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Proton-neutron pairing vibrations in N = Z nuclei: Precursory soft mode of
isoscalar pairing condensation

Kenichi Yoshida
Graduate School of Science and Technology, Niigata University, Niigata 950-0913, Japan

(Received 15 April 2014; revised manuscript received 7 July 2014; published 29 September 2014)

L = 0 proton-neutron (pn) pair-addition and pair-removal strengths in 40Ca and 56Ni are investigated by
means of the pn particle-particle random-phase approximation employing a Skyrme energy-density functional.
It is found that the collectivity of the lowest J π = 1+ state in the adjacent odd-odd nuclei becomes stronger as the
strength of the isoscalar (T = 0) pairing interaction increases. The results suggest the emergence of the T = 0
pn-pairing vibrational mode as a possible critical phenomenon toward the T = 0 pairing condensation.
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The pairing correlation plays a central role in low-energy
nuclear phenomena, such as the ground-state spin, staggering
in the systematics of the binding energies, the low-lying
quadrupole collective dynamics, and the spontaneous fission
half-lives [1]. The correlation is so strong that the fluctuations
of the pairing gap around its zero equilibrium value develop
in nuclei near the closed shell, and the systems get deformed
eventually in gauge space when more nucleons are added [2].
The collective pairing vibration emerging in the closed-shell
nuclei is thus associated with the occurrence of the pairing
condensation.

It is in the isovector and spin-singlet (T = 1,S = 0) channel
that the pairing correlation has been extensively studied. With
the advent of the radioactive-isotope beam technology, the
heavy proton-rich nuclei along the N = Z line have received
considerable attention. Of particular interest are location
of the proton drip line and the extra binding mechanism
called the Wigner energy [3]. The isoscalar and spin-triplet
(T = 0,S = 1) pairing correlation is expected to be visible
in N ∼ Z nuclei because the shell structures around the
Fermi levels of both neutrons and protons are similar to
each other and the spatial overlap between the neutron and
proton single-particle wave functions would be large to form
a proton-neutron (pn) Cooper pair [4]. As a consequence of
the strongly attractive pn interaction in the 3S1 channel, the
possible T = 0 pairing condensate has been discussed in heavy
N ∼ Z nuclei theoretically [5–8].

The experimental fingerprint of the T = 0 pairing conden-
sation has been under debate, though there have been numerous
experimental attempts [9]. This is because the spin-orbit
splitting suppresses to couple a spin-triplet pair in the ground
state [10]. In Ref. [11], Macchiavelli et al. tried to extract
the experimental excitation energy and the collectivity of the
T = 0 and T = 1 pn-pair excited states. Their analysis is
based on the subtraction of average properties including the
symmetry energy and comparison to the single-particle level
spacing. The Hamiltonian employed for describing the pn pair
excitations contains the schematic separable interactions of the
T = 0 and T = 1 types with two levels. Then, they found any
appreciable collectivity in the T = 0 channel unlikely in 56Ni.

The interplay between the T = 0 and T = 1 pairing
correlations in the pn-pair transfer strengths has been in-
vestigated by employing a solvable model [12]. I investigate
in the present article the possibility of a collective T = 0

pn-pairing vibrational mode in the “normal” phase where
the T = 0 pairing gaps are zero. The pn pair excitations are
described microscopically based on the nuclear energy-density
functional (EDF) method, where the global properties and
the shell effects are taken into account on the same footing.
More precisely, the pn-pairing vibrational modes are obtained
out of the solutions of the pn particle-particle random-
phase approximation (ppRPA) equation and are described
as elementary modes of excitation generated by two-body
interactions acting between a proton and a neutron. Then, I
show that the strongly collective T = 0 pn-pairing vibrational
mode emerges when the interaction is switched on.

