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Faddeev calculations of the K̄ N N system with a chirally motivated K̄ N interaction.
I. Low-energy K−d scattering and antikaonic deuterium
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A chirally-motivated coupled-channel K̄N potential, reproducing all low-energy experimental data on K−p

scattering and kaonic hydrogen and suitable for using in accurate few-body calculations, was constructed. The
potential was used for calculations of low-energy amplitudes of elastic K−d scattering using Faddeev-type
Alt-Grassberger-Sandhas (AGS) equations with coupled K̄NN and π�N channels. A complex K− − d

potential reproducing the three-body K−d amplitudes was constructed and used for calculation of the 1s level
shift and the width of kaonic deuterium. The predicted shift �EK−d

1s ∼ −830 eV and width �K−d
1s ≈ 1055 eV

are close to our previous results obtained with phenomenological K̄N potentials. No quasi-bound states in the
K−d system were found.
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I. INTRODUCTION

Interaction of an antikaon with a nucleon is the basis
for investigation of atomic and strong quasi-bound states in
antikaonic-nucleus systems. Available two-body experimental
information on the K̄N interaction is insufficient for construc-
tion of a unique interaction model. In particular, it was shown
in [1,2] that phenomenological models of the interaction hav-
ing one or two poles for the �(1405) resonance reproducing all
low-energy experimental data on K−p scattering and kaonic
hydrogen equally well can be constructed. A way to obtain
some additional information about the K̄N interaction is to
use it as an input in an accurate few-body calculation and then
compare the theoretical predictions with eventual experimental
data.

There are several calculations devoted to low-energy K−d
scattering [3,4] or the K−d scattering length only [5,6]
based on Faddeev equations. Low-energy K−d amplitudes,
including scattering length, and effective range were calculated
in our papers [1,2]. In the most recent one [2] the directly
measurable characteristics of the 1s level of kaonic deuterium
were calculated as well. This allows a direct comparison of
the theoretical predictions with eventual experimental data on
kaonic deuterium, which hopefully will be obtained in the
SIDDHARTA-2 experiment [7].

The results were obtained by solving coupled-channel
Faddeev-type Alt-Grassberger-Sandhas (AGS) equations with
phenomenological K̄N potentials. However, many other au-
thors of K̄N interaction models use not a phenomenological,
but a chirally-motivated potential, where a K̄N amplitude
obtained from a chiral Lagrangian is used as a potential to
determine the position of the poles of the �(1405) resonance.
Bethe-Salpeter or Lippmann-Schwinger equations are used
for this task. There are quite a few such chirally-motivated
potentials available; however, none of them is suited for use in
Faddeev calculations since either they have too many coupled
channels and cannot be used as is or they are not as accurate in
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reproducing experimental data as one would wish. Therefore,
we decided to construct a new chirally-motivated model of
the K̄N interaction that can be used in dynamically accurate
three-body calculations.

The potential reproduces the low-energy data on K−p
scattering and kaonic hydrogen with the same level of
accuracy as our previously constructed phenomenological K̄N
potentials. We repeated our calculation of low-energy K−d
elastic scattering and the characteristics of kaonic deuterium
using the new model of the K̄N interaction and compared the
new results with those obtained using phenomenological K̄N
potentials. Since the three-body AGS equations and the rest of
the two-body input are the same in both calculations, we could
isolate the pure effect of the different types of K̄N interaction
models.

The description of the chirally-motivated potential is given
in the next section. The results on low-energy K−d scattering
are given and discussed in Sec. III. Section IV contains
information on the evaluation of the kaonic deuterium 1s level
shift and width, while Sec. V concludes the paper.

II. CHIRALLY-MOTIVATED K̄ N-π�-π� POTENTIAL

There are many different chirally-motivated models of the
K̄N interaction in the literature (e.g., [8–10]). Most of them
are not really suited for use in Faddeev calculations since they
have too many coupled channels. Recently, one more of these
K̄N potentials was constructed [11] together with a reduced
version, which contains only three channels. Therefore, this
last one, in principle, could be used in a dynamically correct
few-body calculation; however, the reduced version does not
reproduce K−p experimental data accurately enough.

