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We present a fully perturbative calculation of the quartet-channel proton-deuteron scattering length up to
next-to-next-to-leading order in pionless effective field theory. We use a framework that consistently extracts the
Coulomb-modified effective-range function for a screened Coulomb potential in momentum space and allows
for a clear linear extrapolation back to the physical limit without screening. Our result of 4ap-d = (10.9 ± 0.4)
fm agrees with older experimental determinations of this quantity but deviates from potential-model calculations
and a more recent result from Black et al., which find larger values around 14 fm. As a possible resolution to this
discrepancy, we discuss the scheme dependence of Coulomb subtractions in a three-body system.
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I. INTRODUCTION

The quartet-channel proton–deuteron scattering length
4ap-d is a fundamental observable in the nuclear three-body
sector. The most recent determination of this quantity was
carried out by Black et al. [1]. Including a new measurement
of the p-d cross section performed at Triangle Universities
Nuclear Laboratory (TUNL) for very low proton center-of-
mass energies of only 163 and 211 keV, they extracted a
value of 4ap-d = (14.7 ± 2.3) fm. While this falls in line with
theoretical extractions of the quantity based on potential-model
calculations [2–4] that find values for 4ap-d close to about
13.8 fm (see Table 1 in Ref. [1] for details), it deviates quite
significantly from older experimental determinations of 4ap-d

that find values between (11.11+0.25
−0.24) fm [5] and (11.88+0.4

−0.1) fm
[6] (cf. Table 2 in Ref. [1]). As a contribution to resolving this
discrepancy, we present a new theoretical extraction of 4ap-d in
pionless effective field theory which only relies on two-body
deuteron parameters as input. Our result obtained in a fully
perturbative next-to-next-to-leading-order calculation agrees
quite well with the older experimental determinations. The key
feature of our approach is a consistent numerical calculation of
the Coulomb-modified effective-range function that takes into
account the screening of the Coulomb interaction by introduc-
ing a small photon mass in the momentum-space Skorniakov-
Ter-Martirosian (STM) equation. As will be discussed below,
we use a field-theoretical Coulomb subtraction scheme based
on diagrammatic methods. We find a clearly linear (and weak)
dependence of 4ap-d on the screening mass and can thus
extrapolate back to the physical limit where the photon mass
vanishes. The method described here can also be applied to
other systems of charged particles. In particular, it should be
interesting to use it together with the effective field theory
for halo nuclei [7,8]. When effective ranges are calculated
as well, one can extract near-threshold bound-state properties
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such as asymptotic normalization constants from scattering
parameters with relations as given, e.g., in Refs. [9,10]. These
constants can be used to determine the overall normalization
of the S-factor for astrophysical nuclear reaction rates [11].

II. PIONLESS EFFECTIVE FIELD THEORY

A. Overview

Effective field theories are a powerful theoretical tool that
can be used to perform calculations of physical observables
in terms of the relevant degrees of freedom. One such
theory tailored specifically for few-nucleon systems at very
low energies is the so-called pionless effective field theory,
which only includes short-range contact interactions between
nucleons [12,13] and is constructed to reproduce the effective-
range expansion [14] in the two-body system. As such,
its expansion parameter Q/�, where Q ∼ γd ≈ 45 MeV is
the typical momentum scale set by the deuteron binding
momentum and � = O(mπ ) is the natural cutoff scale set
by the left-out pion physics, can be directly related to the large
N -N scattering lengths and thus alternatively be written as
r0/a. A conservative estimate inserts for r0 and a the 3S1

parameters a ≈ 5.42 fm and r0 ≈ 1.75 fm [15], giving an
EFT expansion parameter ∼1/3. This means that at leading
order (LO), next-to-leading order (NLO), and next-to-next-to-
leading order (N2LO) one can expect results with about 30%,
10%, and 3% accuracy, respectively.

In Refs. [16,17], the formalism has been extended to the
spin-quartet n-d system, whereas the inclusion of Coulomb
effects was first done by Kong and Ravndal for the proton-
proton channel [18,19] and by Rupak and Kong [20] for the
p-d system. The 3He bound state was studied at leading
order by Ando and Birse [21]. In Ref. [22] the present
authors considered the 3He bound state as well as quartet- and
doublet-channel p-d scattering and in particular developed
a numerical method to extract stable results at very low
scattering energies. We build upon those results to extract
4ap-d as a threshold quantity.
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The part of the pionless EFT Lagrangian that is relevant
here can be written as

L = N †
(

iD0 + D2

2MN

)
N − di†

[
σd +

(
iD0 + D2

4MN

)]
di

+ yd

[
di†(NT P i

dN
) + H.c.

