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We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained
by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of
chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic
radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators.
We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light
flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly
interacting quark-gluon plasma.
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I. INTRODUCTION

One of the chief objectives of the ultrarelativistic heavy
ion program at BNL Relativistic Heavy Ion Collider (RHIC)
and CERN Large Hadron Collider (LHC) is to excite enough
of the QCD vacuum in the form of a quark-gluon plasma.
The plasma expands and hadronize relatively quickly making
its identification only implicit through the high hadronic
multiplicities or electromagnetic emissivities [1–10].

Electromagnetic emissions in the form of dileptons or
photons occur throughout the life-time of the expanding
fireball. The early stages are dominated by the emission
from the partonic constituents, while the late stages of the
emission are dominated by the hadronic constituents. Both the
early and late stages are well described by a hydrodynamical
fireball. In this paper, instead of integrating over the space-
time of the evolving fireball, we discuss the basics of the
electromagnetic emissivities from a hadronic gas [11–16] and
a strongly coupled plasma (sQGP) which is described in
terms of Born diagrams [17] corrected by leading order gluon
condensates [18–20]. The comparison with the newly reported
lattice simulations of the electromagnetic spectral functions at
zero momentum puts some constraints on the importance on
the gluon condensates [21–23].

Dilepton and photon emissions are the results of many
reaction processes involving the quark-gluon plasma in the
early stage and hadrons and the strong character of their
interactions in the later stage. For the emissions from the
hadronic gas, the only organizational principles are broken
chiral symmetry and gauge invariance, both of which are
difficult to assert in individual reaction processes. In the
spectral analysis [24,25], if hadrons thermalize with the
pions and nucleons as the only strongly stable constituents,
there is a way to systematically organize the electromagnetic
emissivities by expanding them not in terms of processes but
rather in terms of final hadronic states. Then the emissivities
from the hadronic gas can be represented by spectral functions
by chiral reduction [11,12]. These spectral functions are either
tractable from other experiments or amenable to resonance
saturation [26]. The spectral analysis allows us to represent

the partial chiral symmetry restoration in terms of the mixing
between vector and axial correlators.

In Sec. II, we review the spectral function approach to
the photon and dilepton rates emphasizing the nature of the
dynamical restoration of the partially broken chiral symmetry
in the hadronic fireball through the mixing of vector and axial
correlators. We also discuss the electric conductivity and the
quark number susceptibilities in the correlated hadronic gas
near the chiral transition. In Sec. III we review the sQGP
corrected by the soft electric and magnetic condensates and
show that they may enhance the soft photon and dilepton
emissions. The electric conductivity and the flavor diffusion
constant in the sQGP are derived and compared to current
lattice data. Our conclusions are in Sec. IV.

II. ELECTROMAGNETIC RADIATION
FROM HADRONIC GAS

A. Dilepton and photon rates

In this section we review the spectral approach for the
dilepton and photon production from a hadronic gas in thermal
equilibrium [11,16,25]. The main advantage of the spectral
function approach is that the calculation can be organized in
a virial-like expansion and in principle all possible reaction
channels can be included in the zero temperature spectral
densities. The dilepton rate R, the number of dileptons
produced per unit four volume, can be expressed using the
current-current correlator as

dR

d4q
= −α2

6π3q2

(
1 + 2m2

l

q2

)(
1 − 4m2

l

q2

)1/2

W(q), (1)

where α = e2/4π is the fine structure constant, M ≡
√

q2 is
the dilepton invariant mass, ml is the lepton mass and the
un-ordered electromagnetic current-current correlator is given
by [12,27]

W(q) =
∫

d4xe−iq·xTr[e−(H−F)/T Jμ(x)Jμ(0)] . (2)
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Here H is the hadronic Hamiltonian, F is the Helmholtz free
energy, T is the temperature, and eJμ is the hadronic part of
the electromagnetic current,

Jμ(x) =
∑
f

ẽf qf γμqf (x) (3)

with ẽf = (2/3,−1/3,−1/3). Note that we consider only three
flavors which will be valid for the thermal electromagnetic
emission below the charmonium peak.

Using the unordered correlator, Eq. (2), the number of real
photons produced per unit volume and unit three-momentum
can also be obtained as

q0dR

d3q
= − α

4π2
W(q) (4)

with q2 = 0. This equation with Eq. (1) enables us to link the
quasireal virtual photon rate R∗ with dielectron data in the low
mass region below two pion threshold [1,28,29],

dR

d4q
= 2α

3πM2

(
1 + 2m2

l

M2

)(
1 − 4m2

l

M2

)1/2 (
q0dR∗

d3q

)
.

(5)
In the limit of M → 0, R∗ ≈ R.

Symmetry and spectral analysis allows us to re-express the
unordered correlator in terms of the absorptive part of the
Feynman correlator [30],

W(q) = 2

eq0/T + 1
ImWF (q), (6)

where the Feynman correlator with time-ordering (T ∗) is given
by

WF (q) = i

∫
d4xeiq·xTr[e−(H−F)/T T ∗Jμ(x)Jμ(0)] . (7)

One can also obtain the retarded correlator from the Feynman
correlator [30]

ImWR(q) = tanh(q0/2T )ImWF (q). (8)

Using the retarded correlator one can obtain the electric
conductivity from the linear response theory as we discuss
later [21].