In a framework of the nuclear EDF method employed,
the pn-pair-addition vibrational modes are described as
|Z + 1,N + 1; λ〉 = �̂

†
λ|Z,N〉 with the RPA phonon operator

�̂
†
λ = ∑

mn Xλ,mnâ
†
π,mâ

†
ν,n − ∑

ij Yλ,ij â
†
ν,j â

†
π,i . Here a

†
π,m(a†

ν,n)
create a proton (neutron) in the single-particle level m (n)
above the Fermi level, and a

†
π,i(a

†
ν,j ) create a proton (neutron)

in the single-particle level i (j ) below the Fermi level. The first
and second terms correspond to the particle-particle (pp) and
hole-hole (hh) excitations, respectively. Greek indices α,β are
used for indicating the particle and hole states collectively. The
single-particle basis is obtained as a self-consistent solution of
the Skyrme-Hartree-Fock (SHF) equation. The SHF equation
is solved in cylindrical coordinates r = (r,z,φ) with a mesh
size of 	r = 	z = 0.6 fm and with a box boundary condition
at (rmax,zmax) = (14.7,14.4) fm. The axial and reflection
symmetries are assumed in the ground state. More details of
the calculation scheme are given in Ref. [13].

In the present calculation, the SGII interaction is used
for the particle-hole (ph) channel because the spin-isospin
properties were considered to fix the coupling constants
entering in the EDF [14]. For the pp channel, the density-
dependent contact interactions are employed:

vT =0
pp (rστ,r ′σ ′τ ′)

= f × V0
1 + Pσ

2

1 − Pτ

2

[
1 − ρ(r)

ρ0

]
δ(r − r ′), (1)

vT =1
pp (rστ,r ′σ ′τ ′)

= V0
1 − Pσ
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1 + Pτ

2

[
1 − ρ(r)

ρ0

]
δ(r − r ′), (2)
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FIG. 1. (Color online) pn pair-addition strengths of 40Ca → 42Sc
and 56Ni → 58Cu in the J π = 1+ [(a), (b)] and J π = 0+ [(c), (d)]
states smeared with a width of 0.1 MeV. For the (J,T ) = (1,0) chan-
nel, shown are the strengths obtained with factors f = 0,1.0,1.3,1.7,
and 2.0. For the (J,T ) = (0,1) channel, the unperturbed single-
particle transition strengths are also shown by a dotted line.

where ρ0 = 0.16 fm−3 and ρ(r) = ρν(r) + ρπ (r). The pairing
strength is fixed as V0 = −390 MeV fm3. A procedure to
determine V0 is explained below. The factor f appearing in
Eq. (1) is changed to see an effect of the interaction in the
T = 0 channel [15].

Figure 1 shows the strength distributions for the
monopole (L = 0) pn-pair-addition transfer |〈Z + 1,N +
1; λ|P̂ †

T ,S |Z,N〉|2 ≡ |∑αβ M
T,S
αβ |2 as functions of the RPA

frequency ωλ in 40Ca and 56Ni. Here, the L = 0 T = 0
pn-pair-addition operators are defined as

P̂
†
T =0,S=1,Sz

= 1

2

∑
σσ ′

∑
τ

∫
d rψ̂†(rστ )〈σ |σ Sz

|σ ′〉ψ̂†(rσ̃ ′τ̃ ) (3)

and the L = 0 T = 1 pn-pair-addition operator as

P̂
†
T =1,Tz=0,S=0

= 1

2

∑
σ

∑
ττ ′

∫
d rψ̂†(rστ )〈τ |τ 0|τ ′〉ψ̂†(rσ̃ τ̃ ′) (4)

in terms of the nucleon field operator, where ψ̂†(rσ̃ τ̃ ) ≡
(−2σ )(−2τ )ψ̂†(r − σ − τ ). Note that the absolute values of
the RPA frequency do not directly correspond to the excitation
energies observed experimentally. The particle excitation
energies here are measured from the Fermi energies; Eα =
|εα − λ|. Since in the spatially spherical “normal” nuclei, the
spin orientation is not uniquely determined, i.e., rotationally
invariant in spin space, the strengths for the spin-triplet
(S = 1) pair-addition transfer (3) are all the same. Therefore,
the strengths for Sz = 0,±1 are summed up in Figs. 1(a)
and 1(b).

One sees that the excitation energy and the strength of
the Jπ = 1+ state are strongly affected by the T = 0 pairing
interaction. In the case of f = 0, without the T = 0 pairing
interaction, the lowest 1+ state in 42Sc located at ω = 7.5 MeV

TABLE I. Microscopic structure of the collective J π = 1+ and
0+ states in 42Sc calculated with f = 1.7(1.3). Listed are the
configuration, its excitation energy, and the matrix element. The
excitation energies are given in MeV. The pp and hh excitations
possessing a large matrix element are only shown. Sums of the
backward-going amplitudes squared and the matrix elements are
shown in the last lines. For the J π = 1+ state, the Jz = 0 component
is only shown.