] + Lphoton , (1)

including a nucleon field N (doublet in spin and isospin space)
and a single auxiliary dibaryon field di corresponding to the
deuteron with spin 1 and isospin 0. For the nucleon-deuteron
quartet channel (total spin 3/2) this is all that enters up to
N2LO in the Q counting. In particular, it is not necessary
to include an S-D-mixing term (generated by the spin-tensor
operator in the nuclear force), which formally enters at N2LO
but does not contribute to quartet-channel S-wave scattering
at the zero-energy threshold.

To this order, the coupling to the electromagnetic field is de-
termined by the covariant derivative Dμ = ∂μ + ieAμQ̂ with
the charge operator Q̂ and the photon field Aμ, along with the
kinetic term for the photons included in Lphoton. For our non-
relativistic low-energy calculation it suffices to only keep the
contribution of so-called Coulomb photons, corresponding to
a static potential between charged particles. For convenience,
this can be split up into a Coulomb-photon propagator i/(p2 +
λ2) and factors (±ie Q̂) for the vertices. More details on the
formalism can be found in previous publications on the subject
(see, e.g., Ref. [22]).

B. Full deuteron propagator

The bare deuteron propagator i/σd has to be dressed by
nucleon bubbles to all orders in order to get the full leading-

order expression [12,13]. For convenience, one can also resum
contributions from the kinetic term in Eq. (1). As is standard
practice in the field, the result i�d (p0,p) is renormalized in
the power divergence subtraction scheme [12] by requiring the
theory to reproduce the n-p effective-range expansion around
the deuteron pole,

−y2
d�d

(
p0 = k2

2MN

,p = 0

)
= 4π

MN

i

k cot δd,t − ik
, (2)

with k cot δd = −γd + ρd

2 (k2 + γ 2
d ) + · · · , where we use γd =√

MNEd = 45.7022(1) MeV [23] and ρd = 1.765(4) fm [15].
The sensitivity of our results to variations of γd and ρd

within their errors is negligible. Note that the resumma-
tion of effective-range contributions in i�d (p0,p) has been
introduced for convenience only and includes a subset of
higher-order (N3LO, etc.) terms [24]. We furthermore define
the deuteron wave-function renormalization Z0 as the residue
of �d at the bound-state pole, i.e., Z0 = γdρd/(1 − γdρd ) =
γdρd + (γdρd )2 + · · · .

Here, we carry out a strictly perturbative calculation that
only includes terms up to a given order in the final result.
This is desirable because it avoids the potentially problematic
resummation of higher-order terms and thus allows for a
complete control of theoretical corrections and a clean check
of the expected convergence pattern. Adopting the approach
introduced in Ref. [25] for the n-d system, we define
Dd (E; q) ≡ (−i)�d (E − q2/(2MN ),q) and expand this as

Dd (E; q) = D
(0)
d (E; q) + D

(1)
d (E; q) + D

(2)
d (E; q) + · · · = − 4π

MNy2
d

1

−γd +
√

3q2/4 − MNE − iε

×
[

1 + ρd

2

(
3q2/4 − MNE − γ 2

d

)
−γd +

√
3q2/4 − MNE − iε

+
(

ρd

2

(
3q2/4 − MNE − γ 2

d

)
−γd +

√
3q2/4 − MNE − iε

)2

+ · · ·
]

. (3)

Here and in the following, the superscript in parentheses indicates the order (in ρd ) of the individual parts.