B. Mixing of vector and axial correlators in pionic gas

In Steele et al. [12] pion and nucleon contributions to
the Feynman correlator were obtained within the context
of a density expansion. For the heavy ion collisions where
the net nucleon density is not negligible both pion and
nucleon contributions are important [16]. However, for high
energy collisions at RHIC and LHC, the pion contribution
will dominate because the net baryon density of the fireball
becomes negligible. In this work, we focus on the pion
contributions. By taking the pion density as an expansion
parameter, the pion contributions to the Feynman correlator

can be expressed as

WF (q) = WF
0 (q) + 1

f 2
π

∫
dπWF

π (q,k)

+ 1

2!

1

f 4
π

∫
dπ1dπ2WF

ππ (q,k1,k2) + · · · , (9)

where

WF
0 (q) = i

∫
d4xeiq·x〈0|T ∗Jμ(x)Jμ(0)|0〉,

WF
π (q,k) = if 2

π

∫
d4xeiq·x〈πa(k)|T ∗Jμ(x)Jμ(0)|πa(k)〉,

WF
ππ (q,k1,k2) = if 4

π

∫
d4xeiq·x〈πa(k1)πb(k2)|T ∗Jμ(x)

× Jμ(0)|πa(k1)πb(k2)〉, (10)

and ∫
dπ =

∫
d3k

(2π )3

n(E − μπ )

2E
(11)

with E = √
k2 + m2

π and n(ω) = 1/(eω/T − 1). Note that the
finite pion chemical potential μπ and the isospin sum over
index a and b are included.

The first contribution WF
0 in (10) is dominated by �V , the

transverse part of the vector correlator 〈0|T ∗VV|0〉, which can
be fixed by the measured electroproduction data [13,25],

ImWF
0 = −3 q2 Im�V (q2). (12)

This term vanishes for real photons with q2 = 0 because
the hadronic gas in thermal equilibrium is stable against
spontaneous photon emission. One pion contribution WF

π can
be represented by the measurable vacuum correlators using the
chiral reduction formulas [11,12],

ImWF
π (q,k) = 12 q2 Im�V (q2)

− 6 (k + q)2Im�A((k + q)2) + (q → −q)

+ 8
(
(k · q)2 − m2

πq2
)
Im�V (q2)

× Re�R(k + q) + (q → −q), (13)

where Re�R = PP[1/(k2 − m2
π + iε2)] is the real part (prin-

ciple value) of the retarded pion propagator and �A is the
transverse parts of the axial correlator 〈0|AA|0〉 which also can
be fixed using experimental data [13,25]. The full expression
for the two-pion contribution is more complicated [12,16]
and the important contributions to ImWF

ππ are summarized
in Appendix A.

The mixing of vector and axial correlators as an indication
of chiral symmetry restoration has been discussed in the
literature in the limit of zero chemical potential and zero
pion mass [24,25]. In this work we extend the discussion
in the presence of finite pion chemical potential and pion mass.
The pion density plays a major role for the mixing between
the vector-axial correlators. In order to see the main idea of
mixing, we focus on the contributions up to leading order in
pion density. Firstly, if we take k → 0 and mπ → 0 before the
integration over the pion momentum [24,25], one can have a
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FIG. 1. (Color online) Pion density parameter κ vs temperature
for different μπ .

very schematic relation

ImWF (q) ≈ −3 q2[(1 − 4κ) Im�V (q2) + 4κ Im�A(q2)],

(14)

where κ is the dimensionless pion phase-space factor

κ = 1

f 2
π

∫
dπ . (15)

The mixing is maximum for κ ≈ 1/8, leading to the equal
contribution from vector and axial correlators

ImWF (q) ∝ Im(�V (q2) + �A(q2)). (16)

In Fig. 1 we show the dependence of κ on the temperature
for different pion chemical potentials μπ . The vector-axial
mixing (14) is enhanced at high temperature and/or higher μπ

as κ increases. With the full expression, since Eq. (13) depends
on the pion momentum, the dependence on κ is not trivial. In
Fig. 2 we show the partial contributions of Eqs. (12) and (13)
to the imaginary part of the correlator, −ImWF . In this figure
one can clearly see that the one-pion contributions becomes
significant as the pion chemical potential increases. The 50-50
mixing schematized in Eq. (16) is apparent qualitatively at
μπ = 100 MeV with which there is a large cancellation among
the contributions with Im�V . In Fig. 3 the dilepton rates are
summarized with various pion chemical potentials. Due to the
mixing, the low invariant mass dilepton production is enhanced
while the ρ- around 0.78 GeV is reduced indicating the partial
restoration of chiral symmetry.

