
PHYSICAL REVIEW C 90, 025207 (2014)
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The pp → nK+�+(1385) reaction is a very good isospin 3/2 filter for studying �++∗ resonance decaying to
K+�+(1385). Within the effective Lagrangian method, we investigate the �(1385) (spin parity JP = 3/2+)
hadronic production in the π+p → K+�+(1385) and pp → nK+�+(1385) reactions. For the π+p →
K+�+(1385) reaction, in addition to the “background” contributions from t-channel K∗0 exchange and u-channel
�(1115) and �0(1193) exchange, we also consider the contribution from the s-channel �∗(1940) resonance,
which has significant coupling to the K�(1385) channel. We show that the inclusion of the �∗(1940) resonance
leads to a fairly good description of the low-energy experimental total cross section data of π+p → K+�+(1385)
reaction. Basing on the study of the π+p → K+�+(1385) reaction and with the assumption that the excitation
of �∗(1940) resonance dominates the pp → nK+�+(1385) reaction, we calculate the total and differential cross
sections of the pp → nK+�+(1385) reaction. It is shown that the new experimental data support the important
role played by the �∗(1940) resonance with a mass in the region of 1940 MeV and a width of around 200 MeV.
We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information of the
�+(1385) production, which can be tested by future experiments.

DOI: 10.1103/PhysRevC.90.025207 PACS number(s): 13.75.−n, 14.20.Gk, 13.30.Eg

I. INTRODUCTION

Study of the spectrum of isospin 3/2 �++(1232) excited
states is one of the most important issues in hadronic physics
and is attracting much attention because it is the most
experimentally accessible system composed of three identical
valence quarks. However, our knowledge on these resonances
mainly comes from old πN experiments and is still very
poor [1,2]. In the energy region around or above 2.0 GeV,
there are still many theoretical predictions of “missing �∗
states” within the constituent quark [3] or chiral unitary [4–7]
approaches, which have so far not been observed. Searching
for these “missing �∗ states” from other production processes
is necessary [8,9]. A possible new excellent source for studying
these �∗ resonances comprises the π+p → K+�+(1385)
and pp → nK+�+(1385) reactions, which have a special
advantage because there is no contribution from isospin
1/2 nucleon resonances because of the isospin and charge
conservations. In addition, those reactions require the creation
of an s̄s quark pair. Thus, a thorough and dedicated study
of the strangeness production mechanism in those reactions
has the potential to gain a deeper understanding of the
interaction among strange hadrons and also the nature of the
�∗ resonances.

In analogy to the �(1232) as the first excited state of the
nucleon, the �(1385) is the first excited state of the �(1193)
hyperon and has a spin parity of 3/2+ and isospin 1. This

*xiejujun@impcas.ac.cn
†En.Wang@ific.uv.es
‡zoubs@itp.ac.cn

resonance is considered a standard quark triplet and cataloged
in the baryon decuplet, but its vicinity to the �(1405) state in
the mass spectrum correlates the study and the understanding
of the two resonances. Besides, a � state, �(1380) (spin parity
JP = 1/2−) with mass about 1380 MeV, was predicted in the
framework of the diquark-diquark-antiquark picture [10–12].
This new state will have effects in the production of �(1385)
and then the analysis of the �(1385) resonance suffers from
the overlapping mass distributions and the common π�(1115)
decay mode.

There were pioneering measurements in the 1970s: The
first pp → nK+�+(1385) cross sections in the high-energy
region, with beam momentum plab = 6 GeV, were reported in
Ref. [13]. Recently, this reaction was examined at 3.5 GeV
beam energy by HADES Collaboration [14]. The results of
angular distributions of the �+(1385) in different reference
frames show that there could be contribution from an interme-
diate �∗ resonance via the decay of �++∗ → K+�+(1385).
Thus, the study of the possible role played by �∗ resonances
in the available new data from the HADES Collaboration is
timely and could shed light on the complicated dynamics that
governs the spectrum of these �∗ states.