The commonly used s-wave chirally-motivated potentials
have the energy-dependent part (see, e.g., [9])

V̄ ab(
√

s) =
√

Ma

2ωaEa

Cab(
√

s)

(2π )3fafb

√
Mb

2ωbEb

(1)

and are written in the particle basis. We took into account
all open particle channels: a,b = K−p, K̄

0
n, π+�−, π0�0,
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π−�+, and π0�. Baryon mass Ma , baryon energy Ea ,
and meson energy wa of the channel a enter the factors,
which ensure the proper normalization of the amplitude. The
nonrelativistic form of the leading order Weinberg-Tomozawa
interaction

Cab(
√

s) = −CWT (2
√

s − Ma − Mb) (2)

was used with SU(3) Clebsh-Gordan coefficients CWT
I .

Our chirally-motivated potential V Chiral
K̄N-π�-π�

is separable; it
also contains form factors and is written in the isospin basis as

V
αβ
II ′ (kα,k′β ;

√
s) = gα

I (kα) V̄
αβ
II ′ (

√
s) g

β
I ′(k′β), (3)

where V
αβ
II ′ (

√
s) is the energy-dependent part of the potential

in the isospin basis, obtained from Eq. (1). Here kα, k′α , and√
s stand for the initial and final relative momenta and the

total energy, respectively. We used physical masses in the
calculations; therefore the two-body isospin I = 0 or 1 is not
conserved. Yamaguchi form factors

gα
I (kα) =

(
βα

I

)2

(kα)2 + (
βα

I

)2 (4)

were used in Eq. (3). The channel indices α and β take three
values, denoting the K̄N , π�, and π� channels.

The pseudo-scalar meson decay constants fπ and fK and
the range parameters βα

I , depending on the two-body isospin,
are free parameters found by fitting the potential to the
experimental data. In the same way as the phenomenological
ones, the potential (3) reproduces elastic and inelastic K−p
cross sections, threshold branching ratios γ , Rc, and Rn,
and characteristics of the 1s level of kaonic hydrogen. The
parameters of the potential are shown in Table I. It has to be
noted that our value of fπ , obtained from the fit, differs from
the one usually cited in the literature. However, we call our
potential “chirally motivated,” and not “chiral” in a sense that
certain features of the chiral interaction are preserved (energy
dependence, relative coupling strength of channels, and rela-
tivistic normalization), while others are not. Our main aim was
to construct a potential reproducing all experimental data on
K−p scattering and kaonic hydrogen as accurately as possible.

All physical observables to be compared with experi-
mental data were obtained from solution of the Lippmann-
Schwinger equation with the potential V Chiral

K̄N-π�-π�
(3) and

Coulomb interaction since, as previously, we wanted to
calculate characteristics of kaonic hydrogen directly, without
intermediate reference to K−p scattering length. We used
nonrelativistic kinematics while the potential was constructed.
Among all authors of K̄N potentials only we and Cieplý
and Smejkal [9,12] take Coulomb interaction into account
directly when calculating the 1s level shift and width of kaonic

TABLE I. Parameters of the chirally-motivated V Chiral
K̄N-π�-π�

poten-
tial: the pseudo-scalar meson decay constants fπ and fK (in MeV)
and the range parameters βα

I (in fm−1).

fπ fK βK̄N
0 βπ�

0 βK̄N
1 βπ�

1 βπ�
1

116.20 113.36 4.06 3.30 5.00 3.86 1.99

TABLE II. Physical characteristics of the chirally-motivated

V Chiral
K̄N-π�-π�

potential [1s level shift �E
K−p
1s (in eV) and width �

K−p
1s

(in eV) of kaonic hydrogen, and threshold branching ratios γ , Rc, and
Rn], together with experimental data. The experimental data on kaonic
hydrogen are those obtained by the SIDDHARTA Collaboration.