C. Electric conductivity

To assess the electric conductivity from the hadronic gas
we can use linear response and the Kubo-like formula for the
spectral function

ρV (M,	q) = − 2

ẽ2
ImWR(M,	q), (17)
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FIG. 2. (Color online) Partial contributions of Eqs. (12) and (13) to the imaginary part of the correlator −ImWF at T = 190 MeV for
different |	q| (qvec) and μπ . The thick black solid lines are the 0th order contribution without the pion. For the one pion contribution, labeled
by π , the three lines in each figure correspond to the three lines in Eq. (13), respectively. PP represents the contribution from terms with the
retarded pion propagator.
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FIG. 3. (Color online) Dilepton rates for hadronic gas at T = 150 and 190 MeV with various |	q| and μπ .

where the sum of the squared flavor charge ratios ẽ2 ≡ ∑
f ẽ2

f

and ρV = −ρ00 + ρii [32]. In the 	q = 0 limit

ρii(M,	0) = ρV (M,	0) (18)

because the time-like component ρ00(M,	0) vanishes due to
current conservation. In Fig. 4 we show ρV including terms
up to κ2 order for different values of T ,|	q|, and μπ . As μπ

increases, one can clearly see the mixing between the vector
and axial correlator. The contribution from φ remains largely
unaffected by the hadronic medium effects due to the OZI
suppression rule. In Fig. 5 we summarize ρV /MT for various
values of |	q| at T =190 MeV. In the left panel, one can see that
the ρV is enhanced as the momentum 	q increases especially
in the low invariant mass region. In the right panel, we plot
the same quantity with and without the A1 meson. In the
region of M/T = 1 ∼ 3, the mixing between the vector and
axial correlators are significant and the contribution of the A1
meson is very important.

The electric conductivity in unit of e2 can be defined in the
limit of |	q|/M → 0 and M → 0 as

σE = lim
M→0

ẽ2ρii(M,	0)

6M
= lim

M→0

−ImWR(M,	0)

3M

= lim
M→0

−ImWF (M,	0)

6T
. (19)

One can easily confirm that there is no contribution to σE

from WF
π because Im�A(m2

π ) = 0. In Fig. 5, from the curves
with |	q| = 0, ρV /MT increases very rapidly as we decrease
M . This behavior is caused by the pole of the retarded pion
propagator in WF

ππ in the region ε � M . In order to separate
the finite contribution from the hadronic gas, one can take the

limit of M/ε → 0 for Re�R(k + q),

lim
M/ε→0

Re�R(k + q) = lim
M/ε→0

M2 + 2ME

(M2 + 2ME)2 + ε4
→ 0.

(20)
In this limit, one can obtain a simple finite expression for the
electric conductivity to order κ2,

σE

T
≈

(
N2

f − 1
)

2T 2

∑
s=±

∫
dπ1

f 2
π

dπ2

f 2
π

(k1 + sk2)2

× Im�V ((k1 + sk2)2). (21)

In Fig. 6 the electric conductivities from a hadronic gas
are compared with recent lattice results [21,31] and the lower
bound [32] which are discussed in Sec. IIIB. The T and μπ

dependence of the hadronic gas is mainly caused by the pion
distribution function. The hadron contribution to the electric
conductivity is about an order of magnitude smaller than the
reported lattice results [21,31] but comparable to the results of
unitarized chiral perturbation [33].

For completeness, we note that to one-loop in ChPT the
vector spectral function in Eq. (21) can be explicitly assessed.
The result for the electric conductivity is

σE

T
≈

(
N2

f − 1
)

96π T 2

∑
s=±

∫
dπ1

f 2
π

dπ2

f 2
π


(
(k1 + sk2)2 − 4m2

π

)

× (k1 + sk2)2

(
1 − 4m2

π

(k1 + sk2)2

)3/2

(22)
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FIG. 4. (Color online) Spectral function ρV of the hadronic gas for T = 150 and 190 MeV with various |	q| and μπ .

which vanishes in the chiral limit as

σE

T
≈

(
N2

f − 1
)
T 4

96π f 4
π

f
(mπ

T

)

=
(
N2

f − 1
)

24π

κ2m2
π

T 2
+ O

(
m3

π

T 3

)
. (23)

In the low temperature limit we have

σE

T
≈

(
N2

f − 1
)
m6

π

96πT 2 f 4
π

g
(

T

mπ

)
(24)

which is seen to vanish exponentially with the temperature
since g(T/mπ ) ∝ e−2mπ /T .
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FIG. 5. (Color online) ρV /MT of the hadronic gas at T = 190 MeV and μπ = 0. The left panel shows the |	q| dependence and the right
panel shows the contribution of the A1 meson which is included in Im�A.
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FIG. 6. (Color online) σE/T for the hadronic gas. The blue lines
indicate the range of lattice results for two flavors [21,31] and the
green line indicates the lower bound [32].

D. Quark number susceptibility

The electric conductivity in unit of e2 can be tied with the
flavor diffusion constant Df through the identity [32]

σE = χf

⎡
⎢⎣
⎛
⎝ Nf∑

f =1

ẽf

⎞
⎠

2

DS
f +

⎛
⎝ Nf∑

f =1

ẽ2
f

⎞
⎠ DNS

f

⎤
⎥⎦ (25)

with DS,NS the singlet (S) and nonsinglet (NS) flavor diffusion
constants and χf the flavor susceptibility

χf = 1

T V3

〈
Q2

f

〉
(26)

defined in terms of the conserved flavor charge

Qf =
∫

d 	x J 0
f (0,	x). (27)

Note that the singlet susceptibility vanishes for three flavors.
In the hadronic gas, the flavor susceptibility is better sought

in terms of the fluctuations in the baryon number, isospin, and
hypercharge density through the linear transformation⎛

⎜⎝
Qu

Qd

Qs

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1
2

1 −1 1
2

1 0 −1

⎞
⎟⎠

⎛
⎜⎝

QB

QI

QY

⎞
⎟⎠ , (28)

where

QB =
∫

d 	x q† 1
3
q =

∫
d 	x 1

3
(u†u + d†d + s†s),

QI =
∫

d 	x q† λ
3

2
q =

∫
d 	x 1

2
(u†u − d†d),

QY =
∫

d 	x q† λ8

√
3
q =

∫
d 	x 1

3
(u†u + d†d − 2s†s).