C. Coulomb diagrams

From the strong sector of pionless EFT, we only have the simple one-nucleon-exchange interaction represented by the kernel

Ks(E; k,p) ≡ 1

kp
Q0

(
k2 + p2 − MNE − iε

kp

)
, (4)

where from the S-wave projection, one has the Legendre function of the second kind

Q0(a) = 1

2

∫ 1

−1

dx

x + a
= 1

2
ln

(
a + 1

a − 1

)
. (5)

As done in previous calculations [20,22], we regulate the singularity of the Coulomb potential at zero momentum transfer
by introducing a small photon mass λ. With the numerical technique described in Ref. [22], this regularization approach is well
under control and it is possible to extrapolate results back to the physical limit λ → 0. In Fig. 1 we show the relevant diagrams
involving Coulomb photons. Of these, the “bubble diagram” in Fig. 1(a) is the most important one because it is both of leading
order in the Q/� counting and enhanced at low energies by the Coulomb pole. The corresponding interaction kernel Kbub(E; k,p)
is given by

Kbub(E; k,p) = −αMN × 1

2

∫ 1

−1
d cos θ

arctan
(

2p2−k2−k·p√
3k2−4MN E−iε

√
(k−p)2

)
+ arctan

(
2k2−p2−k·p√

3p2−4MN E−iε
√

(k−p)2

)
[(k − p)2 + λ2]

√
(k − p)2

, (6)
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(a) (b) (c)

FIG. 1. Leading O(α) diagrams involving Coulomb photons.

where θ is the angle between the momentum vectors k and
p. A detailed derivation of this expression can be found in
Refs. [22,26,27]; for an expression with the angular integration
carried out explicitly, see Ref. [28]. In contrast to earlier

work [20,22], we do not approximate the bubble loop integral
as a constant in this calculation but keep the full dynamical
expression. The diagram shown in Fig. 1(c) also features the
Coulomb pole, but since it is only generated by the deuteron
kinetic term in the Lagrangian (1), it is formally an effective-
range correction:

Kρd
(E; k,p) = −αMN × ρd

2kp
Q0

(
−k2 + p2 + λ2

2kp

)
. (7)

Finally, we have the “box diagram” shown in Fig. 1(b), giving
rise to the additional interaction kernel [29]

Kbox(E; k,p) = −αMN

1

2

∫ 1

−1
d cos θ

⎧⎪⎨
⎪⎩

arctan
(

2p2−k2−k·p√
3k2−4MN E−iε

√
(k−p)2

)
+ arctan

(
2k2−p2−k·p√

3p2−4MN E−iε
√

(k−p)2

)
(k2 + p2 + k · p − MNE − iε)

√
(k − p)2

− λ

(k2 + p2 + k · p − MNE − iε)2

⎫⎪⎬
⎪⎭ + O(λ2) , (8)

as discussed in Refs. [26–28]. According to the original
counting of Rupak and Kong, this diagram formally scales like
an NLO correction. References [26,27] suggest an alternative
scheme that includes all O(α) Coulomb diagrams at leading
order, except for Kρd

because it is proportional to the effective
range. We will present here results for both schemes (and show
that they agree within the EFT uncertainty). The STM equation
for the system including both the one-nucleon-exchange and
the Coulomb bubble diagram, shown diagrammatically in
Fig. 2, can now be written as

Tfull(E; k,p) = −MNy2
d

[
Ks(E; k,p) − 1

2
Kbub(E; k,p)

]

+ MNy2
d

2π2

∫ �

0
dq q2 Tfull(E; k,q)

×Dd (E; q)

[
Ks(E; q,p) − 1

2
Kbub(E; q,p)

]
.

(9)

In writing this, we have introduced an explicit momentum
cutoff �. In the following, we will use an abbreviated notation
where the arguments of the functions are suppressed:

Tfull = −MNy2
d

(
Ks − 1

2Kbub
)

+ Tfull ⊗ [
MNy2

d Dd

(
Ks − 1

2Kbub
)]

, (10)

= +

+ × +

FIG. 2. Integral equation for the full (i.e., strong + Coulomb)
scattering quartet-channel amplitude Tfull.

with A ⊗ B ≡ 1
2π2

∫ �

0 dq q2 A(. . . ,q)B(q, . . .). In the alter-
native scheme mentioned above, Kbox has to be added to the
kernels in Eqs. (9) and (10). Either way, for pure Coulomb
scattering one simply has

Tc = 1
2MNy2

d Kbub − Tc ⊗ [
1
2MNy2

d DdKbub
]
. (11)

We note that due to the photon coupling to the two-nucleon
bubble, both Tc and the Coulomb-phase shift δc extracted from
Tc include short-range three-body Coulomb contributions.
Below, we will come back to a fully perturbative expansion of
the form T (E; k,p) = T (0)(E; k,p) + T (1)(E; k,p) + · · · for
the amplitudes, and to the perturbative inclusion of the kernel
function Kρd

.

