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Nucleon thermal width owing to pion-baryon loops and its contributions to shear viscosity

Sabyasachi Ghosh
Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070 Sao Paulo, SP, Brazil
(Received 30 December 2013; revised manuscript received 23 June 2014; published 7 August 2014)

In real-time thermal field theory, the standard expression of shear viscosity for nucleonic constituents is derived
from the two-point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal
width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated
from the in-medium self-energy of nucleons for different possible pion-baryon loops. The dynamical part of
nucleon-pion-baryon interactions are accounted for by the effective Lagrangian densities of standard hadronic
model. The shear viscosity to entropy density ratio of the nucleonic component decreases with the temperature
and increases with the nucleon chemical potential. However, adding the contribution of the pionic component,
the total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing
effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, the
viscosity to entropy density ratio of the nuclear matter gradually reduces as temperature and nucleon chemical

potential increase and therefore the nuclear matter is approaching the (nearly) perfect-fluid state.
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I. INTRODUCTION

Recent hydrodynamical studies [1,2], as well as some
transport studies [3,4], have indicated about a (nearly) ideal
fluid nature of nuclear matter, which may be produced in
the experiments of heavy-ion collisions (HICs) such as at the
Relativistic Heavy Ion Collider (RHIC) at BNL. The hydro-
dynamical calculations became very successful in explaining
the elliptical flow parameter v, from RHIC data [5-7] only
when they assumed a very small ratio of shear viscosity
to entropy density (n/s) for the expanding nuclear matter.
When some recent studies [8—11] (see also Ref. [12]) showed
that n/s may reach a minimum in the vicinity of a phase
transition, some special attention was drawn to the smallness
of this minimum with respect to its lower bound (n/s = ﬁ ,
commonly known as the KSS bound [13]. In this context, the
temperature (7') dependence of n/s is taken into account in
some recent hydrodynamical calculations [14—17] instead of
its constant value during the entire evolution. Niemi et al.
[14] have interestingly observed that the vy(pr) of RHIC
data is highly sensitive to the temperature-dependent /s in
hadronic matter and almost independent of the viscosity in
the quark-gluon-plasma (QGP) phase. This work gives an
additional boost to the microscopic calculations of 7/s of
the hadronic matter in the recent years [18-34], although
historically these investigations are slightly old [35-39].

Except for a few studies [24,30-32], most of the mi-
croscopic calculations are done at zero baryon or nucleon
chemical potential (uy = 0). Along with the T dependence
of n or /s, their dependence on the baryon chemical potential
should also be understood in view of the future experiments
such as at the GSI Facility for Antiproton and Ion Research
(FAIR). In the work of Itakura et al. [24] and Denicol
et al. [31], we notice that n/s is reduced at finite baryon
chemical potential, whereas Gorenstein et al. [30] observed
an increasing nature of n/s with wy. Itakura et al. obtained
n by solving the relativistic quantum Boltzmann equation,
where phenomenological amplitudes of hadrons are used in
the collision terms. Denicol et al. calculated n at finite T
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and py by applying Chapman—Enskog theory in a hadron
resonance gas (HRG) model, whereas Gorenstein et al. took
a simplified ansatz of 5 to estimate /s in the van der Waals
excluded volume HRG model. Similar to the ansatz of n(T")
taken by Gorenstein et al., n itself increases with increasing
temperature in Ref. [24], but their /s exhibit the completely
opposite nature of 7' dependence. Therefore, the behavior of
the n/s may largely be influenced by the 7" dependence of the
entropy density s.

Motivated by these delicate issues of shear viscosity at
finite 1y, the present paper is concentrated on the matter with
nucleon degrees of freedom at finite 7 and w . The nucleons
in the medium can slightly become off-equilibrium because of
their thermal width or Landau damping, which can originate
from the nucleon thermal fluctuations into different baryons
and pions. The inverse of nucleon thermal width measures the
relaxation time of nucleons in the matter, from which one can
estimate its corresponding shear viscosity contribution.

In the next section, the one-loop expression of 7 for nucleon
degrees of freedom is derived from the Kubo relation, where
a finite thermal width is traditionally included in the nucleon
propagators. This standard expression of 1 can also be deduced
from the relaxation-time approximation of kinematic theory. In
real-time thermal field theory, the nucleon thermal width from
the different pion-baryon loops is calculated in Sec. III, where
their interactions are determined from the effective hadronic
model. In Sec. IV, the numerical results are discussed followed
by summary and conclusions in Sec. V.

