are derived within a quantum statistical approach.
This may serve also to further elaborate on recent approaches
using constrained Hartree-Fock calculations that have been
performed for dilute nuclei showing a fragmentation of the
mean field and correspondingly the appearance of fragments
[25], in particular, to implement the c.m. motion.

034304-14



NUCLEAR CLUSTERS BOUND TO DOUBLY MAGIC . . . PHYSICAL REVIEW C 90, 034304 (2014)

Let us discuss the relation of our present study of 212Po
with respect to the similar situation of 20Ne, which has been
treated extensively already 40 y ago with the resonating group
method (RGM) (see Matsuse et al. [35]) and also recently with
the THSR wave function [7–9]. In both cases one considers an
α particle on top of a doubly magic core. In the case of 20Ne the
core 16O is light and its c.m. motion must be treated correctly.
This is done with the RGM as well as with THSR approaches.
However, in the case of 212Po the 208Pb core is too massive for
an application of those methods for technical reasons. This,
however, makes it possible to treat the 208Pb core as infinitely
heavy and then the corresponding treatment boils down to a
four-nucleon TDA equation as discussed earlier in the text. It
is interesting to see that the effective α particle-core potentials
for 20Ne and 212Po show some similarity. In both cases they
become strongly attractive inside the Coulomb barrier, see,
e.g., Fig. 5 in Ref. [35] and Figs. 3 and 4 in present work. It
would be interesting to also analyze the THSR approach in
this respect. A rigorous separation of the c.m. motion and the
antisymmetrization can be made using Gaussian functions for
the internal cluster wave functions as well as for the relative
c.m. motion. This has been shown in several papers related
to the THSR approach [36–38]. In particular, let us outline
the relation of our present treatment with the case of 20Ne
consisting of 16O and an α cluster [8]. Contrary to the latter
case, we here supposed that the big cluster is infinitely heavy,
so that we can represent it as a shell-model nucleus with a
fixed c.m. position at Rc.m. = 0, from where all coordinates are
measured. The antisymmetrization of the total wave function
which we had in the case of 20Ne is then here replaced with
the Pauli blocking factors. This means that the THSR approach
has the advantage that the α particle is treated in a correlated
medium in contrast to the single-particle, uncorrelated Pauli
blocking term (
 function in momentum space) considered in

this work. A cluster-mean-field approach [4] would improve
that. The extension of the original THSR approach to heavy
nuclei is numerically not feasible at present. However, in
the doubly magic 208Pb core nucleus the α-like correlations
are not strong so that a shell-model approach is reasonable.
Nevertheless, a comparison of the results obtained using the
THSR ansatz with the approach given in our work if applied to
light nuclei such as 20Ne would be of interest (as well as with
former RGM calculations [26] and recent investigations [39]).
The intrinsic wave function of the α particle in 212Po has the
same meaning as in 20Ne case. The c.m. wave function �(R)
plays the role of the relative wave function in the 20Ne case.
The difficult point is the Pauli blocking factor which is a very
nonlocal operator.
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APPENDIX A: EVALUATION OF THE VARIATIONAL
FUNCTIONAL EQ. (40)

We look for the minimum of the intrinsic energy, see
Eq. (40), of an α-like cluster,

W̃ intr(P) = �
2

2m

∫
d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

[
k2 + 2k2

12 + 2k2
34

] |ϕ̃intr(k,k12,k34,P)|2

+
∫

d3k

(2π )3

d3k12

(2π )3

d3k34

(2π )3

d3k′

(2π )3

d3k′
12

(2π )3

d3k′
34

(2π )3
ϕ̃intr,∗(k,k12,k34,P)V intr

4 (k,k12,k34,k′,k′
12,k

′
34,P)ϕ̃intr(k′,k′

12,k
′
34,P).

(A1)

The evaluation has been done for a special ansatz for the wave
function, Eqs. (36) and (37), which contain a unique variational
parameter b. The in-medium four-particle interaction V intr

4 is
given by (39) with arbitrary P. The Pauli blocking is fulfilled
by the ansatz (37) for the wave function so that it must not
considered any more. For simplicity, we consider only the
c.m. momentum P = 0. (To discuss finite P, a series expansion
with respect to powers of P can be performed.) We have
to transform from the single-nucleon momenta pi to Jacobi-
Moshinsky momenta ki [Eq. (19)].

To simplify the calculations we average the Fermi energies
with respect to the isospin τ = n,p (symmetric matter), so
that we perform the calculations for an excluded Fermi sphere

pFermi = kF = (3π2nB/2)1/3 with the total baryon density
nB = nn + np.