III. COULOMB-MODIFIED SCATTERING LENGTH

First, we introduce the quartet-channel p-d scattering
length, which is defined by the Coulomb-modified effective-
range expansion [14] (for a more detailed discussion, see
Ref. [10] and further references therein), which we write here
in the form

C2
η k cot δdiff(k) + γp-d h(η) = − 1

aC
+ rC

2
k2 + · · · , (12)

where δdiff(k) = δfull(k) − δc(k) is the Coulomb-subtracted
phase shift, and h(η) with η = γp-d/(2k) and γp-d = 4αMN/3
is a nonanalytic function of the momentum that we will discuss
further below (it vanishes as k → 0 and is thus not important
to extracting the scattering length in that limit). In Eq. (12), the
Gamow factor C2

η = 2πη/[exp(2πη) − 1] vanishes rapidly as
k → 0, while at the same time k cot δdiff(k) has a pole in
that limit. This means that a finite well-defined value for the
scattering length relies on a rather delicate cancellation. In our
numerical calculation with a finite photon mass λ it is thus
important to consistently extract a screened expression C2

η,λ

and use this in Eq. (12). It can be shown [26] that the answer

034005-3
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to this problem is

C2
η,λ =

∣∣∣∣1 + 2MN

3π2

∫ �

0

dp p2

p2 − k2 − iε
Z0Tc(E; p,k)

∣∣∣∣
2

, (13)

where Tc(E; p,k) is the numerical solution of the STM
equation with the screened Coulomb interaction, which is
also used to calculate the pure Coulomb phase shift δc(k).
A detailed derivation of Eq. (13) can be found in Ref. [26].
Here, we note that it is based on the modified effective-range
expansion derived in Ref. [30]. For the generic case where the
interaction is given by the sum of a long-range potential VL

and a short-range interaction VS , the effective-range function
(K-matrix) can be written as

|F�(k)|−2k2�+1[ cot δM
� (k) − i

] + M�(k) , (14)

where δM
� (k) is the subtracted phase shift for angular momen-

tum �.F�(k) is the Jost function associated with the long-range
potential. For the unscreened Coulomb potential, one simply
recovers |F0(k)|−2 = C2

η . More generally, |F0(k)|−2 is given
by the two-particle scattering wave function at zero separation
(see, e.g., Ref. [31]). Relating this then to the half off-shell
T-matrix gives our Eq. (13). Finally, from the results derived
by Kong and Ravndal for the proton-proton system [19],
we know that for the unscreened Coulomb potential the
function h(η) = Re ψ(iη) − ln |η| can be obtained from a
momentum-space integral,

h(η) = Re H (η)

= Re

{
− 2π

αμ

∫
d3q

(2π )3

C2
η(q)

q2

k2

k2 − q2 + iε

}
, (15)

for η = η(k), and where μ is reduced mass μ (in Ref. [19], μ =
MN/2). Generalizing this result, we set (with a principal-value
integration)

hλ(η) = k2

αμ

1

π
P
∫ �

0
dq

C2
η,λ(q)

(q + k)(q − k)
, μ = 2MN/3, (16)

to take into account the remaining screening corrections.
Note that although we have written hλ(η), the dependence
is really on k directly. The C2

η,λ(q) under the integral is
calculated from Eq. (13) for each q. A key feature of this
approach, which we believe is crucial for a consistent and
stable extraction of observables, is that we are calculating the
proper modified effective-range function for the case where
the screened Coulomb interaction is defined by the diagrams
shown in Figs. 1(a) and 1(c). We thus expect the scaling with λ
to be well under control. Altogether, we get for the extraction
of the quartet-channel p-d scattering length 4ap-d

C2
η,λ k cot δdiff(k) + γp-d hλ(η) = − 1

4ap-d
+ O(k2) . (17)

Note that the γp-d here cancels against the αμ in Eq. (16),
so that this scale eventually does not enter directly and we
could in fact just define the correction term as a whole. Our
convention here has been chosen to exhibit the connection
to the modified effective-range expansion for the unscreened
Coulomb potential.