II. KUBO RELATION FOR SHEAR VISCOSITY
OF NUCLEAR MATTER

From the simple derivation of the Kubo formula [40,41],
let us start with the expression of shear viscosity for nucleonic
constituents in momentum space [26,42],

1 Ayq0.q)
Ny = — lim =222,
20 g0.4—0 q0

ey

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevC.90.025202

SABYASACHI GHOSH

where
Ay(q0.G) = / d*xe' ™ ([7,, (%), 7" (0)]) 5 2)

is the spectral representation of the two-point function for the
nucleonic viscous-stress tensor 7*" and

0y =0
= 1r s
g z

with Z = Tre ¥ 3)

denotes the thermodynamical ensemble average. The energy-
momentum tensor of free nucleons is

oL
Ta: o (r
p —8po L+ 37 9) Y

= _gpa‘c‘i‘”/fypaawv 4)
and hence the viscous stress tensor will be
Ty = t""T o

= tp"zwy,,a lp(smce tw 8po = 0) (®)]
where

17 = ALAT — IALAP, A =g —utut. (6)

In real-time formalism of thermal field theory, the ensemble
average of any two-point function always becomes a 2 x 2
matrix structure. Hence, for the viscous-stress tensor, the
matrix structure of the two-point function becomes

Map(q) =i / d*xe' (T, ()7 (0))f, ™

where the superscripts a,b (a,b = 1,2) denote the thermal
indices of the matrix and 7, denotes time ordering with respect
to a symmetrical contour [43,44] in the complex time plane.

The matrix can be diagonalized in terms of a single analytic
function, which can also be related with the retarded two-point
function of the viscous-stress tensor. The retarded function
1R (g), diagonal element ﬁ(q), and the spectral function A, (g)
are simply related to any one of the components of I1,,(q).
Their relations with the 11 component is given below

A,(g) = 2ImIT*(¢q) = 2€(go)ImTI(q)

= 2tanh(%)lml’ln(q). ®)

Hence, Eq. (1) can broadly be redefined as

1 ImIT®(ge.g) 1
lim — = —

€(qo)ImII(go,G )
= — m

10 40.—0 q0 10 40,0 q0
1 tanh(Bgo/2)ImIT" (g0, )

= — lim . ©)]
10 g0.G—0 qo

Using Eq. (5) in the 11 component of Eq. (7) and then applying
Wick’s contraction technique, we have

IT11(q)

——~
=g 1ebi / d*xe" ™ (T (x)y,0: ¥ ()P (0)y"3 ¥ (0)) 5

) d*k
=i / 2n )4N(q D1y (K)Dyi(p = q + k), (10)
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FIG. 1. Diagrammatic representation of NN loop is shown in
panel (a), where the double lines stand for effective N propagators,
which contain their thermal widths I". The diagrammatic represen-
tation of nucleon self-energy for the 7 B loop is shown in panel
(b) from where I can be determined.

where

N(gq.k) = —Int[TTely" (g + k)"(4 + § + mn)

X Ypko (K +my)]. an

This self-energy function I1;;(g) for the NN loop can be
represented diagrammatically by Fig. 1(a). In the comoving
frame, i.e., for u = (1,0), N(q,k) becomes

32 > Lo
N(gq.k) = _INI:?{](O(QO + ko)}k - (g + k)}

P2(7 1 )2
—4[{/}’ G+ 0y + @H (12)
In the above equations, Iy = 2 is the isospin degeneracy of
the nucleon.

In Eq. (10), D'! is the scalar part of the 11 component of
the nucleon propagator at finite temperature and density. Its
form is

D''(k) = — 271 Fi(ko)8 (k* — m3
(k) [Ep—— i (ko)3 ( )
1 ( 1 —nf n
20 \kg—w) +in ko — ) —in
1—ng ny )
- — = — ) (13)
k0+w£’—m ko—l—a),iv—i—ln

with Fy(ko) = n} T0(ko) + n, 6(—ko) and where n; (a)k )=
1/ {eﬁ(‘”k Fiw) + 1} is Ferml—DlraC distribution function for
energy o = (k* + m%)"/2. Here the + signs in the superscript
of ny stand for nucleon and antinucleon, respectively. Among
the four terms in Eq. (13), the first and the second terms are
associated with the nucleon propagation above the Fermi sea
and the propagation of its hole in the Fermi sea, respectively,
while the third and fourth terms represent the corresponding
situations for the antinucleon. The full relativistic nucleon
propagator, thus, treats the particle and antiparticle on an
equal footing and all possible singularities (nucleon, hole of
the nucleon, antinucleon, and hole of the antinucleon) are
automatically included.
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After doing the k¢ integration of Eq. (10) and then using it
in Eq. (9), we have

Lo &3k (=7 N)

™10 mio ] @x) sef ol
—n (@) + 1, (—q0 + o
><|:{ nk(wk) Z:( qo0 wk)}a(qO—a)/]{V‘i‘a)g)
+ NY _ ,+ + N
+{nk(wk) Zp(% wk)}a(qo_‘_w]](v_wg)_i_”}
0
(14)
where N = N(ko =t} k.q) and wgz[(é+12)2+
m%, 12,

The two 6 functions will be responsible for generating the
Landau cuts (—§ < qo < § ), where the ImIT®(g) will be
nonzero. However, there will be two more § functions (not
written explicitly), which are not important for the limiting
point gg,g — 0 since they will generate unitary cuts [—0c0 <
go < —(G*+4m3)V? and (§ > + 4m3)1? < qo < 0].