The theoretical activity has also run in parallel. Think-
ing of the pp → nK+�+(1385) reaction, the one-boson
exchange model can be considered. By using this frame,
several theoretical calculations by considering the π exchange
diagrams [13], the π and K exchange diagrams [15], and the
intermediate �++ excitation [16] exist for describing the old
and high-energy data of Ref. [13]. These theoretical studies
have traditionally been limited by the lack of knowledge on the
�∗�(1385)K coupling strength and also the new experimental
measurements from HADES [14].
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In this work, we study the π+p → K+�+(1385) and
pp → nK+�+(1385) reactions within the effective La-
grangian method by examining the important role of the �∗
resonances in these reactions. For the π+p → K+�+(1385)
reaction, in addition to the “background” contributions from
the t-channel K∗0 exchange and u-channel �(1115) and
�0(1193) hyperon pole terms, we also study possible contribu-
tions from �∗ resonances in the s-channel. Based on the results
obtained from the π+p → K+�+(1385) reaction, we tend to
study the role of �∗ resonances in the pp → nK+�+(1385)
reaction with the assumption that the production mechanism
is attributable to the π+-meson exchange with the aim of
describing the new experimental data reported by HADES.
Unfortunately, the information about the strong coupling of
�∗K�(1385) is scarce [2]. Thus, it is necessary to rely
on theoretical schemes, such as that of Refs. [17,18] based
on a quark model (QM) for baryons. Among the possible
�∗ resonances, we have finally considered only the two-star
D-wave JP = 3/2−�∗(1940), which is predicted to have
visible contribution [18] to the K�(1385) production. Indeed,
in Refs. [19–22], the contribution from a �∗ resonance with
spin parity 3/2− and mass around 2 GeV was studied in
the γp → K+�0(1385) reaction. They all found that this
�∗ resonance has a significant coupling to the K�(1385)
channel and plays an important role in the reaction of
γp → K+�0(1385).1 Although the �∗(1940) resonance is
listed in the Particle Data Group (PDG) book, the evidence
of its existence is poor or only fair and further work is
required to verify its existence and to know its properties;
accordingly, its total decay width and branching ratios are not
experimentally known, either. In this respect, the HADES mea-
surements could be used to determine some properties of this
resonance.

To end this Introduction, we would like to mention that
in Refs. [19–22] the role played by another �∗ resonance,
�∗(2000) (spin parity JP = 5/2+), in the γp → K+�0(1385)
reaction has been also studied. In these works, it is shown
that the �∗(2000) resonance has a dominant contribution.
However, it is pointed out in Ref. [23] that the nominal mass
of the �∗(2000) resonance does not correspond, in fact, to any
experimental analysis but to an estimation based on the value
of masses (∼1740 and 2200 MeV) extracted from different
data analysis [2]. From the results obtained in Ref. [23] we
may conclude that the two distinctive resonances, �∗(∼1740)
and �∗(∼2200), should be cataloged instead of �∗(2000). We
thus do not consider the contribution from �∗(2000) resonance
in the present work.

In the next section, we show the formalism and ingredients
in our calculation, then numerical results and discussions are
presented in Sec. III. A short summary is given in the last
section.

1In Refs. [20,21] the role played by the pentaquark state, �∗(1380)
(spin parity J P = 1/2−), is also studied. However, the knowledge on
this state is very scarce. We thus leave the investigation of the role of
this new state to a future study.

II. FORMALISM AND INGREDIENTS

The combination of an effective Lagrangian approach and
the isobar model is an important theoretical tool in describing
the various processes in the region of resonance produced. In
this section, we introduce the theoretical formalism and ingre-
dients to calculate the �(1385) (≡ �∗) hadronic production
in π+p → K+�+(1385) and pp → nK+�+(1385) reactions
within the effective Lagrangian approach and isobar model.

Because we only consider the tree diagrams for the π+p →
K+�+(1385) and pp → nK+�+(1385) reactions, the total
scattering amplitudes have not taken into account the unitary
requirements, which may be important for extracting the
parameters of the baryon resonances from the analysis of the
experimental data [24,25], especially for those reactions in-
volving many intermediate couple channels and three-particle
final states [26,27]. However, we know that it is difficult to
really apply the unitary constraints in the three-body cases,
which need to include the complex loop diagrams [27–29],
and the extracted rough parameters for the major resonances
still provide useful information; hence, we will leave it to
further studies. Nevertheless, our model used in the present
work can give a reasonable description of the experimental data
in the considered energy region. Meanwhile, our calculation
offers some important clues for the mechanisms of the π+p →
K+�+(1385) and pp → nK+�+(1385) reactions and makes
a first effort to study the role of the �∗(1940) resonance in the
relevant reactions.

A. Feynman diagrams and effective interaction
Lagrangian densities

The basic tree-level Feynman diagrams for the π+p →
K+�+(1385) and pp → nK+�+(1385) reactions are de-
picted in Figs. 1 and 2, respectively. For the π+p →
K+�+(1385) reaction, in addition to the “background”
diagrams, such as t-channel K∗0 exchange [Fig. 1(b)] and
u-channel �(1115) and �0(1193) exchange [Fig. 1(c)], we
also consider the s-channel �++∗(1940) (≡ �∗) resonance
excitation process [Fig. 1(a)].

Σ+(1385) K+

Δ++(1940)

p π+

(a)

Σ+(1385) K+

K∗0(892)

p π+

(b)

Σ+(1385) K+

Λ,

Σ0

p π+

(c)

FIG. 1. Feynman diagrams for the π+p → K+�+(1385) re-
action. The contributions from s-channel �++(1940) resonance,
t-channel K∗0 exchange, and u-channel �(1115) and �0(1193)
exchange are considered.
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K+ Σ+(1385) n
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π+
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FIG. 2. Feynman diagrams for the pp → nK+�+(1385) reac-
tion. Panels (a) and (c) show the direct processes, while (b) and (d)
show the exchange processes.