(29)

Here QB, QI, and QY correspond to the baryon number,
isospin, and hypercharge operators, respectively.

In the pionic gas which we are considering in this work,
the flavor susceptibility becomes flavor-dependent because the
SU(3) symmetry is partially broken due to the explicit mass
differences in the meson octet,⎛

⎜⎝
χu

χd

χs

⎞
⎟⎠ = 1

T V3

⎛
⎜⎝

1 1 1
4

1 1 1
4

1 0 1

⎞
⎟⎠

⎛
⎜⎝

〈(QB)2〉
〈(QI)2〉
〈(QY)2〉

⎞
⎟⎠ , (30)

where 〈(QB)2〉 = 〈(QY)2〉 = 0 and χs = 0 for the pionic gas.
Using the pion density expansion we have

〈(QI)2〉 = 〈(QI)2〉π + 〈(QI)2〉ππ + · · · (31)

with

〈(QI)2〉π =
∫

dπ 〈πa(k)|(QI)2|πa(k)〉

= I2
πV3Nπ

∫
d3k

(2π )3
n(E − μπ ) (32)

and

〈(QI)2〉ππ = 1

2!

∫
dπa(k1)dπb(k2) [〈πa(k1)|(QI)2|πb(k2)〉

× 〈πb(k2)|πa(k1)〉 + (a,k1 ↔ b,k2)]

+ 1

2!

∫
dπa(k1)dπb(k2) Im〈πa(k1)πb(k2)|

× (S − 1)(QI)2|πa(k1)πb(k2)〉, (33)

where I2
π = 2, Nπ = 3, 〈πb(k2)|πa(k1)〉 = δab(2π )3 2E(k1)

δ3(k2 − k1), and (2π )3δ3(	0) = V3.
The first exchange but disconnected contribution is shown

separately. The connected contribution involves the full S-
matrix after using Eq. (6). The result is the on-shell and forward
ππ scattering amplitude Tππ . The result is

〈(QI)2〉ππ = 2I2
π

2!
V3Nπ

∫
d3k

(2π )3
[n(E − μπ )]2

+ 2I2
π

2!

∫
dπa(k1)dπb(k2) (2π )4δ4

× (k1 + k2 − (k1 + k2)) ReT ab,ab
ππ (k1,k2), (34)

where (2π )4δ4(0) ≡ V3/T . Thus

χu,d = 1

T V3
〈(QI)2〉

≈ I2
π

[
Nπ

T

∫
d3k

(2π )3
n (1 + n)

+ 1

T 2

∫
d3k1

(2π )3

n1

2E1

d3k2

(2π )3

n2

2E2
ReTππ (s,t,u)

]
(35)

with the Mandelstam variables s = (k1 + k2)2, t = (k1 − k2)2,
u = 0. To leading order in ChPT the ππ scattering amplitude
is given by the Weinberg term. Specifically,

χu,d ≈ I2
π

[
Nπ

T

∫
d3k

(2π )3
n (1 + n) − κ2Nπ (Nπ − 2)

m2
πf 2

π

T 2

]
,

(36)
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FIG. 7. (Color online) Flavor susceptibilities of the pionic gas. Red thin solid line corresponds to the leading QGP result χu,d/T 2 = Nc/3.
The black thick solid line corresponds to the leading contribution with

∫
d3k n(1 + n) and the black thick dashed line corresponds to the

susceptibilities with Tππ as in Appendix B.

where the tree level ππ contribution is seen to be negative and
vanishing in the chiral limit. The full result for the second order
correction using the chirally reduced forward ππ -scattering
amplitude is given in Appendix B in terms of the pion
scalar and vector form factors and vacuum correlators [34,35].
In Fig. 7, the flavor susceptibilities of the pionic gas are
summarized. At low temperature the leading contribution
dominates compared to the Tππ contribution. However, as
the temperature increases, the Tππ contribution dominates
due to the extra T 2 dependence compared to the leading
contribution. The increase in the two pion correlations around
the transition temperature is expected. While the diluteness
factor 4κ ≈ 0.2 in this temperature range (see Fig. 1) is
small, the forward two pion scattering amplitude is large due
to the threshold enhancement in the vector channel. Such
kinematical effects are expected in the hadronic organization of
the thermal averages. They do not invalidate the κ-expansion.
Indeed, we do not expect further three pion etc. kinematical
enhancements in the bulk susceptibilities. We recall that the
two pion contribution in Eq. (9) is very important for the
dilepton rate enhancement, especially at very low invariant
mass M . Note that there are finite external four-momentum
(q2 = M2) for the dilepton rate which suppress the two pion
contribution via vector and axial correlators for large invariant
mass M . In Fig. 7 the leading QGP contribution is given
by the red thin lines. Higher order corrections to the sQGP
susceptibility are discussed later in Sec. IIIC.