By using the identity

—mé(x) = Im|: lim (15)

'y—0x +lFN:|
in Eq. (14), we have
I |: 4’k N
Q2n) 4oy 0l
< lim {{—nk(wﬁ)ﬂ;(—quﬁ)}/qo
Ty—0 (g0 — wp + @) +iTy
N {nZ(wﬁ)—nt(%erﬁ)}/qo”.

(g0 + wf — ) +iTy

Ny = 7= hIm
10 g0.§—0

(16)

We continue our further calculation for finite values of I'y to
get a nondivergent contribution of 7. Including the thermal
width T'y for constituent particles (here nucleons) of the
medium is a very-well-established technique [26,27,45] in the
Kubo approach to remove the divergence of ny as well as to
incorporate the interaction scenario, which is very essential
for a dissipative system. The interaction scenario is coming
into the picture by transforming the delta functions to the
spectral functions with finite thermal width. The thermal
width (or collision rate) I'y of the constituent particles
reciprocally measures the shear viscosity coefficient, which
is approximately equivalent to the quasiparticle description.

In the limiting case of go,q — 0, we get a)[’:’ — a),iv and
therefore Eq. (16) is transformed to

L&k CN i am
nw=— | ————1IDbL 3l
10/ (27) 4V°Ty
where
No= lim N(ko = ol k.q) (18)
q0.4—0
and
nf(wV) £nT + o
12’3=1im{:F k(k) P(:qu k)} (19)
qo—0 qo0
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In the above Eq. (19), one can notice that the limiting value of
I 3 is of the 0/0 form. Therefore, we can apply 1’Hospital’s
rule, i.e.,

dg (T (@) £ 07 (F g0 + )}

12’3 = lim
q0—>0 ﬁ{%}
= BInF (1 — )], (20)
since

N wgEpN)

d _ﬁd_eﬂ( g TN
d T _ ML — 4~ dd
s {:I:np < (wq = Fqo + wy )} - :l:{eﬁ(wqiltzv) +1)2

_(:F)ﬁeﬁ(wf'iuw)
{eB@d 1) 4 12
= Blnf(1 —n)]. 21

Again, in the limiting value of gg,g — 0, Eq. (12) can be
simplified to

. d
Jim (= (o = Fao + o)) =+

16k*
3
Hence, by using the above results, the Eq. (17) becomes

881y / Sk K
15 ) @70 40Ty

NO = _IN

(22)

= [ny (1 —ny) +nf(1—n)H]

3 ﬂIN/ KSdk
1572 wllc\/z[*

N

iy (1 —n)+n;(1—nH].  (23)

This is the one-loop expression of shear viscosity for the
matter with nucleon degrees of freedom in the Kubo approach.
Although there are possibilities of an infinite number of
ladder-type diagrams, which are supposed to be of same
order of magnitude [O(1/T"y)] like the one loop, they will
be highly suppressed [42]. As we increase the number of
loops, the number of extra thermal distribution functions
will also appear in the shear viscosity expression and hence
their numerical suppression will successively grow. On this
basis, the one-loop results may be considered as leading-
order results. One can derive exactly same expression from
relaxation-time approximation in the kinetic theory approach.

III. CALCULATION OF NUCLEON THERMAL WIDTH

Now, our next aim is to calculate the thermal width
of nucleon I'yy, which can be estimated from the retarded
component of nucleon self-energy (£X) at finite temperature
and density. Their relation is given by

Ty, T.uy) = —Im3R (ko = of K. T.pn).  (24)

During the propagation in the hot and dense nuclear mat-
ter, nucleons may pass through different 7 B loops, where
B stand for different higher-mass baryons including the
nucleon itself. In this work, all possible four-star baryon
resonances with spin 1/2 and 3/2 are considered. These are
N(980), A(1232), N*(1440), N*(1520), N*(1535), A*(1600),
A*(1620), N*(1650), A*(1700), N*(1700), N*(1710), and
N*(1720), where masses (in MeV) of the baryons are given
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inside the brackets. The nucleon self-energy for the 7= B loop
is shown in Fig. 1(b) and its 11 component can be expressed
as

d*l
Sk, T, uy) = —i/WL(k,l)Dn(l,mn,T)