IV. FULLY PERTURBATIVE CALCULATION

As mentioned above, calculations beyond leading order
can be performed in a numerically simple way by using
deuteron propagators with (partially) resummed effective-
range corrections. This was done in Ref. [22] and other earlier
works cited above. The arbitrary inclusion of higher-order
contributions, however, can spoil the EFT convergence pattern
and leads to uncertainties that are difficult to control. We
thus carry out here a strictly perturbative calculation that only
includes terms up to a given order in the final result. For
the three-boson system such a calculation up to N2LO was
presented by Ji and Phillips [32]. Reference [25] introduced
a new approach to carry out this calculation more efficiently
by avoiding the need to determine the full off-shell scattering
amplitude and applied this to the neutron-deuteron system
in pionless EFT. Here, we apply that formalism to the
proton-deuteron system. To this end, we separately expand
the kernel of the STM equation in the effective range as
K(E; k,p) = K (0)(E; k,p) + K (1)(E; k,p) + · · · with

K (0) = −MNyd

2
(2Ks − Kbub) , (18a)

K (1) = −MNyd

2
(Kρd

+ Kbox) , (18b)

and K (2) = 0 since there is no new O(ρ2
d ) kernel contribution.

The alternative scheme mentioned below Eq. (7) includes Kbox

in K (0). We then find the following set of equations for the
contributions up to N2LO:

T (0)
full = K (0) + T (0)

full ⊗ D
(0)
d K (0), (19a)

T (1)
full = K (1) + T (0)

full ⊗ [
D

(0)
d K (1) + D

(1)
d K (0)

]
+ T (1)

full ⊗ D
(0)
d K (0) , (19b)

T (2)
full = T (0)

full ⊗ [
D

(1)
d K (1) + D

(2)
d K (0)

] + T (1)
full

⊗ [
D

(0)
d K (1) + D

(1)
d K (0)

] + T (2)
full ⊗ D

(0)
d K (0) . (19c)

As in Ref. [25], this procedure calculates higher-order cor-
rections by reshuffling terms to the inhomogeneous parts
of the integral equations. In our generalization to treat the
case of charged particles, corrections arise not only from
the expansion of the propagators, but also from additional
interaction kernels at higher orders. Expressions analogous
to those in Eqs. (19) are obtained for the perturbative parts
of Tc by simply dropping Ks and Kbox. Combining this
with the perturbative expansion of the deuteron wave-function
renormalization [33], Z0 = Z

(0)
0 + Z

(1)
0 + · · · , one obtains the

physical T matrices as Z
(0)
0 T (0), Z

(0)
0 T (1) + Z

(1)
0 T (0), etc., and

finally the perturbative expansion of k cot δdiff(k) as

[k cot δdiff]
(0) = 2π

μ

e2iδ
(0)
c

T
(0)

diff

+ ik , (20a)

[k cot δdiff]
(1) = 2π

μ
e2iδ

(0)
c

[
2iδ(1)

c

T
(0)

diff

− T
(1)

diff(
T

(0)
diff

)2

]
, (20b)
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FIG. 3. (Color online) Photon-mass dependence and extrapola-
tion of 4ap-d . Dotted lines: LO result; dashed lines: NLO result; solid
lines: N2LO result. Each calculation was performed at three different
cutoffs: � = 140 MeV (thick lines), � = 280 MeV (medium lines),
and � = 560 MeV (thin lines). RK and O(α) indicate the different
Coulomb-counting schemes (see text). The bands (shown for the RK
results only) reflect the expected EFT expansion uncertainty.

[k cot δdiff]
(2) = −2π

μ
e2iδ

(0)
c

[
2
(
δ(1)

c

)2 − 2iδ(2)
c

T
(0)

diff

+ 2iδ(1)
c T

(1)
diff + T

(2)
diff(

T
(0)

diff

)2 −
(
T

(1)
diff

)2(
T

(0)
diff

)3

]
, (20c)

where Tdiff = Tfull − Tc, μ = 2MN/3, and analogous expres-
sions for the phase shift δ(n)

c (k) that can be found, for example,
in Ref. [25]. For the application of Eq. (17) this still has to
be combined with an analogous expansion of C2

η,λ, which
is straightforward to obtain from Eq. (13). In particular, this
expansion incorporates the perturbative series for Z0 and Tc.
The perturbative expansion for hλ(η), in turn, directly follows
from that for C2

η,λ.