In Fig. 2, we show the tree-level Feynman diagrams for
the pp → nK+�+(1385) reaction. The diagram Figs. 2(a)
and 2(c) show the direct processes, while Figs. 2(b) and 2(d)
show the exchange processes. It is assumed that the production
of the K+�+(1385) passes mainly through the �++∗(1940),
which has a significant coupling to K�(1385). In this case,
the t-channel K∗0 exchange and u-channel �0(1193) exchange
processes are neglected because their contributions are small,
which are discussed below.

For the π+p → K+�+(1385) reaction, to compute the
contributions of those terms shown in Fig. 1, we use the
interaction Lagrangian densities as in Refs. [19,30,31],

LπN�∗ = gπN�∗

mπ

�̄∗μγ5(∂μ�τ · �π )N + H.c., (1)

LK�∗�∗ = g1

mK

�̄∗
μγα(∂αK)�∗μ+ ig2

m2
K

�̄∗
μ(∂μ∂νK)�∗ν + H.c.,

(2)

for the s-channel �∗(1940) processes, and

LK∗N�∗ = i
gK∗N�∗

2mN

N̄γ νγ5�
∗μ(∂μK∗

ν − ∂νK
∗
μ) + H.c., (3)

LK∗Kπ = gK∗Kπ [K̄(∂μ�τ · �π) − (∂μK̄)�τ · �π ]K∗
μ + H.c.,

(4)

for the t-channel K∗0 exchange process, while

LKN�/� = −igKN�/�N̄γ5K�/� + H.c., (5)

L�∗π�/� = g�∗π�/�

mπ

�̄∗μ(∂μ�τ · �π )�/� + H.c., (6)

for the u-channel �0(1193) and �(1115) exchange diagrams.
The above Lagrangian densities are also used to study

the contributions of the terms shown in Fig. 2 for the
pp → nK+�+(1385) reaction. In addition, we also need the
Lagrangian density as follows for the πNN vertex:

LπNN = −igπNNN̄γ5 �τ · �πN. (7)

B. Coupling constants and form factors

First, the coupling constant for the πNN vertex is taken
to be gπNN = 13.45, while the coupling constants gKN� ,

gKN�, and gK∗N�∗ 2 are respectively taken as 2.69, −13.98,
and −5.48, which are obtained from the SU(3) flavor sym-
metry. These values have also been used in previous works
[9,19,31–33].

Second, the coupling constants, gK∗Kπ , g�∗π� , and g�∗π�,
are determined from the experimentally observed partial decay
widths of K∗ → Kπ , �(1385) → π�, and �(1385) → π�,
respectively. With the effective interaction Lagrangians de-
scribed by Eqs. (4) and (6), the partial decay widths �K∗→Kπ

and ��(1385)→π�/� can be easily calculated. The coupling
constants are related to the partial decay widths as

�K∗→Kπ = g2
K∗Kπ

2π

∣∣−→p c.m.
π

∣∣3

m2
K∗

, (8)

��∗→π�/� = fIg
2
�∗π�/�

12π

∣∣−→p c.m.
�/�

∣∣3
(E�/� + m�/�)

m2
πM�∗

, (9)

with the isospin factor fI = 2 for �∗ → π� and fI = 1 for
�∗ → π� and

E�/� = M2
�∗ + m2

�/� − m2
π

2M�∗
,

∣∣−→p c.m.
�/�

∣∣ =
√

E2
�/� − m2

�/�,

∣∣−→p c.m.
π | =

√[
m2

K∗ − (mK + mπ )2
][

m2
K∗ − (mK − mπ )2

]
2mK∗

.

With mass (M�∗ = 1384.57 MeV, mK∗ = 893.1 MeV),
total decay width (��∗ = 37.13 MeV, �K∗ = 49.3 MeV),
and decay branching ratios of �(1385) [Br(�∗ → π�) =
0.117 ± 0.015, Br(�∗ → π�) = 0.87 ± 0.015] and K∗
[Br(K∗ → Kπ ) ∼ 1], we obtain these coupling constants as
listed in Table I.

Finally, the strong coupling constants gπN�∗ and g1,2 for
the �∗(1940)�(1385)K vertex are free parameters, which
will be determined by fitting to the experimental data
on the total cross sections of the π+p → K+�+(1385)
reaction.

In evaluating the scattering amplitudes of the π+p →
K+�+(1385) and pp → nK+�+(1385) reactions, we need to
include the form factors because the hadrons are not pointlike
particles. We adopt here the common scheme used in many
previous works,

fi = �4
i

�4
i + (

q2
i − M2

i

)2 , i = s,t,u, (10)

with

⎧⎨
⎩

q2
s = s, q2

t = t, q2
u = u,

Ms = M�∗ , Mt = mK∗ ,
Mu = m�,m�,

(11)

2In principle, there are three terms for K∗N�∗ vertex as used in
Ref. [19] [see Eq. (6) of that reference for more details]. However,
there is no more information about this vertex, and it is found
that the other two couplings give minor contributions to the γp →
K+�0(1385) reaction [19]. Thus, we ignore the contributions from
the other two couplings.
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TABLE I. Values of the coupling constants required for the
estimation of the π+p → K+�+(1385) and pp → nK+�+(1385)
reactions. These have been estimated from the decay branching ratios
quoted in the PDG book [2], though it should be noted that these are
for all final charged states.

