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Asymptotics of the 3 j and 9 j coefficients

Daniel Hertz-Kintish, Larry Zamick, and Brian Kleszyk
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
(Received 24 April 2014; revised manuscript received 19 June 2014; published 19 August 2014)

We present the details of calculations we previously performed for the large j behavior of certain 3j and 9j

symbols.
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In this Brief Report we focus on Eqs. (11) and (13) and
Eqs. (23) and (24) of the work of Kleszyk and Zamick [1].
In particular we consider the case when the total angular
momentum I is equal to Imax − 2n where Imax ≡ 4j − 2 and
n = 0,1,2, . . .. We take the limit of large j where n becomes
much smaller than j . For convenience, we also define J = 2j ,
where j is the total angular momentum of a single particle.

We first address the 3j coefficient, using the formula
Eq. (13) of [1], a derivation of which is contained in the work
of Racah [2]. The 3j in question is(

2j 2j − 2 I
0 0 0

)
. (1)

We express the total angular momentum I using a new variable
m such that I = 4j − 2m, where this time m = 1,2,3, . . .. We
can separate parts of the 3j , which now becomes

3j =
√

(2m − 1)!

(m − 1)!
(−1)m

√
N1!N2!

N3!

N4!

N5!N6!
, (2a)

where the six factors Ni are

N1 = 2J − 2 − 2m N2 = 2J + 2 − 2m

N3 = 4J − 1 − 2m,
(2b)

N4 = 2J − 1 − m N5 = J − 1 − m

N6 = J + 1 − m.

We use the Stirling approximation

ln x! ≈ x ln x − x + ln
√

2πx (3)

and it should be noted that the approximation approaches the
true value asymptotically. We present the results in Table I.

We can write Ni = (αi + βim + γiJ ) with differing con-
stant coefficients. In Eq. (2b) we give the contribuition of
−N, ln

√
2πN,α ln N,mβ ln N, and γ J ln N . For the last

of these we break things up into (a) “extreme” and (b)
“next order.” This is necessary because “next order” has
contributions comparable to those in “−N .”

First notice that the “γ J ln N” result is 1/2, which cancels
the +1/2 from “−N .” Adding up all the totals we get

−m ln(2) + ln

(
2

πJ

)1/4

+ ln

(
1√
J

)
(4)

= −m ln(2) + ln

(
2

πJ 3

)1/4

. (5)

Taking the antilog we get

3j ≈ e−m ln(2)

(
2

πJ 3

)1/4

(6)

and note that e−m ln 2 = 1

2m
.

Putting everything together and putting things in terms of
j and n we obtain

3j →
√

(2n)!

n!2n
(−1)n

(
1

64πj 3

)1/4

. (7)

We see that in the limit n � j , 3j goes as
1

j 3/4
. Alternatively,

the Clebsch-Gordan (CG) has an asymptotic value

CG →
√

(2n)!

n!2n
(−1)n

(
1

πj

)1/4

. (8)

We next consider the unitary 9j coefficient
〈(jj )2j (jj )2j |(jj )2j (jj )2j−2〉I . This time we write
I = 4j − 2m, where m = 1,2,3, . . .. In Eq. (11) from
[1], we have a factor (2J + I + 1)! which becomes
(4J + 1 − 2m)!. This can be written as (4J + 1)! × PROD
where PROD = (4J + 1)(4J ), . . . ,(4J + 2 − 2m). For
convenience we break this equation into several parts as
follows:

U (9j ) = FAC√
PROD

√
(2J + 1)(2J − 3)

2
× 3j, (9)

where

FAC = (C1!)2

C2!

√
C3!

C4!C5!
(10)

with

C1 = J C2 = 2J C3 = 4J + 1

C4 = 2J + 1 C5 = 2J − 1.

There are 2m terms in PROD. We use the fact that (4J + 1 −
2m)! = (4J + 1)! × PROD, and asymptotically we obtain√

(2J + 1)(2J − 3)

2
→ J

√
2, (11)

PROD → (4J )2m = (8j )2m. (12)

Hence we have
1√

PROD
→ 1

(8j )m
. (13)
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TABLE I. Asymptotic contributions to the 3j coefficients.