III. ELECTROMAGNETIC RADIATION FROM A
STRONGLY INTERACTING QUARK-GLUON PLASMA

A. Nonperturbative thermal condensates

There has been great progress in the calculation of the
perturbative photon emission rates in a weakly coupled
QCD plasma at asymptotic temperatures [36]. The leading
contribution to the photon rates comes from two-loop diagrams

corresponding to the process q + q → γ + g and Compton
g + q(q) → q(q) + γ processes. However these rates are
plagued with collinear singularities. Instead, a complete
leading order photon emission requires the inclusion of
collinear bremsstrahlung and inelastic pair annihilations and
their subsequent suppression through the LPM effect [36].
The extension of these calculations to the dilepton rates at
asymptotic temperatures is not available.

At current collider energies the QCD plasma is strongly
coupled or sQGP. The perturbative calculations are at best
suggestive and a more nonperturbative framework for time-like
processes is needed to separate the hard partonic physics which
is perturbative from the soft partonic physics which is not. A
useful framework for this approach is the one advocated long
ago by Hansson and one of us [18] whereby the vacuum OPE
expansion for current-current correlators is reordered at high
temperature to account for the soft thermal gluon corrections
through pertinent electric and magnetic condensates much in
the spirit of the QCD sum rules in the nonperturbative vacuum.
Its application to thermal dileptons was already used in [19].

The approach works as follows: The leading order contri-
bution to the retarded current-current correlator, Eq. (8), is the
Born qq̄ annihilation term,

Im WR
0 (q) = Ncẽ2

4π
q2

[
1 + 2T

|	q| ln

(
n+
n−

)]
, (37)

where Nc is the number of colors and n± the quark occupation
numbers

n± = 1

e(q0±|	q|)/2T + 1
. (38)

Note that this contribution vanishes at the photon point,
q2 = 0, due to energy momentum conservation [19]. The
sQGP around the critical temperature is expected to display
non-perturbative effects in the form of soft gluons, which can
be characterized by thermal condensates of gauge-invariant
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FIG. 8. (Color online) Thermal dileptons. Left panel: sQGP and HTL. Right panel: T and |	q| dependence of the sQGP. T -independent
〈B2〉 and 〈E2〉 in Eq. (41) are used for the sQGP.

operators of leading mass dimensions such as 〈A2
4〉, 〈E2〉, and

〈B2〉. Their contributions to the dilepton emissivities in leading
order are [18,19]

Im WR
2 (q) = Ncẽ2

4π
q2

〈
αs

π
A2

4

〉 (
4π2

T |	q|
)

(n+(1 − n+)

− n−(1 − n−)) (39)

and

Im WR
4 (q) = Ncẽ2

4π

[
−1

6

〈
αs

π
E2

〉
+ 1

3

〈
αs

π
B2

〉](
4π2

T |	q|
)

× (n+(1 − n+) − n−(1 − n−)). (40)

Across the phase transition temperature Tc which is first order
for pure gluodynamics, the electric and magnetic condensates
fall by about half their value in the QCD vacuum in the

temperature range (1−3)Tc, and remain about constant in this
range [37]. Thus for Tc < T < 3Tc in Euclidean signature this
translates to

〈αsB
2〉 ≈ 〈αsE

2〉 ≈ 1
2 × 1

4 〈αsG
2〉0 (41)

in terms of the vacuum gluon condensate [37]. We use
the updated value of the gluon condensate 〈αsG

2〉0 = 0.068
GeV4 [38]. In Fig. 8, the dilepton rates from the sQGP are
summarized for various temperatures and momenta q = |	q|.
In order to check the contribution from 〈A2

4〉, we used
〈αs

π
A2

4〉/T 2 ≈ 0.4 for the plot [19]. The presence of 〈A2
4〉

appears to be ruled out by a comparison to the recent lattice
data [23]. In the left panel, for the comparison, we also plot
the contribution form the HTL (hard thermal loop) [39]. One
can see that the enhancement in the low mass region mainly
comes from the 〈E2〉 and 〈B2〉 contributions even though

0 2 4 6 8
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4

6

ρ V
(Μ

)/Μ
T
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HTL 1.45Tc
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q
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T-indep E&B
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FIG. 9. (Color online) Vector spectral density. Left panel: comparison between sQGP and HTL results. Right panel: |	q| dependence of
sQGP. T -independent 〈B2〉 and 〈E2〉 in Eq. (41) are used for sQGP.
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they are smaller than the HTL results. In Braaten et al. [39],
power counting is taken into account even for the Fermi-Dirac
distribution function, which is valid in the soft energy region.
However, in this work, we kept the full expression of the
Fermi-Dirac distribution function in the HTL calculation in
order to compare with other results. In the right panel of Fig. 8,
the temperature and momentum dependence of the sQGP rate
are summarized. By comparing results for T = 190 MeV in
Figs. 3 and 8, one can see that the hadronic contributions
are significantly higher than the sQGP contributions in the
low mass region below 0.1 MeV as the chemical potential
increases.