The kinetic energy gives a 9-fold integral; the potential
energy (after exploiting the δ functions) gives a 12-fold
integral. We use spherical coordinates where the integrals
over the angles can be performed. By reason of isotropy,
we can fix the direction of k and denote the cos θ of the
directions of k12,k34,k′

12 relatively to k with z12,z34,z
′
12,

respectively; i.e., z12 = cos(k12,k), etc. In Jacobi momenta,
the expressions F (k,k12,k34) which have to be integrated have
the form

F (k,k12,k34) ≡ F (k,k12,z12,k34,z34), (A2)
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occurring for the norm or the kinetic energy and with additional variables k′
12,z

′
12 for the potential energy. For the functionsF

considered here, the integral over k is divided into two parts:∫
d3k d3k12 d3k34F (k,k12,k34) = 4π

∫ 2kF

0
dkG<(k,k12,k34) + 4π

∫ ∞

2kF

dkG>(k,k12,k34). (A3)

Next we consider the integral over k12. The excluded region in momentum space which is occupied by the Fermi sphere leads to
a restriction of the limits of the integrals over z12 = cos(k12,k). Geometrical considerations give for k � 2kF the limits where
the Fermi sphere is touched,

G<(k,k12,k34) =
∫

d3k12H
<(k,k12,z12,k34) = 2π

[∫ kF +k/2

√
k2
F −k2/4

k2
12dk122

∫ 0

(k2
F −k2/4−k2

12)/kk12

dz12H
<(k,k12,z12,k34)

+
∫ ∞

kF +k/2
k2

12dk12

∫ 1

−1
dz12H

<(k,k12,z12,k34)

]
, (A4)

and for k � 2kF ,

G>(k,k12,k34) =
∫

d3k12H
>(k,k12,z12,k34)

= 2π

[ ∫ k/2−kF

0
k2

12dk12

∫ 1

−1
dz12H

>(k,k12,z12,k34) +
∫ ∞

k/2+kF

k2
12dk12

∫ 1

−1
dz12H

>(k,k12,z12,k34)

+
∫ k/2+kF

k/2−kF

k2
12dk122

∫ 0

(k2
F −k2/4−k2

12)/kk12

dz12H
>(k,k12,z12,k34)

]
. (A5)

The remaining integrals are performed in the same way. For
the special trial function (37), the integral over the angular part
z12, etc., can be performed analytically. The norm, the kinetic
energy, and the potential energy are calculated as integrals over
k after the relative momenta k12,k34,k

′
12 have been integrated

over. Thus, the 9- or 12-fold integrals are reduced to 3- or 4-fold
integrals, respectively, that can be handled. For a given density,
which also determines the blocked phase space for the four-
particle wave function, the trial wave function (37) contains
the parameter b, which describes how fast the wave function
is decreasing with increasing single-particle momentum. For
a similar evaluation of multiple integrals, see also [17].

With this variational ansatz, the minimum of the energy
is determined for the optimal b parameter for each density.
Results are given in Sec. III B 3. To improve the variational
solution of the wave equation (8) for the intrinsic motion, the
class of functions (37) can be extended.

APPENDIX B: LOCAL APPROXIMATION FOR THE PAULI
BLOCKING TERM

As an example, we consider the term 〈r1r2|
f1(εn1 )|r′′

1r′′
2〉 = 〈r1|f1(εn1 )|r′′

1〉δ(r′′
2 − r2) occurring

in B. We transform into a “mixed” (Wigner)

representation,

〈r1|f1(En1 )|r′′
1〉 =

∫
d3p1

(2π )3
eip1·(r1−r′′

1)f
Wigner
1

(
r1 + r′′

1

2
,p1

)
.

(B1)

The occupation of the phase space is given by the quasiparticle
wave functions ψn(r) (we take r1+r′′

1
2 = R1),

f
Wigner
1 (R1,p1) =

∫
d3s1e

−ip1·s1

occupied∑
n

ψ∗
n

(
R1 − s1

2

)

×ψn

(
R1 + s1

2

)
. (B2)

Within the Thomas-Fermi model which corresponds to a LDA
(or rather “local momentum approximation”), we have

f
Wigner
1 (R1,p1) ≈ 


{
EFermi[nB(R1)] − p2

1

2m

}
; (B3)

see also Eq. (35). The phase-space occupation is determined by
the Fermi energy EFermi(nB) = (�2/2m)(3π2nB/2)2/3, where
we consider for simplicity the symmetric case nn = np =
nB/2 as in Sec. III B. Now the baryon density nB(R1) depends
on the position R1.