Decay modes Adopted branching ratios ga

�∗ → π� 0.87 1.26
�∗ → π� 0.12 0.69
K∗ → Kπ 1.00 3.24

aIt should be stressed that the partial decay width determines only the
square of the corresponding coupling constants, as shown in Eqs. (8)
and (9); thus, their signs remain uncertain. Predictions from QM can
be used to constrain these signs. Unfortunately, QM calculations for
these vertices are still sparse. We thus choose a positive sign for these
coupling constants.

where s, t , and u are the Lorentz-invariant Mandelstam
variables. In the present calculation, qs = p1 + p2, qt = p1 −
p3, and qu = p4 − p1 are the 4-momentum of intermediate
�∗(1940) resonance in the s-channel, exchanged K∗0(892)
meson in the t-channel, and exchanged �0(1193) and �(1115)
in the u-channel, respectively, while p1, p2, p3, and p4 are
the 4-momenta for π+, p, K+, and �+(1385), respectively. In
principle, the cutoff �s , �t , and �u are free parameters of the
model, but in practice we constrain them to a common value
between 0.6 and 1.2 GeV. By doing this, we can reduce the
number of the free parameters.

C. Scattering amplitudes

The invariant scattering amplitudes that enter our model for
calculation of the total cross sections for

π+(p1)p(p2,sp) → K+(p3)�+(1385)(p4,s�∗ ) (12)

are defined as

−iTi = ūμ(p4,s�∗ )Aμ
i u(p2,sp), (13)

where uμ and u are dimensionless Rarita-Schwinger and
Dirac spinors, respectively, while s�∗ and sp are the spin
polarization variables for final �+(1385) and initial proton,
respectively. To get the scattering amplitudes, we need
also the propagators for �∗(1940), K∗ meson, and �0/�
hyperon,

G
μν
K∗ (qt ) = i

−gμν + q
μ
t qν

t /m2
K∗

t − m2
K∗

, (14)

G�/�(qu) = i
/qu

+ m�/�

u − m2
�/�

, (15)

G
μν
�∗ (qs) = i

/qs
+ M�∗

D
P μν, (16)

with

D = s − M2
�∗ + iM�∗��∗, (17)

P μν = −gμν + 1

3
γ μγ ν + 2

3M2
�∗

qμ
s qν

s

+ 1

3M�∗

(
γ μqν

s − γ νqμ
s

)
, (18)

where M�∗ and ��∗ are the mass and total decay width of
the �∗(1940) resonance, respectively. Because M�∗ and ��∗

have large experimental uncertainties [2], we take them as free
parameters and will fit them to the total cross sections of the
π+p → K+�+(1385) reaction.

Then, the reduced A
μ
i amplitudes in Eq. (13) can be easily

obtained,

Aμ
s = i

gπN�∗

mπD

{
g1

mK
/p3(/qs

+ M�∗ )

[
p

μ
1 − 1

3
γ μ

/p1

− 1

3M�∗

(
γ μqsp1 − qμ

s /p1

) − 2

3M2
�∗

qμ
s qsp1

]

− g2

m2
K

(/qs
+ M�∗ )pμ

3

[
p1p3 − 1

3
/p3 /p1

− 1

3M�∗
(/p3qsp1 − qsp3 /p1) − 2

3M2
�∗

qsp3qsp1

]}
fs,

(19)

A
μ
t =

√
2gK∗KπgK∗N�∗

mN

(
t − m2

K∗
) (

/p3p
μ
1 − /p1p

μ
3

)
ft , (20)

Aμ
u = i

g�∗π�/�gKN�/�

mπ

(
u − m2

�/�

) (/qu
+ m�/�)γ5p

μ
1 fu, (21)

where the subindices s, t , and u stand for the s-channel
�∗(1940), t-channel K∗0(892) exchange, and u-channel
�0(1193) and �(1115) exchange, respectively. As we can
see, in the tree-level approximation, only the products, such
as g1gπN�∗ (≡g̃1) and g2gπN�∗ (≡g̃2) enter the invariant
scattering amplitudes. Because the information on these
couplings are scarce, they are also determined by fitting them
to the low-energy experimental data on the total cross sections
of the π+p → K+�+(1385) reaction.