−Ni ln
√

2πNi αi ln Ni βim ln Ni γiJ ln Ni γiJ ln Ni

(1) − 1
2 (2J − 2 − 2m) 1

2 ln
√

4πJ − ln(2J ) −m ln(2J ) J ln(2J ) −1 − m

(2) − 1
2 (2J + 2 − 2m) − 1

2 ln
√

8πJ ln(2J ) −m ln(2J ) J ln(2J ) 1 − m

(3) 1
2 (4J − 1 − 2m) 1

2 ln
√

4πJ 1
2 ln(4J ) m ln(4J ) −2J ln(4J ) 1

2 + m

(4) −(2J − 1 − m) 1
2 ln

√
4πJ − ln(2J ) −m ln(2J ) 2J ln(2J ) −1 − m

(5) (J − 1 − m) − 1
2 ln

√
2πJ ln(J ) m ln J −J ln(J ) 1 + m

(6) (J + 1 − m) − 1
2 ln

√
2πJ − ln(J ) m ln J −J ln(J ) −1 + m

Total 1
2 ln

(
2

πJ

)1/4
ln 1√

J
−m ln 2 0 − 1

2

We use the Stirling approximation to calculate FAC. The
detailed results are given in Table II.

We next combine Tables I and II. There are many cancel-
lations when we add the totals of ln FAC and ln 3j in Table I
and Table II . The result is

ln FAC + ln 3j = −(m − 1) ln 2 = −n ln 2. (14)

The antilog is

e−n ln(2) = 1

2n
. (15)

The j dependence comes from√
(2J + 1)(2J − 3)

2
(16)

and PROD
√

PROD → (8j )m, (17)

putting everything together we obtain the result

U9j → (−1)n

2
√

216n

√
[(2n + 2)!(2n)!]

(n!)jn
. (18)

In the different limit of fixed I and j 	 I , we get the behavior

U9j →
√

6πj 3/2e−4 ln (2)j . (19)

The best way to demonstrate the power-law behavior of
the U9j symbol is to plot the logarithm of U9j versus the
logarithm of j . We plot this in Fig. 1. Note the independence
of the slopes of the curves for different values of n.

TABLE II. ln (FAC).

−Ci ln
√

2πCi αi ln Ci γiJ ln() γiJ ln()

(1) −2J 2 ln(
√

2πJ ) 0 2J ln J 0

(2) +2J − ln
√

4πJ 0 −2J ln(2J ) 0

(3) −2J − 1
2 ln

√
8πJ 1

2 ln(4J ) 2J ln(4J ) 1
2

(4) J + 1
2 − 1

2 ln
√

4πJ − 1
2 ln(2J ) −J ln(2J ) 1

2

(5) J − 1
2 − 1

2 ln
√

4πJ 1
2 ln(2J ) −J ln(2J ) − 1

2

Total − 1
2 ln

(
πJ
2

)1/4
ln(2

√
J ) 0 1

2

We present results of the percent deviation of our approxi-
mate values of 3j and U9j from the exact values in Tables III
and IV.

We note other work on asymptotics of CG coeffi-
cients by Reinsch and Morehead [3]. In their work they
defined

β = [(j1 + j2 − j )(j + j2 − j1)

× (j + j1 − j2)(j1 + j2 + j )]1/2. (20)

They found an approximate expression for the CG coeffecients
in their Eq. (B9).

CG = 〈j1j200|j0〉 ≈ 2(−1)
j1+j2−j

2

×
√

2j + 1

2πβ

√
j + j1 + j2

j + j1 + j2 + 1
(1 + δ4 + δ6)

×
[

1 + 1

24

(
2

j
+ 2

j1
+ 1

j2

− 1

j + j1 + j2
− 1

−j + j1 + j2

− 1

j − j1 + j2
− 1

j + j1 − j2

)]
. (21)

We quickly run into trouble in making a comparison to our
results, especially for n = 0. In their Eq. (B12) they have in
the leading term CG proportional to 1√

β
. However, for the case

j = j1 + j2, that is to say I = Imax, with our n = 0, we see
that β vanishes and hence their expression for CG is disproved.