V. RESULTS AND DISCUSSION

In Fig. 3 we show our results (photon-mass dependence
of 4ap-d ) up to N2LO for both the original Rupak and Kong
counting “RK” and our alternative scheme “O(α).” At N2LO
the curves are indistinguishable. For each individual photon
mass and cutoff, we extract the scattering length by fitting
Eq. (17) very closely to threshold in the momentum range
from 2 to 4 MeV. The uncertainty from this fit is negligible. In
the plot, one sees a clear convergence pattern as the order of
the calculation is increased, and also a smaller cutoff variation
of the results at higher order (indicated by lines of different
thickness). Furthermore, the results show a linear dependence
on the regulating photon mass λ. Since the screened Coulomb
potential is treated consistently in the calculation, we expect
such a behavior for small λ. We can now, for the final result,
remove the infrared regulator and unambiguously extrapolate
to the physical limit λ = 0. Since the uncertainty from varying
the cutoff only gives a lower bound on the true theoretical

0 5 10 15 20 25 30 35 40 45 50
-70

-60

-50

-40

-30

-20

-10

0

k (MeV)

δ
(d

eg
)

LO – RK
LO–O(α)

NLO– RK
NLO–O(α)

N2LO

Arvieux (1973)

Christian + Gammel (1953)

Kievsky et al. (1996)

FIG. 4. (Color online) S-wave p-d quartet channel scattering
phase shifts as functions of the center-of-mass momentum k. The
curves and bands are as in Fig. 3. Experimental p-d phase-shift data
are shown from Refs. [6] (diamonds) and [34] (circles). The crosses
are the results from the AV18 potential-model calculation reported in
Ref. [35].

error, we indicate the expected uncertainties from the EFT
expansion as shaded bands in Fig. 3. At N2LO one expects
an accuracy of about 3% . With that, our final result in both
Coulomb counting schemes is

4ap-d = (10.9 ± 0.4) fm. (21)

As a further check, we have also performed a calculation that
includes range corrections up to O(ρ3

d ) to get an estimate
for the N3LO contribution. We find that this partial N3LO
correction is indeed of the expected order of magnitude, thus
underlining the uncertainty given in Eq. (21). At lower orders,
the results from both counting schemes are compatible with
each other with respect to the EFT counting, which we take
as an additional confirmation that Coulomb effects are well
under control in our calculation.

For the Coulomb-subtracted quartet-channel scattering
phase shifts, shown for center-of-mass momenta below the
deuteron breakup threshold in Fig. 4, we find the same behavior
as for the scattering length. One can see a clear order-by-order
convergence pattern and reasonably good agreement with
available experimental data. Note that the Gamow factor does
not enter in the calculation of the phase shifts.

Our result for the scattering length agrees with older
experimental determinations [5,6] but deviates from the more
recent determination of Black et al. [1] and potential-model
calculations. At the same time, our results for the phase shifts
agree very well with those obtained by Kievsky et al. [35]
in a calculation using the AV18 NN potential (see crosses in
Fig. 4). This appears puzzling at first, but it should be noted
that the phase shifts at larger momenta are not very sensitive to
the Coulomb subtraction and that differences in the scattering
length are not visible in Fig. 4 since they are hidden when the
cotangent in Eq. (17) is inverted to obtain the low-energy phase
shift, which approaches zero as k → 0. In the following, we
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discuss possible reasons for the discrepancy in the extracted
scattering length.

Higher-order electromagnetic effects are not likely to
resolve the issue. Diagrams involving the exchange of a
transverse photon are suppressed by a factor ∼Q2/M2

N

compared to the same topology with a Coulomb photon. Since
MN � mπ ∼ �, such corrections only enter beyond N2LO.
A similar argument also holds for magnetic-moment or Mott-
Schwinger interactions between the proton and the deuteron.
This power counting is supported by the potential-model cal-
culation of Kievsky et al. [4], which finds only small changes
in the scattering length of order 0.05 fm when electromagnetic
terms beyond the Coulomb interaction are included.

To estimate the effects from the exchange of more than
a single Coulomb photon, we have performed a calculation
where the wavy photon line in Figs. 1(a) and 1(b) is
replaced by a photon-mass-regulated full Coulomb T-matrix
first derived by Gorshkov [36,37] and further discussed in
Refs. [26,27]. This calculation is numerically very difficult
since the analog of diagram 1(b) involves a four-dimensional
numerical integration that we carry out with Monte Carlo
techniques. Also, the approach should be taken with a grain
of salt since the full T-matrix directly between the deuteron
and the proton is only built up perturbatively. Nevertheless, our
calculations indicate that this procedure gives values consistent
with our result in Eq. (21) within the quoted uncertainty.