For the pp → nK+�+(1385) reaction, the full invariant
scattering amplitude in our calculation is composed of two
parts corresponding to the s-channel �∗(1940) resonance and
u-channel �(1115) hyperon pole, which are produced by the
π+-meson exchanges,

M =
∑
i=s,u

Mi . (22)

Each of the above amplitudes can be obtained straightfor-
wardly with the effective couplings and following the Feynman
rules. Here we give explicitly the amplitude Ms ; for example,

Ms =
√

2gπNNgπN�∗

mπ

FNN
π

(
k2
π

)
F�∗N

π

(
k2
π

)
Fs

(
q2

�∗
)

× Gπ

(
k2
π

)
ūμ(p4,s4)

(
− g1

mK
/p5gμρ + g2

m2
K

p5μp5ρ

)

× G
ρσ
�∗ (qs)kπσ γ5u(p1,s1)ū(p3,s3)γ5u(p2,s2)

+ (exchange term with p1 ↔ p2), (23)
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where si(i = 1,2,3) and pi(i = 1,2,3) represent the spin
projection and 4-momenta of the two initial protons and final
neutron, respectively, while p4 and p5 are the 4-momenta of
the final �+(1385) and K+ meson, respectively, and s4 stands
for the spin projection of �+(1385). In Eq. (23), kπ = p2 − p3

and q�∗ = p4 + p5 stand for the 4-momenta of the exchanged
π+ meson and intermediate �∗(1940) resonance, and Gπ (k2

π )
is the pion meson propagator,

Gπ

(
k2
π

) = i

k2
π − m2

π

. (24)

For the pp → nK+�+(1385) reaction, we need also the
relevant off-shell form factors for πNN and πN�∗ vertexes,
which have been already included in the amplitude of Eq. (23),
and we take them as

FNN
π

(
k2
π

) = �2
π − m2

π

�2
π − k2

π

, (25)

F�∗N
π

(
k2
π

) = �∗2
π − m2

π

�∗2
π − k2

π

, (26)

with kπ the 4-momentum of the exchanged π meson. The
cutoff parameters are taken as �π = �∗

π = 1.1 GeV, with
which the experimental data on the pp → nK+�+(1385)
reaction can be reproduced.

D. Cross sections for the π+ p → K+�+(1385) reaction

The differential cross section for the π+p → K+�+(1385)
reaction at center of mass (c.m.) frame can be expressed as

dσ

dcosθ
= 1

32πs

∣∣ �p c.m.
3

∣∣∣∣ �p c.m.
1

∣∣
(

1

2

∑
s�∗ ,sp

|T |2
)

, (27)

where θ denotes the angle of the outgoing K+ relative to
beam direction in the c.m. frame, while �p c.m.

1 and �p c.m.
3 are the

3-momentum of the initial π+ and final K+ mesons. The total
invariant scattering amplitude T is given by

T = Ts + Tt + Tu. (28)

From the amplitude, we can easily obtain the total cross
sections of the π+p → K+�+(1385) reaction as functions of
the beam momentum pπ+ . By including all the contributions
from the s-channel �∗ resonance, t-channel K∗0(892), and
u-channel �0(1193) and �(1115) processes at fixed cutoff
parameters �s 	= �t = �u, we perform a four-parameter
(M�∗ , ��∗ , g̃1, and g̃2) χ2 fit to the experimental data on total
cross sections for the π+p → K+�+(1385) reaction. There
is a total of 11 data points below pπ+ = 4 GeV.

By constraining the value of the cutoff parameters �s

and �t = �u from 0.6 to 1.2 GeV, we get the minimal
χ2/dof 0.8 with �t = �u = 0.6 GeV and �s = 0.9 GeV,
and the fitted parameters are M�∗ = 1940 ± 24 MeV, ��∗ =
172 ± 94 MeV, g̃1 = −0.36 ± 0.19, and g̃2 = 1.83 ± 0.16.
The best fitting results for the total cross sections are
shown in Fig. 3, comparing with the experimental data from
Refs. [34–36]. The black solid line represents the full results,

FIG. 3. (Color online) Total cross sections vs the beam momen-
tum pπ+ for the π+p → K+�+(1385) reaction. The experimental
data are taken from Ref. [34] (dots), Ref. [35] (triangles), and Ref. [36]
(square). The curves are the contributions from s-channel �∗(1940)
(dash-dot-dotted), t-channel K∗0 (dashed), u-channel �0(1193)
(dash-dotted) and �(1115) (dotted), and the total contributions of
them (black-solid), respectively. The blue solid curve is obtained
from the Stodolsky-Sakural model, which is discussed below.

while the contributions from the s-channel �++∗(1940) reso-
nance, t-channel K∗0(892) exchange, and u-channel �(1115)
and �0(1193) terms are shown by the dash-dot-doted, dashed,
dotted, and dash-doted lines, respectively. From Fig. 3, one
can see that the description of the experimental data is quite
good; especially, thanks to the contributions from the �∗(1940)
resonance, the bump structure around pπ+ = 1.8 GeV can be
described well. It is also shown that the s-channel �∗(1940)
resonance gives the dominant contribution, while the t-channel
and u-channel diagrams give the minor contributions.