In Fig. 9 we plot the vector spectral densities, which can be
compared with the results from the hadronic gas summarized
in Fig. 5. In the left panel of Fig. 9 we compare the results at
two high temperatures of 1.1 Tc and 1.45 Tc with the critical
temperature for quenched calculation Tc = 270 MeV [21].
The leading Born contribution is compared to the contribution
including the soft gluon condensates as well as the hard thermal
loops [39,40]. In the right panel the same spectral densities
are shown for different momenta 	q �= 0 at T = 190 MeV.
With finite thermal condensate 〈E2〉 and 〈B2〉 contribution,
the ρV /MT increases as the momentum increases for any
given M , especially in the low mass region the enhancement is
significant. A comparison with recent lattice results confirms
the important of the thermal condensate in the sQGP [23].

B. Electric conductivity

The electric conductivity σE at high temperature plays an
important role in recent developments related to the chiral
magnetic effects in the early stage of the sQGP. Our condensate
corrections to the Euclidean spectral function allow us to make
an estimate of σE across the transition region by tying it to
the spectral function in the zero mass limit as in Eq. (19).
The only drawback is that the reorganized OPE expansion
at high temperature [18,19] is an expansion in M2/|	q|2 < 1,
with M the soft scale in the matrix element which is typically
the magnetic scale. The extrapolation of the leading operator
corrections to |	q| → 0 while finite calls for corrections of order
1 from the higher operator insertions. This notwithstanding,
an estimate of the electric conductivity is set by the leading
dimension-4 operators at high temperature

σE ≈ πNcẽ2

48T 3

(
−1

6

〈
αs

π
E2

〉
+ 1

3

〈
αs

π
B2

〉)
. (42)

Lattice results show that σE/T is weakly dependent on the
temperature and the value lies in the range 0.3 < σE/ẽ2T <
0.8 [21,31]. Recent analysis with PHENIX data gives slightly
larger value 0.5 < σE/T < 1.1 [41]. The temperature de-
pendence of σE/T has been also reported in the literature
[42–46], in which σE/T increases as the temperature increases
above Tc. Burnier and Laine [32] got a lower bound for the
electric conductivity, or σE/T � 0.07, which is significantly
smaller than previous leading-order weak-coupling expansion
results [47,48].

In Fig. 10, we plot the electric conductivity for the
sQGP with constant 〈B2〉 and 〈E2〉. Our sQGP results with
constant 〈B2〉 and 〈E2〉 are much smaller than the lattice

0.1 0.15 0.2 0.25
T (GeV)

10
-2

10
-1

10
0

σ E
/T

  [
e2 ]

sQGP : T-indep E&B

lattice results

lower bound

FIG. 10. (Color online) σE/T for sQGP. The blue lines indicate
the range of lattice results for three flavors [21,31] and the green line
indicates the lower bound [32].

estimates [21,31]. At large temperatures the electric and
magnetic condensates are T dependent with 〈B2〉 ≈ 〈E2〉 ≈
(bπ2/20) × T 4 and b ≈ 1–1.2 [49]. On the other hand, a fit to
the currently reported lattice conductivities suggest

〈αsE
2〉 ≈ 〈αsB

2〉 ≈ 288

Nc

〈
σE

ẽ2T

〉
T 4 ≈ 48 T 4 (43)

with 〈σE/ẽ2T 〉 ∼ 0.5 at about the mean value of the lattice
results [21,31].

Therefore, the electric conductivity as well as the compar-
ison with lattice results appear to rule out the sQGP approach
with T -independent condensates 〈B2〉 and 〈E2〉. In Fig. 11, we
plot the dilepton rate and spectral density with T -dependent
condensates. In comparison with Figs. 8 and 9 one can see
the significant enhancement in the low mass region. The Born
term dominates in the high mass region and the results are
rather insensitive to the details of the thermal condensates.

C. Flavor diffusion constant

The partonic flavor susceptibility can be sought along
the same arguments as those developed for the hadronic
parts, using the QCD Hamiltonian at high temperature, as
summarized in Appendix C. However, in this work, instead of
calculating the contributions of Tqq explicitly, we compare our
pionic gas results in Fig. 7 with the recent lattice results [50].
Lattice results indicate that the quark susceptibilities drop by
about 15 ∼ 25 % compared to the Stefan-Boltzmann limit
near the phase transition temperature. The leading contribution
from the pionic gas is close to the lattice results. However,
as noted earlier, the higher order corrections from Tππ

become significant in the critical temperature region and the
perturbative treatment is not valid.

Since DNS
f /DS

f ∼ Nc this makes the nonsinglet contribu-
tion dominant for Nc = 3 assumed large. Thus, with χf =
(Nc/3)T 2,

T DNS
f ≈ T σE

ẽ2χf

≈ 3

Nc

σE

T ẽ2
≈ 1

2
, (44)
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FIG. 11. (Color online) Dilepton rates and spectral function from the sQGP with T -dependent 〈E2〉 and 〈B2〉 in Eq. (43).

where in the last estimate we used the central value of the
lattice estimate for the electric conductivity [21,31], across
the transition temperature. Note that this value lies between
the results from the AdS/CFT [51] and the phenomenological
approach [52]. In the intermediate regime of temperatures
(1 − 3) Tc the light flavor quarks carry a thermal mass of the
order of the Matsubara mass mT ≈ πT > T making the light
flavors somehow heavy in comparison to the typical thermal
excitations. In the large Nc limit and using the Einstein relation
we can estimate the drag ηf on the light quarks in the transition
region [53,54]

ηf

T
≈ 1

mT DNS
f

≈ NcT

3mT

ẽ2T

σE

. (45)

If we use the central value of the lattice result for the
electric conductivity, then ηf /T ≈ 2/π across the transition
temperature. This drag quantifies the amount of Brownian
motion for the light flavors in the sQGP.