Again we introduce Jacobi coordinates to extract the c.m.
motion as collective degree of freedom so that

〈R,s,s12,s34|f1
(
εn1

)|R′′,s′′,s′′
12,s

′′
34〉 =

∫
d3p1

(2π )3
eip1·(s12−s′′

12)f
Wigner
1

(
R + s + s′′

12

2
,p1

)
×δ(s′′

34 − s34)δ(s′′ − s − 2R′′ + 2R)δ(s′′
12 − s12 − 4R′′ + 4R). (B4)
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To evaluate the contribution of V intr
4 to the intrinsic energy we use a “mixed” representation where the intrinsic motion is given

in momentum representation,

ϕ̃intr
4 (k,k12,k34,R) =

∫
d3s d3s12 d3s34e

−ik·s−ik12·s12−ik34·s34ϕintr
4 (s,s12,s34,R). (B5)

To evaluate the Pauli blocking contribution to the effective c.m. potential W (R,R′) [Eqs. (47), (49), and (52)], we have to average
over the intrinsic motion. We consider here only one of the different terms (the others follow analogously). We give the general
expression, which is complicated but will immediately be reduced to a more tractable form below in (B9):

F1(R,R′) =
∫

d9sj d9s ′
j d9s ′′

j d3R′′ ϕintr,∗
4 (s,s12,s34,R)〈R,s,s12,s34|f1

(
εn1

)|R′′,s′′,s′′
12,s

′′
34〉

× 〈s′′,s′′
12,s

′′
34|VN−N |s′,s′

12,s
′
34〉δ(R′′ − R′)ϕintr

4 (s′,s′
12,s

′
34,R

′), (B6)

F1(R,R′) =
∫

d3s d3s12 d3s ′′
12 d3k d3k12 d3k34d

3k′ d3k′
12 d3k′′

12
d3p1

(2π )21
ϕ̃

intr,∗
4 (k,k12,k34,R)eik·s+ik12·s12

× eip1·(s12−s′′
12)f

Wigner
1

(
R + s + s′′

12

2
,p1

)
eik′ ·(s−s12/2+s′′

12/2)+ik′′
12·s′′

12VN−N (k′′
12; k′

12)

×ϕintr

(
k′,k′

12,k34,R − s12 − s′′
12

4

)
δ

(
R′ − R + s12 − s′′

12

4

)
. (B7)

As expected, expression (B6) is not local in R. The Wigner function limits the p1 integral as
∫ pFermi[nB (R+ s+s′′12

2 )]
0

d3p1

(2π)3 . We can

expand near R so that additional terms near the Fermi surface are neglected. Also, the wave function ϕ̃intr(k′,k′
12,k34,R − s12−s′′

12
2 )

can be expanded near R. Neglecting higher-order contributions, we have

F1(R,R′) ≈
∫

d3s d3s12 d3s ′′
12 d3k d3k12 d3k34d

3k′ d3k′
12 d3k′′

12
d3p1

(2π )21
ϕ̃

intr,∗
4 (k,k12,k34,R)eik·s+ik12·s12

×eip1·(s12−s′′
12)f

Wigner
1 (R,p1) eik′ ·(s−s12/2+s′′

12/2)+ik′′
12·s′′

12VN−N (k′′
12; k′

12)ϕ̃intr
4 (k′,k′

12,k34,R)δ(R′ − R), (B8)

which is diagonal in R space. Higher-order terms are connected with intrinsic coordinates sj and are averaged out with the
intrinsic wave function. The local approximation contains leading terms but can be improved in a systematic way.

Now we can integrate over the intrinsic coordinates sj and obtain

F1(R,R′) =
∫

d3k d3k12 d3k34
d3k′

12

(2π )12
ϕ̃

intr,∗
4 (k,k12,k34,R)f Wigner

1 (R,k + k12) VN−N (k12; k′
12)ϕintr

4 (k′,k′
12,k34,R)δ(R′ − R).

(B9)

The integral over k1 = k + k12 is restricted to the Fermi
sphere, k1 � kFermi,τ [n(R + s1+s′

1
4 )]. We can expand with re-

spect to s1+s′
1

4 so that the integral over the Fermi sphere gets
additional contributions at EFermi,τ . In zeroth order, we have
only the Fermi energy at the c.m. position R, but this can be
improved taking the terms s1+s′

1
4 into account.

APPENDIX C: IMPROVED DENSITY PROFILE

The Thomas-Fermi model gives a rather sharp pocket
so that the α particle is well formed at the surface of the
core nucleus. However, then the core nucleus may form
further clusters so that the single-nucleon Thomas-Fermi
approximation is not consistent. The Thomas-Fermi model is
a quasiclassical approach which cannot describe the behavior
of the tails of the density distribution, which are of relevance
for the cluster formation. Thus, the nucleon density abruptly
disappears at the value of the radius where the Fermi energy
coincides with the potential energy. Real density distributions

are more smooth and show long tails also in the region where
the potential energy is larger than the Fermi energy owing to
quantum tunneling. A shell-model calculation would give a
better description of that region.