V Chiral
K̄N-π�-π�

Experiment

�E
K−p
1s −313 −283 ± 36±6 [15]

�
K−p
1s 561 541 ± 89±22 [15]

γ 2.35 2.36 ± 0.04 [16,17]
Rc 0.663 0.664 ± 0.011 [16,17]
Rn 0.191 0.189 ± 0.015 [16,17]

hydrogen. All other calculations of the same quantity get
it from the K−p scattering length through the approximate
“corrected Deser” formula [13]. However, as shown in [12,14],
the approximate formula gives 10% error; therefore the direct
calculation of the 1s level shift and width of kaonic hydrogen
is desirable.

The observables given by the potential, together with the
corresponding experimental data, are shown in Table II. It is
seen that the 1s level shift1�E

K−p
1s and width �

K−p
1s of kaonic

hydrogen of the V Chiral
K̄N-π�-π�

potential are in agreement with the
most recent experimental data of the SIDDHARTA Collab-
oration [15]. Comparing the data in Table II with those from
Table II of [2] we see that the chirally-motivated potential
V Chiral

K̄N-π�-π�
gives a 1s level shift �E

K−p
1s and width �

K−p
1s

of kaonic hydrogen that are close to the results of the
one-pole V

1,SIDD
K̄N-π�

and the two-pole V
2,SIDD
K̄N-π�

versions of the
phenomenological potential. The chirally-motivated potential
also reproduces the rather accurately measured threshold
branching ratios γ , Rc, and Rn:

γ = �(K−p → π+�−)

�(K−p → π−�+)
, (5)

Rc = �(K−p → π+�−,π−�+)

�(K−p → all inelastic channels)
, (6)

Rn = �(K−p → π0�)

�(K−p → neutral states)
. (7)

The medium value of the threshold branching ratio γ and of
Rπ� constructed from Rc and Rn (see Eqs. (7) and (10) of [2])
are reproduced by the phenomenological potential as well;
therefore, we can say that all three potentials reproduce the
experimental data equally well.

The same is true for the elastic and inelastic K−p
cross sections K−p → K−p, K−p → K̄0n, K−p → π+�−,
K−p → π−�+, and K−p → π0�0. To demonstrate that all
three potentials reproduce the cross sections with the same
accuracy, we plotted the results of V Chiral

K̄N-π�-π�
, V

1,SIDD
K̄N-π�

, and

V
2,SIDD
K̄N-π�

interaction models in the same figure (see Fig. 1). The
experimental data in the figure are taken from [18–22]. As was

1We define the 1s level shift as �E1s = ECoul
1s − Re(ES+Coul

1s ), where
ECoul

1s is the energy calculated with the Coulomb interaction only.

034003-2



FADDEEV . . . . I. LOW-ENERGY K−d . . . PHYSICAL REVIEW C 90, 034003 (2014)

50 100 150 200 250 300
0

20

40

50 100 150 200 250 300
0

20

40

60

80

100

100 150 200 250 300
0

20

40

60

50 100 150 200 250 300

50

100

150

200

250

300

350

50 100 150 200 250 300

0

50

100

150

200

250

50 100 150 200 250 300

0

20

40

60

80

100

120

140

Plab (MeV)

σ
(m

b)

K¯ p 0

Plab (MeV)

σ
(m

b)
K¯ p + ¯

Chiral potential
SIDD1 phenomenological
SIDD2 phenomenological

Plab (MeV)

σ
(m

b)

K¯ p K 0 n
_

K¯ p K¯ p

Plab (MeV)

σ
(m

b)

Plab (MeV)

σ
(m

b)

K¯ p ¯ +

Plab (MeV)

σ
(m

b)

K¯ p 0 0

FIG. 1. Comparison of the elastic and inelastic K−p cross sections for the chirally-motivated potential V Chiral
K̄N-π�-π�

(solid lines) with the
one-pole V 1,SIDD

K̄N-π�
(dash-dotted lines) and two-pole V 1,SIDD

K̄N-π�
(dotted lines) phenomenological potentials from [2]. The experimental data are

taken from [18–22] (data points).

done previously, one set of data [23] is neglected owing to
large experimental errors.