IV. CONCLUSIONS

Our hadronic rates are based on the use of spectral
functions. Unlike kinetic processes whereby each emission
is associated with particular Feynman diagrams, our spectral
analysis enforces all the constraints of broken chiral sym-
metry, and through the spectral weights accounts for tails of
resonances. It does not rely on any effective Lagrangian, and
therefore does not suffer the drawback of a strong interaction
expansion and the ambiguities associated to hadronic form
factors. However, it is limited by a reorganization of the
leptonic emissivities around the resonance gas model to
leading order, with one- and two-pion final re-scattering in
the initial states. Carrying out the expansion to three-pion
rescattering in the initial state is formidable.

We have shown that the mixing between the vector and axial
correlators becomes more significant with increasing pion
chemical potentials indicating the partial restoration of chiral

symmetry. This mixing enhances the dilepton rate significantly
at low invariant mass. The evolved rates account well for
the dilepton emissivities reported by the SPS (see [6] and
references therein). Although the inclusion of baryons, should
improve slightly the fit, we are confident that our organization
of the dilepton emissivities through the virial expansion works
at collider energies.

Since our photon rates fit reasonably well the low mass
photon spectra at collider energies [16] we can use them to
extract both the electric conductivity and the flavor suscep-
tibility constant in the hadronic phase. We have found that
the electric conductivity at T ≈ mπ is substantially smaller
than the currently reported lattice conductivities. While we
have not included the contributions of order κ3 and higher,
we believe that our chiral expansion provides a sound starting
estimate based on the strictures of spontaneously broken chiral
symmetry. The flavor susceptibility in the correlated hadronic
gas is reasonably close to the reported lattice results at the
transition temperature.

We have provided first principle estimates of the corrections
to the electromagnetic emissivities in the partonic phase and
near the transition temperature using the high temperature
QCD sum rule method [18,19], whereby the effects of soft
gluons are retained in the form of gluonic matrix elements. A
reasonable account of the electric conductivities reported on
the lattice at high temperature is reproduced with temperature
dependent condensates.

The approach we have discussed can be extended to most
transport coefficients in QCD both below and above the
transition temperature. It is well motivated by the structures
of chiral symmetry below the transition temperature, and by
a reorganization of the OPE expansion at high temperature.
The dual nature of the interacting resonance gas model near
the transition temperature with its high-temperature partonic
description, provides us with an interesting nonperturbative
tool for computing the transport parameters of QCD matter
near equilibrium.
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APPENDIX A: TWO-PION CONTRIBUTION WF
ππ

The two-pion contribution WF
ππ which is important both for

the rate and the electric conductivity is more involved [12,26].
We summarize the dominant contributions [16]

1

f 4
π

ImWF
ππ (q,k1,k2)

= 2

f 2
π

[gμν − (2k1 + q)μk1νRe�R(k1 + q)]ImT μν
πγ (q,k2)

+ (q → −q) + (k1 → −k1) + (q,k1 → −q, − k1)

+ 1

f 2
π

k
μ
1 (2k1 + q)νRe�R(k1 + q)εa3eεe3gImBag

μν(k1,k2)

− 1

f 2
π

[gμν − (k1 + q)μ(2k1 + q)νRe�R(k1 + q)]

× εa3eεa3f ImBef
μν(k1 + q,k2)

+ 1

f 2
π

(k1 + q)μ(k1 + q)ν(2k1 + q)2 [Re�R(k1 + q)]2

× εa3eεa3f ImBef
μν(k1 + q,k2) + (k1 → −k1). (A1)

The pion-spin averaged πγ forward scattering amplitude
ImTπγ is given as [26]

ImT μν
πγ (q,k) = 2

3f 2
π

(2kμ + qμ)(−q2kν + k · q qν)

× Re�R(k + q)Im�V (q2)

+ (q → −q) + (k → −k) + (q,k → −q,−k)

+ 4

3f 2
π

(gμνq2 − qμqν)Im�V (q2)

− 2

3f 2
π

(gμν(k + q)2 − (k + q)μ(k + q)ν)

× Im�A((k + q)2)

+ (k → −k), (A2)

and the contribution B reads [16,26]

ImBef
μν(k1,k2)

= 2

f 2
π

δef [gμν(k1 + k2)2 − (k1 + k2)μ(k1 + k2)ν]

× Im�V ((k1 + k2)2)

+ (k2 → −k2) − 4

f 2
π

δef
[
gμνk

2
1 − k1μk1ν

]
Im�A

(
k2

1

)
.

(A3)

All additional spectral contributions to WF
ππ are thoroughly

discussed in [12,26]. Their contribution to the photon and
dilepton emissivities in the low and intermediate mass range
is negligible.