In Fig. 4, the corresponding model predictions for the differ-
ential cross sections, dσ/dcosθ , of the π+p → K+�+(1385)
reaction are shown. Those results are obtained at pπ+ =
1.42 GeV [Fig. 4(a)], pπ+ = 1.55 GeV [Fig. 4(b)], pπ+ =
1.62 GeV [Fig. 4(c)], pπ+ = 1.68 GeV [Fig. 4(d)],
pπ+ = 1.77 GeV [Fig. 4(e)], and pπ+ = 1.84 GeV [Fig. 4(f)],
respectively. We also show the experimental data taken from
Ref. [34] for comparison. One can see that by considering
the dominant contributions from the �∗(1940), our model
calculations can reasonably describe the angular distributions
within the large experimental errors. However, at some energy
points, such as pπ+ = 1.55 GeV [Fig. 4(b)], pπ+ = 1.62 GeV
[Fig. 4(c)], and pπ+ = 1.68 GeV [Fig. 4(d)], our model calcu-
lations cannot well reproduce the experimental measurements.

It is pointed out that the Stodolsky-Sakural model [37,38]
with dominant contribution from t-channel K∗ exchange fits
those production angular distributions reasonably well at all
beam momenta [34] (see more details in Fig. 4 of that
reference). The predictions of this model are that the form of
the differential cross sections for the π+p → K+�+(1385)
reaction is given by [34]

dσ

dcosθ
∝ 1 − cos2θ(

t − M2
K∗

)2 , (29)
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FIG. 4. Predictions of the differential cross sections, dσ/dcosθ , for the π+p → K+�+(1385) reaction at different beam momenta. The
experimental data are taken from Ref. [34]. The curves are the contributions from s-channel �∗(1940) (dash-dot-dotted), t-channel K∗0

(dashed), u-channel �0(1193) (dash-dotted) and �(1115) (dotted), and the total contributions of them (solid), respectively.

from where we can obtain the total cross sections,3 as shown
in Fig. 3 by the blue solid curve. One can see that the t-channel
K∗ exchange can reproduce well the experimental data from
Ref. [34], but it cannot give the bump structure if we take
those measurements of Refs. [35,36] into account as shown in
Fig. 3. Thus, that the Stodolsky-Sakural model can reasonably
describe the angular distribution at all momenta should not be
surprising because it considered only the experimental data
from Ref. [34], where the bump structure does not appear
because of the narrow energy range of measurements of
Ref. [34].

3We include also the phase-space factor, | �pc.m.
3 |, in our estima-

tion. In this way, the total cross section is obtained from σ =
N

∫ 1
−1

1−cos2θ

(t−M2
K∗ )2 | �pc.m.

3 |dcosθ , with a normalization N = 1.54 GeV.

However, we find that the experimental results of differ-
ential cross sections of Ref. [34] and the total cross sections
data of Refs. [34–36] cannot be simultaneously fitted well,
which is because the differential cross sections data with
large uncertainties are inconsistent between different angles
and energies; hence, those data points about the differential
cross sections from Ref. [34] are not taken into account in our
best fit.

E. Partial decay widths of the �∗(1940) resonance

With the Lagrangian densities of Eqs. (1) and (2), we can
evaluate the �∗(1940) to Nπ and �∗(1940) to �(1385)K
partial decay widths,

��∗→Nπ = g2
πN�∗

12π

∣∣ �p c.m.
N

∣∣3

m2
πM�∗

(EN − mN ), (30)
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��∗→�∗K =
∣∣ �p cm

1

∣∣(E�∗ + M�∗ )

36πM�∗M2
�∗

{
2g2

2M
2
�∗

m4
K

∣∣ �p cm
1

∣∣4 + 2g1g2

m3
K

×M�∗ (M�∗−M�∗ )(2E�∗+M�∗ )
∣∣ �p cm

1

∣∣2 + g2
1

m2
K

× (M�∗ − M�∗ )2
(
2E2

�∗ + 2E�∗M�∗ + 5M2
�∗

)}
,

(31)

where

EN = M2
�∗ + m2

N − m2
π

2M�∗
, (32)

∣∣ �p c.m.
N

∣∣ =
√

E2
N − m2

N, (33)

E�∗ = M2
�∗ + M2

�∗ − m2
K

2M�∗
, (34)

∣∣ �p cm
1

∣∣ =
√

E2
�∗ − M2

�∗ . (35)

With the values of M�∗ , ��∗ , g̃1, and g̃2 obtained from
the present fit, we get Br(�∗ → Nπ )×Br(�∗ → �∗K) =
(0.52 ± 0.13)% with the error from the uncertainty of the fitted
parameters.

Furthermore, the fitted results for the mass and total decay
width of the �∗(1940) resonance are compatible with the
previous analysis in Ref. [39],

M�∗(1940) = 1940 ± 100 MeV, (36)

��∗(1940) = 200 ± 100 MeV, (37)

quoted in PDG [2]. Next, by using the branch ratio of
Br[�∗(1940) → Nπ ] obtained in Ref. [39] and the total decay
width of ��∗(1940) from our present fit, we can determine
the strong coupling constant, gπN�∗ = 0.35 ± 0.12 from the
relation of Eq. (30). Then we can easily obtain the values of
the strong �∗(1940)�(1385)K coupling constants g1 and g2,

g1 = −1.04 ± 0.38, (38)

g2 = 5.24 ± 2.30. (39)

Furthermore, the branch ratio Br(�∗ → �∗K) and
partial decay width ��∗→�∗K are (10.4 ± 4.9)% and
17.9 ± 12.9 MeV, respectively. We find that the �∗K decay
mode of the �∗(1940) resonance could be larger than the
Nπ channel if one attributes the bump structure in the total
cross sections of π+p → K+�+(1385) reaction [34–36], to
the effects produced by this resonance, as implicitly assumed
in this work. This large coupling of the two-star D-wave
JP = 3/2−�∗(1940) resonance to the �∗K+ channel will
confirm/get support from the QM results of Capstick and
Roberts in Ref. [18], as mentioned above.