FIG. 1. (Color online) ln |U9j | vs. ln j for many values of n.
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TABLE III. Comparison of the exact and asymptotic values of the 3j symbols.

j Accepted 3j Approximate 3j Percent error

n = 0
9/2 0.0917186951 0.0859524287 6.28690401
99/2 0.0143074760 0.0142302863 0.539505856
999/2 0.00251476295 0.00251342493 0.0532063347
9999/2 0.000446679154 0.000446655420 0.00531331215

n = 1
9/2 −0.0703281160 −0.0607775452 13.5800180

99/2 −0.0101817625 −0.0100623320 1.17298491
999/2 −0.00177932008 −0.00177725981 0.115789693
9999/2 −0.000315869604 −0.000315833077 0.0115641443

n = 2
9/2 0.0667864681 0.0526348981 21.1892774
99/2 0.00887471327 0.00871423511 1.80826305
999/2 0.00154190275 0.00153915215 0.178390316
9999/2 0.000273568204 0.000273519468 0.0178151485

n = 10
99/2 0.00642003383 0.00597328117 6.95872744
999/2 0.00106225244 0.00105503104 0.679819882
9999/2 0.000187614589 0.000187487331 0.0678293749

n = 100
999/2 0.000637437519 0.000596632653 6.40139073
9999/2 0.000106699870 0.000106026325 0.631251795

Evidently their formula is not valid in this region. On the other
hand, our expression Eq. (13) from [1] works just fine.

In this work we have used an explicit expressions for the 9j
symbol in question by Varshalovitch et al. [4]. We have given

the details of how the asymptotic behaviors of selected 3j and
9j coefficients and their unitary counterparts are obtained.
There are some subtleties, e.g., in the second column of Table
I, although term-by-term we get nonzero results, the entire

TABLE IV. Comparison of the exact and asymptotic values of the U9j symbols.

j Accepted U9j Approximate U9j Percent error

n = 0
9/2 0.492152957 0.500000000 1.59443179
99/2 0.499361854 0.500000000 0.127792280
999/2 0.499937371 0.500000000 0.0125274006
9999/2 0.499993749 0.500000000 0.00125027349

n = 1
9/2 −0.0378955625 −0.0340206909 10.2251328
99/2 −0.00312046463 −0.00309279008 0.886872805

999/2 −0.000306761485 −0.000306492711 0.0876166329
9999/2 −0.0000306243639 −0.0000306216840 0.00875116429

n = 2
9/2 0.00606563844 0.00448261961 26.0981402
99/2 0.0000379552583 0.0000370464431 2.39443810
999/2 3.64686293×10−7 3.63819464×10−7 0.237691695

9999/2 3.63251097×10−9 3.63164818×10−9 0.0237519144
n = 10

99/2 7.33668833×10−17 5.24669432×10−17 28.4868855
999/2 4.95097802×10−27 4.79272848×10−27 3.19632873
9999/2 4.76517144×10−37 4.74976392×10−37 0.323335927

n = 20
99/2 1.75313503×10−27 5.21781167×10−28 70.2372517
999/2 4.88682624×10−48 4.35394087∗10−48 10.9045287
9999/2 4.32566∗10−68 4.27622870∗10−68 1.143

027302-3



BRIEF REPORTS PHYSICAL REVIEW C 90, 027302 (2014)

sum is zero and so we must expand further as in the following
column. There are similar points for Table II. We further note
that one can take asymptotic limits in more than one way. Here
the emphasis is on when the total angular momentum I is large
(I = Imax − 2n,n � j ), and one obtains a power-law behavior
1/jn. This is most easily seen by plotting ln |U9j | versus ln j .
On the other hand, if one keeps I fixed and increases j one
gets a dominantly exponential behavior, as shown in Eq. (19).
This is most easily seen by plotting U9j versus j . Last, we

recall the physics motivation for this work: how maximum-j
pairing manifests itself in nuclei [5].
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