Unlike most of the authors of models of the K̄N interaction
we need not know the K−p scattering length aK−p to calculate
the characteristics of kaonic hydrogen. However, we can
calculate it directly from the V Chiral

K̄N-π�-π�
potential: its value

is

aK−p = −0.77 + i 0.84 fm. (8)

The isospin-diagonal I = 0 and I = 1 K̄N scattering lengths

aK̄N,0 = −1.65 + i 1.26 fm, aK̄N,1 = 0.52 + i 0.48 fm
(9)

are not connected with the aK−p value by the simple formula
aK−p = (aK̄N,0 + aK̄N,1)/2 since physical masses are used
whereas the V Chiral

K̄N-π�-π�
potential is constructed together with

the isospin-nonconserving Coulomb interaction. In the three-
body AGS equations, however, isospin-averaged masses are
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used, which lead to different values of the scattering lengths:

aaver
K−p = −0.49 + i 0.71 fm, (10)

aaver
K̄N,0 = −1.50 + i 0.84 fm,

(11)
aaver

K̄N,1 = 0.53 + i 0.59 fm.

In the same way as other chirally-motivated potentials,
our new potential has two strong poles for the �(1405)
resonance:

z1 = 1417 − i 33 MeV, z2 = 1406 − i 89 MeV. (12)

Both are situated on the proper Riemann sheets, corresponding
to a resonance in the π� channel and a quasi-bound state
in the K̄N channel. They are connected to the π� channel
too through isospin-nonconserving parts. The real parts of the
poles are situated between the K̄N and π� thresholds as one
would expect. Because of the above-mentioned isospin mixing
the poles z1 and z2 are not pure I = 0 states. They have a small
admixture of the isospin I = 1 state (see [14] for details). The
two-pole structure of the �(1405) resonance follows from
the energy-dependent form of the potential. To achieve the
same property of our two-pole phenomenological potential
V

2,SIDD
K̄N-π�

we used a more complicated form factor in the π�
channel.

In the same way as in [14] we checked where the poles
move when the nondiagonal couplings of the potential were
gradually reduced to zero. The results are demonstrated in
Fig. 2. It is seen that the strong pole z1 becomes a real bound
state with smaller than the original binding energy when the
K̄N , π�, and π� channels are uncoupled. The second strong
pole z2 remains a resonance pole, situated between the K̄N
and π� channels, but with smaller real and larger imaginary
parts. The same trajectory drawn for the 1s level shift and
width of kaonic hydrogen (see Fig. 3) shows that the pole,
corresponding to the atomic state, also becomes a real bound
state. The 1s level shift is large for the decoupled system.
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z1

z2

FIG. 2. Trajectories of the strong poles when the coupling
between the K̄N , π�, and π� channels is gradually being switched
off (empty symbols). The filled symbols denote the original values
with coupled channels.
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FIG. 3. The same as Fig. 2 for the 1s level of kaonic hydrogen.

Theoretically, the �(1405) resonance peak could be seen
in the elastic π0�0 cross sections; however, the corresponding
experimental peak can be observed only as an Final State In-
teraction (FSI) peak in a more complicated reaction involving
three or more particles. In this case the virtual K̄N → π�
process can also contribute to the π� yield in a final state.
The extent of this contribution can be reliably determined only
by considering the complete, rather complicated process (see,
e.g., Eq. (11) in [24]). Instead, many authors of K̄N interaction
models add the K̄N → π� amplitude to the π� → π� one
and introduce an adjustable parameter in front of it to compare
the theoretical predictions with experimental π� missing mass
spectra. The corresponding cross sections are multiplied by the
π� relative momentum, which is a phase space factor coming
from the FSI formalism. We did not follow that routine and
demonstrate the effect of the �(1405) resonance in elastic
π0�0 cross sections (see Fig. 4).