A. Subtraction of Coulomb effects

More likely, the discrepancy is related to the conventional
question of how to disentangle short- and long-range Coulomb
contributions in the scattering of composite particles. In our
effective field theory framework, it is natural to define the pure
Coulomb sector by keeping only the diagrams without strong
interaction between the proton and the deuteron, i.e., Figs. 1(a)
and 1(c), the latter of which is included perturbatively at higher
orders. This is exactly what is stated below Eqs. (19). The
leading contribution, Fig. 1(a), contains a nucleon loop that
corresponds to the short-range substructure of the deuteron,
which is a three-body effect. In configuration-space potential-
model calculations, on the other hand, the Coulomb subtraction
is defined by factorizing the three-body scattering wave
function at large distances. If x is the relative coordinate
between the two nucleons comprising the deuteron and y is the
coordinate of this subsystem relative to the remaining proton,
one has (schematically)

ψ(x,y)
y→∞−→ [F (η,ky) cot δ̃(k) + G(η,ky)]u(x) , (22)

with Coulomb wave functions F (η,ρ) and G(η,ρ). More
details can be found, for example, in Ref. [38]. In Eq. (22), we
have written δ̃ instead of δdiff , since it is not a priori clear to
what extent the two quantities are equivalent.

Equation (22) effectively subtracts Coulomb effects purely
at the two-body level. Within their respective frameworks, both
subtraction methods are completely natural. The question is
now whether or not they are equivalent. While one might think
that at least in the limit k → 0 the answer would be yes, this
does not seem to be the case. The resolution to the discrepancy
between our EFT result for the scattering length and those from
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FIG. 5. (Color online) p-d effective-range function with
screened Gamow factor and pure-Coulomb phase shifts from
T-matrix based on the EFT calculation. N2LO calculation with cutoff
� = 560 MeV.

potential-model calculations would then be that we simply do
not calculate the same Coulomb-modified scattering length.
In fact, in the above sense it should be appropriate to call the
scattering length a (subtraction-)scheme-dependent quantity.
We stress, however, that this statement is based on one of
the particles (the deuteron) being composite. For a two-body
system this ambiguity does not occur. Indeed, we have checked
the screened momentum-space technique described here with a
simple two-body model system. For a spherical step potential,
where the Coulomb-subtracted phase shifts can be calculated
fully analytically, we find a very good agreement (better than
1%) of our numerical method with the exact result. Thus,
in a two-body system our method and Eq. (22) lead to the
same answer. In the three-body system, there appears to be
a difference related to the short-range three-body Coulomb
effects included in the EFT calculation, which introduces
a scheme dependence in the Coulomb-subtracted scattering
length 4ap-d .

We emphasize that our diagrammatic subtraction scheme
leads to well-defined and numerically stable limits k → 0 and
λ → 0. In Fig. 5, we show the effective-range function—the
left-hand side of Eq. (17)—that we obtain at N2LO for
momenta k between 2 and 52 MeV. It is clear that we
can unambiguously extract 4ap-d with a weak photon-mass
dependence, as shown in Fig. 3.

In order to compare the EFT calculation to extractions based
on Eq. (22), the question is then to what extent is it possible
with our method to obtain 4ap-d in the same conventions
as in configuration-space potential-model calculations. If the
problem is indeed related to the subtraction of short-range
three-body effects from the bubble dynamics in Fig. 1(a), we
have to find a definition of 4ap-d in the EFT which avoids this.
One possibility is to treat the pure Coulomb part not within
the EFT framework, but to simply calculate the T-matrix for a
two-body p-d system interacting via a Yukawa potential with
mass λ (in order to still incorporate the screening effect). With
this procedure, Tc no longer has an EFT expansion but is the
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FIG. 6. (Color online) Same as Fig. 5, but now with Tc calculated
from a simple two-body Yukawa potential and for a larger cutoff
� = 56 000 MeV.

same at each order. The same is then true for δc and C2
η,λ (since

they are calculated from Tc), so Eq. (20) simplifies quite a bit.
We now have

[k cot δdiff]
(0) = 2π

μ

e2iδc

T
(0)

full − Tc

+ ik , (23a)