Because we are interested in the region where the nucleon
density is low, we discuss here the consequences of long-
range tails of the density. We use the nucleon density pro-
file according to Shlomo [40], nB(R)=0.17{1+ exp[−(R −
6.4914)/0.54]}−1 (units in fm), for the lead core. This density
profile is shown in Fig. 6. The region of finite density,
where Pauli blocking occurs, is extended to higher distances,
above the value 8.46 fm obtained in the Thomas-Fermi
model. The critical density where the α particle is dissolved
occurs at the distance R = 7.3416 fm, which is smaller
than the value given by the Thomas-Fermi model. These
considerations are based on the given density profile, and
instead of the theoretical estimates also experimental density
distributions can be used. In a more detailed approach,
different density profiles for neutrons and protons can be
considered.

034304-17
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FIG. 6. (Color online) Nucleon density nB (r) (blue solid lines)
according to Shlomo [40] compared with the Thomas-Fermi approach
(blue dashed lines). The local effective potential W (R) (62) (red
dashed lines) according to the Thomas-Fermi approach is compared
with an effective potential (red solid lines), which describes the Pauli
blocking of the long-ranged density tails at the surface of the lead
core. The ground-state energy level (green dash-dotted line) is also
shown.

Now we have to introduce the mean-field potential of
the core nucleons. If the position of the Fermi energy
(−22.014 MeV) remains unchanged, the Woods-Saxon poten-
tial yields a too-big density at R = 7.3416 fm. Because now
the density profile is inferred owing to the Shlomo approach,
we can adapt the Woods-Saxon potential correspondingly so
that the value of the critical density is reproduced within the
Thomas-Fermi approximation. For our present estimation, the
contribution of the neutron potential (56) to the four-nucleon
potential was reduced by the factor 0.585. Then the condition
for the disappearance of the α particle at the critical radius Rcrit

is correctly implemented. If we solve the c.m. Schrödinger
equation with the effective c.m. potential we find the bound-
state energy at −22.088 MeV.

For illustration, in Fig. 6 the nucleon density for the 208Pb
core according to Shlomo [40] is shown. It is clearly seen
that the tail of the nucleon density nB extends to larger
values of R. Therefore, the pocket becomes shallow, and
the bound-state energy of the four-nucleon (α-like) bound
state becomes less negative. In an exploratory calculation
where the Pauli blocking is calculated with the nucleon density
profile according to Shlomo [40], the minimum of the pocket
is −27.21 MeV at R = 7.93 fm. The corresponding solution

of the c.m. Schrödinger equation (61) yields a bound-state
energy at −22.088 MeV in better agreement with the empirical
value −19.52 MeV. More systematic calculations based on
shell-model states instead of the Thomas-Fermi model will
provide us with more accurate results solving the c.m. motion
of the α-like cluster on top of a heavy core nucleus.

The possibility to describe four-particle correlations and
preformed α-like clusters near the surface can provide us
with a theoretical tool to attack the cluster structure of nuclei
like 212Po, where, until now, only semiempirical approaches
were known to determine the α decay. α-like correlations
can survive in nuclear matter only up to densities nB � 0.03
fm−3, i.e., in the outer region of the nucleus. Preformation
of α clusters and the α-like content of the four-nucleon wave
function can be treated within the approach given here. For
this, we consider the four-nucleon wave function �(R,sj ) (1).
The intrinsic part ϕintr is normalized for each R, and the c.m.
part �(R), which follows from the solution of a wave equation
with the effective c.m. potential W , is normalized as well. For
an estimation, we assume that in the region where the α-like
cluster may exist, the overlap of the intrinsic wave function
with the free α intrinsic wave function is equal to one, and it
is zero in the remaining part where intrinsic wave function of
the four-nucleon system is given as product of single-nucleon
states. We integrate over the space R � Rcluster to find the
amount of α clustering,

S =
∫ ∞

0
d3R|�(R)|2
[

ncritical
B − nB(R)

] ≈ 0.371, (C1)

where Rcluster denotes the radius where the baryon density has
the critical value where α-like clusters are destroyed because
of Pauli blocking, nB(Rcluster) = ncritical

B = 0.03 fm−3. This
result is in reasonable agreement with other estimations; see
Refs. [10,23]. Note that the intrinsic state remains α-like as far
as the change of the width parameter b is small.

The results given here should be improved by systematic
shell-model calculations. We emphasize that our treatment,
worked out with some approximations to allow for exploratory
calculations, gives the possibility to improve the approxima-
tions, in particular, the LDA, the neglect of the gradient terms
of the intrinsic wave function, and the introduction of nonlocal
interaction potentials. Furthermore, a systematic improvement
of the Green’s functions approach allows also to include
correlations in the nuclear matter, which is treated here as
an uncorrelated medium, in contrast to the THSR approach,
which treats four-particle correlations coherently.
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