1350 1380 1410 1440 1470 1500
0

5

10

15

20

25

30

35

zth
K _ p→ 

π 0 Σ 0 →  π 0 Σ 0

σ
(m

b)

z (MeV)

Λ(1405)PDG → 

FIG. 4. Elastic π 0�0 cross sections of the chirally-motivated
potential V Chiral

K̄N-π�-π�
. The Particle Data Group value for the mass

of the �(1405) resonance and the K−p threshold are also shown.
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TABLE III. Scattering lengths of K−d scattering, aK−d (in fm), and effective range reff
K−d

(in fm) obtained from AGS calculations with
the chirally-motivated V Chiral

K̄N-π�-π�
potential (3) and the one-pole V 1,SIDD

K̄N-π�
and two-pole V 2,SIDD

K̄N-π�
phenomenological potentials from [2]. K−d

scattering length values from other Faddeev calculations are also shown. The 1s level shift �EK−d
1s (eV) and width �K−d

1s (eV) of kaonic
deuterium, calculated using the three potentials, are shown as well.

aK−d reff
K−d

�EK−d
1s �K−d

1s

AGS with V Chiral
K̄N-π�-π�

(this work) −1.59 + i 1.32 0.50 − i 1.17 −828 1055

AGS with V 1,SIDD
K̄N-π�

[2] −1.49 + i 1.24 0.69 − i 1.31 −785 1018

AGS with V 2,SIDD
K̄N-π�

[2] −1.51 + i 1.25 0.69 − i 1.34 −797 1025

MFST [6] −1.58 + i 1.37
Deloff [5] −0.85 + i 1.05
TDD [4] −1.34 + i 1.04
TGE [3] −1.47 + i 1.08

III. K−d ELASTIC SCATTERING AND
THE K−d QUASI-BOUND STATE

We solved Faddeev-type equations in Alt-Grassberger-
Sandhas form for the K̄NN system with the coupled π�N
channel, which for the N -term isospin-dependent separable
potentials

V
αβ
i,I =

Nα
i∑

m=1

λ
αβ
i(m),I

∣∣gα
i(m),I

〉〈
g

β
i(m),I

∣∣ (13)

is the system of equations for the unknown operators X
αβ
ij,Ii Ij

:

X
αβ
i(l)j,Ii Ij

= δαβ

Nα
j∑

m=1

Cα
j (m) Z

α
i(l)j (m),Ii Ij

+
3∑

k,γ=1

Nα
k∑

m,n=1

∑
Ik

Zα
i(l)k(m),Ii Ik

τ
αγ
k(mn),Ik

X
γβ
k(n)j,IkIj

.

(14)

The “particle channel” indices α,β = 1,2,3 are used in
Eqs. (13) and (14) additionally to the usual Faddeev partition
indices i,j,k = 1,2,3. The Nα

i in the equations is the number of
terms of the separable potential, λ is a strength constant, and g
is a form factor. The function τ

αγ
k(mn),Ik

is the energy-dependent
part of the T matrix of the separable potential (13). Additional
details of the formulas can be found in our previous paper [1].
The equations properly describe the three-body dynamics of
the system. They are written in momentum representation,
and isospin formalism is used. The equations were properly
antisymmetrized, which is necessary because there are two
baryons in every channel. The logarithmic singularities in the
kernels of the equations were treated by the method suggested
in [25]. The three-body calculations were performed without
taking the Coulomb interaction into account since its effect is
expected to be small.

The elastic K−d amplitudes, including the scattering
length, and effective range were calculated by using the
chirally-motivated V Chiral

K̄N-π�-π�
potential described in the pre-

vious section. We used averaged masses in the potential as
well as in the the whole three-body calculation since it was
shown in [24] that the effect of physical masses is rather small.