III. NUMERICAL RESULTS FOR THE
pp → nK+�+(1385) REACTION

With the formalism and ingredients given above, the
calculations of the differential and total cross sections for

FIG. 5. Total cross sections vs beam energy plab of proton for
the pp → nK+�+(1385) reaction from the present calculation. The
dotted and dash-dotted lines stand for contributions from �(1115)
pole and �∗(1940) resonance, respectively. Their total contribution
are shown by the solid line. The experimental data are taken from
Refs. [13,14].

pp → nK+�+(1385) are straightforward,

dσ [pp → nK+�+(1385)] = 1

4

m2
p

F

∑
s1,s2

∑
s3,s4

|M|2 mnd
3p3

E3

× m�+(1385)d
3p4

E4

d3p5

2E5
δ4(p1 + p2−p3−p4−p5), (40)

with the flux factor

F = (2π )5
√

(p1p2)2 − m4
p. (41)

The total cross section versus the beam energy (plab) of
the proton for the pp → nK+�+(1385) reaction is calculated
by using a Monte Carlo multiparticle phase space integration
program. The results for beam energies plab from just above
the production threshold 3.2 to 6.5 GeV are shown in Fig. 5.
The dotted and dash-dotted lines stand for contributions from
�(1115) and �∗(1940) resonance, respectively. Their total
contributions are shown by the solid line.4 From Fig. 5 we
can see that the contribution from the �∗(1940) resonance
is predominant in the whole considered energy region. For
comparison, we also show the experimental data [13,14] in
Fig. 5, from where we can see that our predictions for the
total cross sections of pp → nK+�+(1385) reaction are in
agreement with the experimental measurements.

In addition to the total cross sections, we also compute the
differential distributions for pp → nK+�+(1385) reaction,
namely, the angular distributions of all final-state particles
in the overall center-of-mass frame (CMS), as well as
distributions in both the Gottfried-Jackson and helicity frames

4Because the t-channel K∗0 meson and u-channel �0(1193)
exchange give very small contribution to the π+p → K+�+(1385)
reaction, especially for the invariant mass of K�(1385) around
2 GeV, we ignore these contributions in the calculation for the
pp → nK+�+(1385) reaction.
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FIG. 6. Angular differential cross sections for the pp → nK+�+(1385) reaction in CMS [(a) ��∗
CMS, (b) �n

CMS, (c) �K+
CMS], helicity [(d)

��∗−n
n−K+ , (e) ��∗−K+

�∗−n , (f) ��∗−n
�∗−K+ ], and Gottfried-Jackson [(g) �

n−p

n−K+ , (h) �
�∗−p
�∗−n , (i) �

�∗−p

�∗−K+ ] reference frames. The dashed lines are pure
phase-space distributions, while the solid lines are full results from our model. The experimental data are taken from Ref. [14].

as introduced in Refs. [14,40]. Like Dalitz plots, the helicity
angle distributions provide insight into the three-body final
state. While the information contained in the Gottfried-Jackson
angle distributions is complementary to that of a Dalitz plot,
as this angular distribution can give insight into the scattering
process, especially concerning the involved partial waves.

The corresponding theoretical results are shown in Fig. 6
with the experimental data taken from Ref. [14], where the
dashed lines are pure phase space distributions, while the
solid lines are full results from our model. We can see that
our theoretical results with the dominant contributions from
the �∗(1940) resonance can describe the experimental data
fairly well, and only the phase space is far from the data. The
agreement of our model calculation with the experimental data
in Fig. 6 indicates that the HADES data support the important
role played by an odd-parity 3/2−�∗(1940) resonance with
a mass in the region of 1940 MeV and a width of around
200 MeV.

In Figs. 6(a), 6(b), and 6(c), we show the �+(1385),
neutron and K+ angular distributions in the CMS, respectively.
The anisotropy of the experimental distributions can be well

reproduced thanks to the contributions from the �∗(1940)
resonance. The results obtained in the helicity frame with
respect to the angle, �a−b

c−d , which represents the angle between
particles “a” and “b” in the “c” and “d” reference frame (see
more details in Ref. [14]), are shown in Figs. 6(d), 6(e), and
6(f), while Figs. 6(g), 6(h), and 6(i) depict the distributions of
the Gottfried-Jackson angles.