42Sc J π = 1+ J π = 0+

Configuration Eα + Eβ M
S=1,Sz=0
αβ MS=0

αβ

π1f7/2 ⊗ ν1f7/2 7.5 1.70 (0.92) 2.82
π1f7/2 ⊗ ν1f5/2 15.2 0.62 (0.38)
π1f5/2 ⊗ ν1f7/2 14.7 0.51 (0.31)
π2p3/2 ⊗ ν2p3/2 16.1 0.17 (0.11) 0.15
π1d3/2 ⊗ ν1d3/2 4.2 0.16 (0.08) 0.26
π2s1/2 ⊗ ν2s1/2 6.6 0.25 (0.12) 0.09
π1d3/2 ⊗ ν1d5/2 10.1 0.32 (0.15)
π1d5/2 ⊗ ν1d3/2 10.2 0.32 (0.15)
π1d5/2 ⊗ ν1d5/2 16.1 0.16 (0.08) 0.18∑

αβ Mαβ 6.63 (4.51) 4.56∑
ij Y 2

ij 0.17 (0.04) 0.03

is a single-particle excitation πf7/2 ⊗ νf7/2. As the pairing
interaction is switched on and the strength is increased, the
1+ state is shifted lower in energy with the enhancement of
the transition strength. In Table I, the microscopic structure
of the 1+ state obtained by setting f to 1.7 and 1.3 (in
parentheses) is summarized. This 1+ state is constructed by
many pp excitations involving an f5/2 and a p3/2 orbitals
located above the Fermi levels as well as the πf7/2 ⊗ νf7/2

excitation. It is particularly worth noting that the hh excitations
from the sd shell have an appreciable contribution to generate
this T = 0 pn-pair-addition vibrational mode, indicating a
40Ca core breaking. Furthermore, all the pp and hh excitations
listed in the table construct the vibrational mode in phase. The
strong collectivity can be also seen from a large amount of
the ground-state correlation: A sum of the backward-going
amplitudes squared is 0.17 (0.04).

The low-lying 1+ state in 58Cu is also sensitive to the
T = 0 pairing interaction. As shown in Table II, this mode is
dominantly constructed by a πp3/2 ⊗ νp3/2 excitation together

TABLE II. Same as Table I but for 58Cu.

58Cu J π = 1+ J π = 0+

Configuration Eα + Eβ M
S=1,Sz=0
αβ MS=0

αβ

π2p3/2 ⊗ ν2p3/2 4.5 1.28 (1.38) 1.95
π2p1/2 ⊗ ν2p3/2 6.4 0.39 (0.28)
π2p3/2 ⊗ ν2p1/2 6.5 0.37 (0.26)
π2p1/2 ⊗ ν2p1/2 7.9 0.05 (0.03) 0.16
π1f5/2 ⊗ ν1f5/2 9.7 0.15 (0.09) 0.33
π1g9/2 ⊗ ν1g9/2 17.7 0.24 (0.14) 0.16
π1f7/2 ⊗ ν1f7/2 5.1 0.17 (0.13) 0.07∑

αβ Mαβ 4.25 (3.19) 3.53∑
ij Y 2

ij 0.03 (0.008) 0.009
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FIG. 2. (Color online) Same as Fig. 1 but for the pn pair-removal
strengths.

with many other pp excitations involving a p1/2 and an f5/2

orbitals. In contrast to a large core breaking in 42Sc, a role
played by the hh excitation of πf7/2 ⊗ νf7/2 is minor in 58Cu
with the same pairing interaction.

In Figs. 1(c) and 1(d), the strength distributions for the
T = 1 pn-pair-addition transfer are shown together with the
strengths obtained without the residual interactions. The low-
lying 0+ state is predominantly constructed by the πf7/2 ⊗
νf7/2 excitation in 42Sc similarly to the 1+ state. Though the
number of possible pp configuration in the bound states is
smaller than in the T = 0 channel, the energy shift due to
the T = 1 pairing interaction is large and the ground-state
correlation is strong. The 0+ state in 58Cu is as collective as
the 1+ state.