The three-channel K̄N -π�-π� potential was used in the
K̄NN -π�N AGS equations in the form of the exact optical
two-channel K̄N -π�(-π�) potential, when the K̄N -K̄N ,
K̄N -π�, and π�-π� elements of the three-channel T matrix
are used as the two-channel T matrix. The remaining two-body
potentials, needed for the three-body calculation, are also
separable. The two-term TSA-B NN and the exact optical
�N (-�N ) potentials that were used are described in [1].
The NN interaction model reproduces the phase shifts of
the Argonne V18 potential and is therefore repulsive at
short distances. It gives the proper NN scattering length,
effective range, and binding energy of the deuteron. The
two-channel �N -�N potential reproduces the experimental
�N and �N cross sections, while the corresponding exact
optical �N (-�N ) potential has exactly the same elastic �N
amplitude as the two-channel potential.

The K−d scattering length aK−d obtained with the chirally-
motivated potential is shown in Table III. The new three-body
result is compared to those from [2] with one-pole V

1,SIDD
K̄N-π�

and two-pole V
2,SIDD
K̄N-π�

versions of the phenomenological K̄N
potential. The “phenomenological” results in the table differ
slightly from the three-body values from Table II of [2] since
here we used the spin-independent �N (-�N ) potential, while
the spin-dependent potential was used in the previous paper.
It is seen that the chirally-motivated potential leads to about
6% larger absolute value of the real and imaginary parts of
the scattering length. The difference is quite small, so we can
conclude that the three different models of the K̄N interaction,
which reproduce low-energy data on K−p scattering and
kaonic hydrogen with the same level of accuracy, give quite
similar results for low-energy K−d scattering.

Since it was shown [1] that the fixed scatterer approximation
(also called the fixed center approximation) gives error of about
30% for the K−d scattering length, this time we do not com-
pare the results obtained with this method with ours. Four aK−d

values obtained in other Faddeev calculations are shown in
Table III. Comparing to them, we see that the result of the very
recent calculation with coupled channels [6] gives the real part
of aK−d that almost coincides with our result for the chirally-
motivated potential. The imaginary part of the K−d scattering
length from [6] is slightly larger, which can follow from the fact
that the K̄N interaction model used there was fitted to kaonic
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FIG. 5. The elastic near-threshold K−d amplitudes presented in
the form of a k cot δ(k) function. Real (filled circles) and imaginary
(empty circles) parts of the functions obtained from the coupled-
channel three-body AGS equations using the chirally motivated
potential V Chiral

K̄N-π�-π�
are shown. The two-body results obtained with

the complex K− − d potential are demonstrated as well (by a solid
line for the real part and a dotted line for the imaginary part of the
function).

hydrogen data not directly but through the K−p scattering
length and the approximate formula, which is the least reliable
just in reproducing the imaginary part of the level shift.

The one-channel result of the Faddeev calculation [5] lies
far away from all the others. Two effects play a role here:
one-channel dynamics and, therefore, indirectly taking the
π�N channel into account and problems with reproducing
experimental data by the complex potential, used in the paper.
It was demonstrated in [1] for phenomenological models of
the K̄N interaction that simple complex potentials have quite
large error, whereas an exact optical K̄N potential gives rather
an accurate result for the scattering length. The exact optical
potential with K̄N amplitudes exactly corresponding to those
from the potential with coupled channels is good for the
chirally-motivated model as well. It gives

a
Chiral,Opt
K−d = −1.57 + i 1.32 fm, (15)

which is very close to the coupled-channel result from
Table III.

Finally, two old aK−d values [3,4] significantly underesti-
mate the imaginary part of the K−d scattering length.