[k cot δdiff]
(1) = −2π

μ
e2iδc

[
T

(1)
full(

T
(0)

full − Tc
)2

]
, (23b)

[k cot δdiff]
(2) = −2π

μ
e2iδc

[
T

(2)
full(

T
(0)

full − Tc
)2 − (T (1)

full )
2(

T
(0)

full − Tc
)3

]
,

(23c)

reflecting just the perturbative expansion of the full T-matrix
Tfull = Z

(0)
0 T (0)

full + (Z(0)
0 T (1)

full + Z
(1)
0 T (0)

full ) + · · · .
The N2LO result for this prescription is shown in Fig. 6

for different values of the Yukawa (photon) mass λ. At very
small k, there is now a strong dependence on the photon mass.
Keeping in mind that we are no longer subtracting exactly the
same Coulomb contributions that enter into the full T -matrix
Tfull, it may not be surprising that we see problems at very small
momenta, where the Coulomb interaction is dominant.1 On the
other hand, one sees that for k � 20 MeV the dependence on
λ is still weak, and in fact the effective-range function is quite
linear in that regime. Neglecting thus the problems at very
small k for the moment, we can extract the scattering length
from a fit in the linear regime. The results of this calculation
at N2LO (in the O(α) counting scheme) are shown in Fig. 7.
Overall, this calculation requires somewhat larger cutoffs � to
reach convergence, but the value for 4ap-d extracted this way
indeed comes out very close to the potential-model results
clustered at roughly 13.8 fm, which lends some support for

1We can also not fully exclude a purely numerical issue, although we
have found the curves in Fig. 6 to be stable with respect to increasing
the number of integration mesh points.
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FIG. 7. (Color online) Photon-mass and cutoff dependence of
4ap-d with a simple two-body Yukawa subtraction at N2LO in the
O(α) counting scheme.

our explanation of the discrepancy. However, recalling the
problems at very small momenta k as well as the rather ad hoc
nature of this calculation, this issue requires further study. Here
we just note that when we calculate the Coulomb-subtracted
phase shifts with the simple Yukawa-subtraction approach, we
get a curve at N2LO that lies even closer to the potential-model
results shown in Fig. 4. Within the EFT uncertainty, however,
the result is equivalent to what we find with the diagrammatic
subtraction scheme. This underlines our previous statement
that the phase shifts at higher energies are not very sensitive
to the details of the Coulomb subtraction.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented a new way to extract
the p-d scattering length from pionless effective field the-
ory calculations. The Coulomb-modified scattering length
emerges from the cancellation between k cot δdiff(k) on the
one hand, which diverges as k → 0, and the Gamow factor
on the other hand, which goes to zero in the same limit. A
consistent treatment of screening effects is crucial for a stable
and reliable theoretical extraction of this quantity. Our result
for the quartet p-d scattering length, 4ap-d = (10.9 ± 0.4)
fm, agrees with older experimental determinations of this
quantity but deviates from potential-model calculations and
a more recent result from Black et al., which find larger values
around 14 fm [1–4].

As a possible resolution to this discrepancy, we have in-
vestigated the scheme dependence of the Coulomb subtraction
in a three-body system. While the Coulomb subtraction in
our EFT calculations includes some short-range contributions
from the photon coupling to the two-nucleon bubble inside
three-body diagrams [cf. Fig. 1(a)], the value for 4ap-d

extracted from experiments and potential-model calculations
using Eq. (22) is based on a subtraction of long-range two-
body Coulomb effects only. Since both methods lead to the
same result in a two-body system, we conjecture that the
difference between our results and those of Refs. [1–4] is
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due to short-range three-body Coulomb effects. Moreover,
we have illustrated that an approximate (and not fully con-
sistent) implementation of the standard Coulomb subtraction
leads to larger values of 4ap-d in better agreement with
Refs. [1–4].

Our findings raise the question of whether the scattering
length, being so sensitive to the details of the Coulomb
subtraction, is the best quantity to study and whether it might be
better to focus on the phase shifts instead, which do not suffer
from this problem. It will certainly be interesting to study these
matters in more detail. In the future, we plan a more extensive
analysis as well as an extension of our calculation to the p-d
doublet channel.
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