In an attempt to explore characteristic features of the col-
lective T = 0 pn-pairing vibration, I investigate the pn pair-
removal strengths in 40Ca and 56Ni. The strength distributions
for the pn-pair removal transfer are shown in Fig. 2. Similarly
to the T = 0 pn-pair-addition vibration, the frequency and the
transition strength to the low-lying 1+ state strongly depend
on the strength of the T = 0 pairing interaction, in particular,
for 40Ca → 38K. In the case of f = 1.7, the 1+ state is mainly
generated by a πd3/2 ⊗ νd3/2 excitation with a matrix element
of 0.82. Furthermore, many other hh excitation participate
to generate this T = 0 pn-pair-removal vibrational mode:
They are the πs1/2 ⊗ νs1/2 (with M = 0.07), πd5/2 ⊗ νd3/2

(0.30), πd3/2 ⊗ νd5/2 (0.30), πd5/2 ⊗ νd5/2 (0.16) excitations
together with the pp excitation of πf7/2 ⊗ νf7/2 (0.39). One
sees the coherence among the hh and pp excitations, and a
strong ground-state correlation:

∑
mn Y 2

mn = 0.11.
A change in the RPA frequency of the collective mode due

to the T = 0 pairing interaction is summarized in Fig. 3(a).
The vibrational frequency is defined as (ωT =0

add + ωT =0
rem )/2,

where ωT =0
add(rem) denotes the RPA frequency of the eigenmode

possessing the largest pn pair-addition (removal) strength in
the low-energy region less than 10 MeV. In the doubly magic
nuclei, the pairing collectivity is generated by only the residual
pairing interactions (1) and (2). One clearly sees that the RPA
frequency of the T = 0 pn-pairing vibrational mode becomes
lower with increasing the pairing strength f . The pairing
collectivity generated is sensitive to the shell structure as well

FIG. 3. (Color online) (a) RPA frequency of T = 0 pairing vi-
brational mode in 40Ca and 56Ni calculated by varying the strength f .
(b) Ratio of the transition strengths to the collective 1+ state to the ones
to the unperturbed 1+ state in 38K, 42Sc, 56Co, and 58Cu calculated
varying the pairing strength f . Lines are drawn to guide the eye.

as the interactions. The critical strength is fc = 2.04 and 2.57
in 40Ca and 56Ni, respectively. It is known that the RPA breaks
down at the critical point and underestimates the excitation
energy around that point [16]. A rapid lowering of the RPA
frequency seen here indicates that there is a true vacuum giving
the T = 0 pairing gaps � ≡ 〈P̂T =0,S=1〉 	= 0 in the limit of the
strong pairing interaction f > fc. Therefore the 1+ state can
be considered as a precursory soft mode of the T = 0 pairing
condensation.

Another direct measure of the collectivity is the pn transfer
strength. Figure 3(b) shows the ratio of the transition strengths
to the collective 1+ state to the ones to the unperturbed
1+ state assuming the single-particle configuration with
the lowest energy in 38K, 42Sc, 56Co, and 58Cu, that is a
(d3/2)−2,(f7/2)2,(f7/2)−2, and (p3/2)2 configuration, respec-
tively. In 38K and 42Sc, there is an exponential enhancement
of the transition strengths when approaching the critical
strength fc. It is noted that the deuteron transfer experiment
was performed by using the 40Ca(3He, p)42Sc reaction, and
the observed cross section to the lowest 1+ state is about 24
times as large as the cross section calculated assuming the
pure (f7/2)2 configuration [17]. It is thus interesting to see in a
future work the pn-transfer cross sections calculated by using
the microscopic transition densities in the present framework.

I am going to discuss here how the strength f is
fixed. An analysis made in Ref. [7] suggests f 
 1.6 for
the density-independent contact interactions based on the
phenomenological shell-model Hamiltonians in the fp-shell
nuclei. The pairing strengths can be also determined from the
proton-neutron scattering lengths in the T = 0 and 1 channels
[18] as f ∼ 1.4 for Ecut = 60 MeV, and the low-lying states
in N = Z odd-odd nuclei were investigated by employing
the density-dependent pairing interaction thus determined
[19]. The authors in Ref. [15] pointed out that the low-lying
Gamow-Teller (GT) strengths in N 
 Z nuclei are sensitive
to the T = 0 pairing interaction. Thus, the low-lying GT
strengths in the neighboring nuclei can be alternatively used
to fix the f value.