We also calculated the effective range reff
K−d of K−d

scattering; the results can be seen in Table III. The real part
of reff

K−d of the chirally-motivated potential is much smaller
than those of our phenomenological potentials. The imaginary
part is smaller by the absolute value. Near-threshold elastic
amplitudes of K−d scattering are needed for construction of
a complex two-body K− − d potential and further calculation
of the 1s level of kaonic deuterium. They are presented in
k cot δ(k) form in Fig. 5.

The relative values of |Re aK−d | and |Im aK−d | obtained
with each one of our three potentials together with their signs
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FIG. 6. Pole trajectories in the K−d system for increasing
absolute value of the λK̄K̄

I=0 strength constant of the phenomenological
V 1,SIDD

K̄N-π�
and V 2,SIDD

K̄N-π�
potentials. The numbers along the trajectories

indicate the multiplication factors. The position of the K−d threshold
is also shown; quasi-bound states are the poles to the left of it.

might lead to the conclusion that a bound or a quasi-bound state
could exist in the K−d system. Indeed, a simple analytical
continuation of the effective range formula below the K−d
threshold suggests a K−d quasi-bound state at −14.6 −
i 11.0 MeV for the chirally-motivated potential V Chiral

K̄N-π�-π�
, at

−19.6 − i 8.2 MeV for V
1,SIDD
K̄N-π�

, and at −18.9 − i 7.8 MeV for

the V
2,SIDD
K̄N-π�

potential (with the real parts being measured from
the K−d threshold). A systematic search for these quasi-bound
states based on the AGS equations (the details of which
are described in our next paper [26] devoted to the K−pp
system) did not find them, either in the neighborhood of these
predictions or elsewhere.2 The reason must be the validity of
the effective range formula, which is limited to the vicinity of
the corresponding threshold. Since the K−d state is expected
to have a rather large width (similarly to the K−pp case),
it is definitely out of such a region. The only K̄N potential
that gives a quasi-bound state in the K−d system is one of
our older phenomenological potentials [1], which does not
reproduce SIDDHARTA data but reproduces KEK data on
kaonic hydrogen [27] only.

We checked, whether the absence of a K−d quasi-bound
state is caused by the insufficient attraction in the K̄N channel
with I = 0, which is believed to be less important in the
K−d system than K̄N with I = 1. Namely, we performed
a series of calculations where the λK̄K̄

I=0 strength constants of
our phenomenological potentials V

1,SIDD
K̄N-π�

and V
2,SIDD
K̄N-π�

were
multiplied by some factor. For the chirally-motivated model
such a procedure is more complicated, since there the relative
strength of the I = 0 and I = 1 interaction is fixed. The results
are shown in Fig. 6, which demonstrates that increasing of the

2Obviously, we identify poles as quasi-bound states in the K−d

system if their real parts are situated between the π�N and K−d

thresholds.
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absolute value of the λK̄K̄
I=0 strength constant and, therefore,

of the attraction in the I = 0 K̄N subsystem leads to the
appearance of K−d quasi-bound states.

IV. CHARACTERISTICS OF KAONIC DEUTERIUM

Our aim was to calculate a physical quantity that character-
izes the low-energy properties of the K−d system and can be
compared to experimental data directly. The scattering length
is not of this type, while the 1s level shift and width of kaonic
deuterium can be measured. Therefore, we calculated these
atomic observables, which correspond to the results of our
three-body calculations of low-energy K−d scattering.

Since performing the Faddeev calculation with the
Coulomb plus a strong interaction is too hard, a two-body
calculation with a complex K− − d potential was performed
instead. The potential is a separable one with two terms,

VK−d (�k,�k′) = λ1,K−d g1(�k)g1(�k′) + λ2,K−d g2(�k)g2(�k′), (16)

and Yamaguchi form factors

gi(k) = 1

β2
i,K−d + k2

, i = 1,2. (17)

The parameters of the potential,

β1,K−d = 1.5 fm−1, λ1,K−d = −0.0628 − i 0.4974 fm−2,

(18)