Furthermore, the corresponding momentum distribution5

of the �+(1385) and K+ meson, the K�(1385) invariant
mass spectrum, and also the Dalitz Plot for the pp →
nK+�+(1385) reaction at beam momentum plab = 4.34 GeV
(corresponding to kinetic beam energy Tp = 3.5 GeV6), which
is accessible for HADES Collaboration [14], are calculated
and shown in Figs. 7(a), 7(b), 7(c), and 7(d), respectively.
The dashed lines are pure phase-space distributions, while the

5It is noteworthy that our results are calculated in the reaction
laboratory frame, in which the target proton is at rest.

6plab =
√

Elab
2 − m2

p =
√

(Tp + mp)2 − m2
p .

025207-8



ROLE OF THE �∗(1940) IN THE . . . PHYSICAL REVIEW C 90, 025207 (2014)

FIG. 7. Momentum distribution (arbitrary units), invariant mass spectrum (arbitrary units), and Dalitz plot for the pp → nK+�+(1385)
reaction at beam energy plab = 4.34 GeV comparing with the phase-space distribution. The dashed lines are pure phase-space distributions,
while the solid lines are full results from our model.

solid lines are full results from our model. From Fig. 7(c), we
can see that at plab = 4.34 GeV our model results on the the
momentum distribution of the �+(1385) are much different
with the phase space. However, there is a clear bump in the
K�(1385) invariant mass distribution, which is produced by
including the contribution from the �∗(1940) resonance.

The momentum distribution, invariant mass spectra, and
the Dalitz plots in Fig. 7 show direct information about the
pp → nK+�+(1385) reaction mechanism and may be tested
by future experiments.

In summary, owing to the important role played by the
resonant contribution in the pp → nK+�+(1385) reaction,
our model can describe the experimental data of the angle
distributions well, which indicate that recent HADES data
support the existence of this �∗(1940) resonance, and more
accurate data for this reaction can be used to improve our
knowledge on the �∗(1940) properties, which are, at present,
poorly known. Our present calculation offers some important
clues for the mechanisms of the π+p → K+�+(1385) and
pp → nK+�+(1385) reactions and makes a first effort to
study the role of the �∗(1940) resonance in relevant reactions.

IV. SUMMARY

In this paper, the �+(1385) hadronic production in proton-
proton and π+p collisions are studied within the combination
of the effective Lagrangian approach and the isobar model.
For the π+p → K+�+(1385) reaction, in addition to the
“background” contributions from the t-channel K∗0(892)
exchange and u-channel �0(1193) and �(1115) exchange,
we also considered the contribution from the �∗(1940)
resonance in the s-channel, which has significant coupling
to K�(1385) channel. We show that the inclusion of the
�∗(1940) resonance leads to a fairly good description of
the low-energy experimental total cross section data of
the π+p → K+�+(1385) reaction. The s-channel �∗(1940)
resonance gives the dominant contribution, while the t-channel
and u-channel diagrams give the minor contributions.

From χ2 fit to the available experimental data for the
π+p → K+�(1385) reaction, we get the mass and total decay
width of �∗(1940), which are M�∗ = 1940 ± 24 MeV and
��∗ = 172 ± 94 MeV, respectively. With the value 0.35 ±
0.11 for the �∗(1940)Nπ coupling constant gπN�∗ , which is
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obtained with the branching ration Br[�∗(1940) → Nπ ] =
(5 ± 2)%, we determine the strong couplings g1,2 for the
�∗(1940)K�(1385) vertex as g1 = −1.04 ± 0.38 and g2 =
5.24 ± 2.30. With these above values, we have calculated
the partial decay width of �∗(1940) → �(1385)K , and we
obtain ��∗→�∗K = 17.9 ± 12.9 MeV and Br(�∗ → �∗K) =
(10.4 ± 4.9)%. It is shown that the �∗(1940) resonance would
have a large decay width into �(1385)K , which will be
compatible with the findings of the QM approach of Ref. [18].

Based on the study of the π+p → nK+�+(1385) reac-
tion, we study the pp → nK+�+(1385) reaction with the
assumption that the production mechanism is attributable to
the π+-meson exchanges. We give our predictions about total
cross sections for the pp → nK+�+(1385) reaction. We find
that our theoretical results with the dominant contributions
from the �∗(1940) resonance can describe fairly well the
experimental data on both total cross sections and differential
cross sections. Thus, the HADES data support the important
role played by the �∗(1940) resonance with a mass in the
region of 1940 MeV and a width of around 200 MeV.
Furthermore, we also demonstrate that the invariant mass
distribution and the Dalitz plot provide direct information of
the pp → nK+�+(1385) reaction mechanisms and may be
tested by the future experiments.

Finally, we would like to stress that the pp →
nK+�+(1385) reaction is a new excellent source for studying

�∗ resonances. Owing to the important role played by the
�∗(1940) resonance in the π+p → K+�+(1385) and pp →
nK+�+(1385) reactions, accurate data for these reactions can
be used to improve our knowledge on the �∗(1940) properties,
which are, at present, poorly known.
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