Quite recently, enhancement of the GT strengths to the
low-energy region in the N = Z odd-odd nuclei in the fp
shell was reported and the low-lying strengths are found to
be very sensitive to the T = 0 pairing interaction [20]. The
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FIG. 4. (Color online) (a) Energy difference 	E = ω1+ − ω0+ in
38K, 42Sc, 54Co, and 58Cu calculated with f = 0, 1.0, 1.3, 1.7, and
2.0. (b) Ratio of the energy difference calculated to the experimental
value 	E/	Eexp. The experimental data are taken from Ref. [22]. A
horizontal line represents unity. Lines are drawn to guide the eye.

GT strengths of 42Ca to the low-lying 1+ state in 42Sc are
particularly enhanced. Without the residual interactions, the
low-lying and high-lying GT modes correspond primarily to
the πf7/2 ⊗ νf7/2 and πf5/2 ⊗ νf7/2 excitations, respectively.
The enhanced strength to the low-lying states indicates a
coherent contribution of these excitations. As shown in Table I,
the lowest 1+ state in 42Sc is generated by the πf7/2 ⊗
νf7/2 excitation together with the high-lying πf5/2 ⊗ νf7/2

excitation due to the T = 0 pairing interaction. The result
reported in Ref. [20] stimulates a further investigation on how
the pn-pairing collectivity of the low-lying 1+ state is seen in
the GT strength of a ph type, while the GT strengths associated
with the pn-pairing collectivity were investigated in a solvable
model [21], and in the context of the SU(4) symmetry in the
spin-isospin space within a Skyrme EDF framework [15].

An energy difference between the 1+ and 0+ states is
plotted in Fig. 4(a) and shown in Fig. 4(b) are the ratios of
the energy difference 	E calculated varying the strength f
to the one experimentally observed: 	Eexp = E1+

1
− E0+

1
is

0.328,0.611,0.937, and −0.203 MeV in 38K, 42Sc, 54Co, and
58Cu, respectively [22]. The pairing strength V0 was fixed
to reproduce the experimental value for the T = 1 pairing
vibrational frequency, 4.39 and 4.07 MeV in 40Ca and 56Ni. It
is defined by the binding energies: B(Z,N ) − [B(Z + 1,N +
1) − B(Z − 1,N − 1)]/2. The strength V0 = −390 MeV fm3

produces 4.38 and 4.10 MeV in 40Ca and 56Ni, respectively
for the vibrational frequency defined as (ωT =1

add + ωT =1
rem )/2.

The calculated results obtained by using f = 0.5 − 1.5

[a shaded area in Fig. 4(b)] reproduce the experimental data for
the energy difference. However, one sees that there is a large
uncertainty for determining the strength f . Since the pairing
interaction in the T = 0 channel is crucial for a quantitative
discussion on the collectivity of the pairing vibrational modes,
it is largely desired to investigate it in detail, such as the density
dependence of the interaction, and the mass number and/or the
isospin dependence of the strength as introduced in Ref. [23].

Before summarizing the paper, it is noted concerning the
T = 1 pairing that the pairing strength V0 = −390 MeV fm3

gives 	ν = 0.97 MeV and 	π = 0.99 MeV in 44Ti by solving
the SHF-Bogoliubov equation with an energy cutoff at 60
MeV and assuming that the T = 1 pairing interaction is
rotationally invariant in isospace. The experimental pairing
gaps of neutrons and protons are 2.06 and 1.86 MeV. Thus,
the resultant pairing correlation in the ground state is very
weak. In the present framework of the HF + RPA employing
the Skyrme SGII and the density-dependent pairing EDFs,
I cannot describe consistently the static and dynamic T = 1
pairing correlations in a unified way.

To summarize, I have found that a collective T = 0 pn-
pairing vibrational mode emerges in the presence of the T =
0 two-body particle-particle interaction in a self-consistent
Skyrme-EDF framework. It is suggested that the low-lying
Jπ = 1+ state in odd-odd N = Z nuclei can be a precursory
soft mode of the T = 0 pairing condensation. Due to a strong
collectivity of the T = 0 pn-pairing vibration, the pn-transfer
strength to the 1+ state can be largely enhanced in comparison
with the strength made by the pure single-particle configu-
ration. The present framework, however, cannot account for
all the experimental information on the pairing correlations in
a consistent way. For a quantitative discussion, it is greatly
desirable to investigate the Skyrme and pairing EDFs both in
the T = 0 and T = 1 channels in more details.
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