APPENDIX B: ππ SCATTERING AMPLITUDE

Here we summarize the ππ scattering amplitudes which
are relevant to the flavor susceptibility as [34,35]

Tππ (s,t,u) ≡
∑

a=d,b=c

Tππ (p2d,k2b ← k1a,p1c)|p2=k1,p1=k2

= Ttree(s,t,u) + Tvector(s,t,u) + Tscalar(s,t,u)

+ Trest(s,t,u) (B1)

with Mandelstam variables

s = (k1 + p1)2 = (k2 + p2)2,

t = (k1 − k2)2 = (p1 − p2)2,

u = (k1 − p2)2 = (p1 − k2)2. (B2)

For the contribution of thermal pions to the flavor susceptibil-
ity, δadδ4(k1 − p2), δbcδ4(p1 − k2), and u = 0 are implicitly
considered and the identity s + t + u = 4m2

π is used. The
Weinberg tree contribution to the scattering amplitude can be
reduced to a constant value as

Ttree =
∑

a=d,b=c

[
1

f 2
π

(
s − m2

π

)
δacδbd + 1

f 2
π

(
t − m2

π

)
δabδcd

+ 1

f 2
π

(
u − m2

π

)
δadδbc

]

⇒ Nπ (2 − Nπ )
m2

π

f 2
π

. (B3)

The vector contribution to one-loop order can be represented
as

Tvector =
∑

a=d,b=c

[
εaceεdbe(u − t)

1

4f 4
π

s�V (s)

+ 2 permutation

]

⇒ −Nπ

st

2f 4
π

[�V (s) + �V (t)] , (B4)
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where

�V (q2) = c1 + 1

72π2
+ 1

3

(
1 − 4m2

π

q2

)
(J (q2) − ĉ1) (B5)

and

J (q2) = ĉ1 + 1

16π2
θ
(
q2 − 4m2

π

)⎛⎝2 +
√

1 − 4m2
π

q2

[
ln

∣∣∣∣∣
√

1 − 4m2
π/q2 − 1√

1 − 4m2
π/q2 + 1

∣∣∣∣∣ + iπ

]⎞
⎠ . (B6)

In this work, we take the mean value of the counter term c1 = 0.035 and ĉ1 = 0.023 [34]. The scalar contribution can be rewritten
as

Tscalar =
∑

a=d,b=c

[
2m2

π

f 4
π

δacδbd

(
sJ (s) − 5

4
m2

πJ (s)

)
+ 2 permutation

]

⇒ 2Nπm2
π

f 4
π

(
sJ (s) + tJ (t) − 5

4
m2

π [J (s) + J (t) + NπJ (0)]

)
. (B7)

The remaining contribution can be rewritten as

Trest =
∑

a=d,b=c

[
− i

f 4
π

kα
1 k

β
2 p

γ
1 pδ

2

∫
d4y1d

4y2d
4y3 e−ik1·y1+ik2·y2−ip1·y3

]
〈0| T ∗[jaAα(y1) jbAβ(y2) jcAγ (y3) jdAδ(0)

]|0〉conn
]

⇒ Nπ (2 + Nπ )

4f 4
π

[(
s − 2m2

π

)2J (s) + (
t − 2m2

π

)2J (t) + 4m4
πJ (0)

]
. (B8)

APPENDIX C: PARTONIC QUARK SUSCEPTIBILITY

The partonic flavor susceptibility is summarized following the same arguments as those developed for the hadronic parts in
Eq. (35). One can start with flavor charge fluctuations〈

Q2
f

〉 = 〈
Q2

f

〉
q

+ 〈
Q2

f

〉
qq

+ · · · (C1)

with

〈
Q2

f

〉
q

=
∫

dq(k) 〈qai(k)|Q2
f |qai(k)〉 = 4NcV3

∫
d3k

(2π )3
nF (E) (C2)

and 〈
Q2

f

〉
qq

= − 1

2!

∫
dq(k1)dq(k2)

(〈qai(k1)|Q2
f |qbj (k2)〉〈qbj (k2)|qai(k1)〉 + a,i,k1 ↔ b,j,k2

)
+ 1

2!

∫
dq(k1)dq(k2) Im〈qai(k1)qbj (k2)| (S − 1) Q2

f |qai(k1)qbj (k2)〉. (C3)

The index a is for flavor and the index i is short for color, spin, particle, and antiparticle. The integrals count the number of
massless (scalar) fermions in phase space ∫

dq(k) =
∫

d3k

(2π )3

nF (E)

2E
. (C4)

In the the disconnected matrix element the minus sign is from the antisymmetric switch of the quarks. The connected contribution
is the forward quark-quark scattering amplitude Tqq . Thus

〈
Q2

f

〉
qq

= −4NcV3

∫
d3k

(2π )3
n2

F (E) + 2

2!

∫
dq(k1)dq(k2) (2π )4 δ(k1 + k2 − (k1 + k2)) ReT ai,bj

qq (k1,k2) (C5)

so that

χf ≈ 4Nc

T

∫
d3k

(2π )3
nF (1 − nF ) + 1

T 2

∫
dq(k1)dq(k2)ReT ai,bj

qq (k1,k2). (C6)

For massless quarks, the first term gives the leading QGP contribution χf = (Nc/3)T 2.
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