β2,K−d = 1.1, fm−1, λ2,K−d = −0.1123 + i 0.1556 fm−2,

(19)

were fixed by fitting the near-threshold three-body K−d ampli-
tudes calculated using the AGS equations, described in the pre-
vious section. The result of the fit can be seen in Fig. 5, where
the kcotδ(k) functions calculated using the complex K− − d
potential are plotted as solid (real part) and dotted (imaginary
part) lines. Comparing the lines with the corresponding dots,
denoting the three-body results, we see that the description
is excellent. Obviously, the potential (16) reproduces the
scattering length aK−d and effective range reff

K−d from Table III.
The Lippmann-Schwinger equation with the complex

K− − d and pointlike Coulomb potentials was then solved
and the 1s level energy was obtained. Additional details about
the calculation can be found in [2,14]. The shift �EK−d

1s

and width �K−d
1s of kaonic deuterium, corresponding to the

chirally-motivated model of the K̄N -π�-π� interaction, are
shown in Table III. We also show the characteristics of the
atom, obtained with our phenomenological potentials V

1,SIDD
K̄N-π�

and V
2,SIDD
K̄N-π�

[2].
The “chirally-motivated” absolute values of the level shift

�EK−d
1s and the width �K−d

1s are both larger than those obtained
in [2] for the phenomenological K̄N -π� potentials. In view
of the results for the K−d scattering lengths discussed in the
previous section, this is an expected result since the 1s level
shift and width of a hadronic atom are directly connected to
the strong scattering length of the system. However, the results
obtained using three different models of the K̄N interaction
are rather close to each other. We think that the important point

here is the fact that all three potentials reproduce low-energy
experimental data on K−p scattering and kaonic hydrogen
with the same level of accuracy.

We checked the accuracy of the approximate corrected
Deser formula, allowing simple computation of characteristics
of a kaonic atom from a known scattering length. The result
obtained using the aK−d value from Table III,

�EChiral
K−d,cD = −878 eV, �Chiral

K−d,cD = 724 eV, (20)

compared to the more accurate ones �EChiral
K−d and �Chiral

K−d

from the same table show that in this case the error of
the approximate formula is as large as for the case of
phenomenological K̄N potentials. As in [2], the corrected
Deser formula underestimates the width of the 1s level of
kaonic deuterium by 30%. Therefore, the validity of this
statement does not depend on the model of the K̄N interaction.

We would like to note that our results for �EChiral
K−d and

�Chiral
K−d , shown in Table III, cannot be called “exact,” but only

“accurate” since the 1s level shift and width were obtained
from the two-body calculation with a pointlike deuteron
interacting with a kaon through the complex potential. This
means that the size of the deuteron was taken into account
only effectively through the potential, which reproduces the
three-body K−d AGS amplitudes. As for the corrected Deser
formula, it contains no three-body information at all since the
only input is a K−d scattering length. Moreover, the formula
relies on further approximations, which are absent in our cal-
culation, and gives a 10% error already for the two-body case.

V. CONCLUSIONS

We constructed a three-channel isospin-dependent chirally-
motivated K̄N -π�-π� potential and used it in the Faddeev-
type calculations of the low-energy elastic K−d amplitudes,
including K−d scattering length, and effective range. The
potential reproduces all low-energy experimental data on K−p
scattering and characteristics of kaonic hydrogen with the
same level of accuracy as our phenomenological potentials
with one- and two-pole structure of the �(1405) resonance.
Comparison of the results allows to reveal the effect of the
three different models of the K̄N interaction used in the
three-body calculations. It turns out that the low-energy K−d
elastic amplitudes and characteristics of kaonic deuterium
obtained with the three potentials are rather close to each other.
Therefore, comparison with eventual experimental results on
kaonic deuterium hardly could distinguish these models of the
K̄N interaction. Additionally, we found no quasi-bound states
in the K−d system and, for the phenomenological potentials
shown, this lack of quasi-bound states is caused by insufficient
attraction in the I = 0K̄N subsystem.
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