XDII(M =k_lamBaTvl’LN)v (25)

where Dy (I,m;,T) and Dy j(u =k —Il,mp,T,uy) are the
scalar parts of the pion and baryon propagators at finite
temperature and density. L(k,/) contains vertices and the

J

d’l 1

ImZ (k) = _—
mET k) = m 2n)} do] wB

[L(lo= wf,f,k)[{l + (o] ) = nj (ko — o ) }8(ko — ] — @f)
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numerator parts of the propagators. The chemical potential of
all baryons are assumed to be the same as nucleon chemical
potential . Similar to Eq. (8), this 11 component is also
related to the retarded component as

ImX R (k) = coth

{M }ImE”(k). (26)

Performing the [ integration in Eq. (25) and then using the
relation (26), we get the imaginary part of retarded self-energy,

u

+{=m(of) = n (<ko + @7 )}3 (ko — of + )] + L{lo = —of LK) (o] ) +n7 (ko + &) }3 (ko + of — )
+{=1=ny(w]) +n, (—ko — o )} (ko + ] + »})]], 27

where w® = [(k — ) + m3%]'"/2, n¥ and n; are respectively Fermi-Dirac and Bose—Einstein distribution functions. The regions
of different branch cuts in the ko axis are [ — 0o to —[k2 + (m, + mg)*]'/?] for a unitary cut in the negative ko axis, [ —
(K2 + (mp — my)*1"2 to [k2 + (mg — my)?]"/?] for a Landau cut and [[k* + (m, +mg)*]"/? to oo] for a unitary cut in the
positive ky axis. These represent the different kinematic regions where the imaginary part of the nucleon self-energy becomes
nonzero because of the different § functions in Eq. (27). The Iy for all = B loops (except the 7w N) are coming from the Landau-cut
contribution associated with the third term of Eq. (27), which can be simplified as

-

| U - U
'y = ~ / dw{nl(a)) + n;f(w,iv + w)}L(lO = -, = /& —mi k= w,’cv,k), (28)
167k Jo+
where (@) = 1/{ef? — 1}, nj (0} + &) = 1/{f@d =) 1), 5* = Lo (—of £kW) with W = (1 — 4mZm3/RY)"/? and
my
R =m% +m2 —m3.
The effective Lagrangian densities for BN interactions are [46]
f 1= fou1 p 3
m_n, E s E—m—JTIpB l}/s lﬁNaMTlf + H.c. for JB —E s (29)
where coupling constants f/m, for different baryons have been fixed from their experimental vacuum widths in Nz channel.
With the help of the above Lagrangian densities, one can easily find

+

— )9S
L= lﬁByM{ll]I }¢Naﬂn+H.C. for JI =

Y\ 1+
L(k»l) = _(_> ,l(k—,l — PmB),l for Jg = E s
£\ 1 2
L(k,l) = —(—) =1+ Pms)lulu{—g“” + vy Sk =DMk = 1)’
Mz 3 3my
Lon k—0D" —(k =Dy for JP = 3* 30
b =0 ==y for s =3 0

For simplification, the coefficients of yO and 1 are taken from Ref. [47] and their addition gives

2 2 +
R 1
L(k,l) = —<i> {(7 —m3,>10 - me,mB} for JF = 5

My
f 2 2 R2 2 3:|:
Lk,l) = —(m—n et L ai m* | —mim% (ko —lo+ Pmp) for JE = 3 (31)

(

The isospin part of the Lagrangian densities are not written
1+ p_ 3%
and ‘IB =3

in Eq. (29). The isospin structure for J g =3
should be ¥/ 7 - 7y and Y T - 7, respectively, where 7 is the

spin 3/2 transition operator and T is the Pauli operator. This
issue is managed by multiplying appropriate isospin factors
with the expressions of the corresponding loop diagrams. The
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isospin factor for the 7N or w N* loop is Iy_ nn =3,
whereas for the 7 A or w A* loop, I za.ax = 2.

All baryon resonances have finite vacuum width in the N
decay channel. The calculations of these decay widths are very
essential in the present work for two reasons. First is to fix
the coupling constants f/m, for different BN interaction
Lagrangian densities and second is to include the effect of
these baryon widths (I'g) on the nucleon thermal width I'y.
By using the Lagrangian densities, the vacuum decay width of
baryons B for Nz channel can be obtained as

y(mg) = InesnnN i 2|I_7>c.m.| [2m |ﬁ |2
BB = o0+ 1\my ) 2emg ™ BIEe™
2( N P 1
+mrr(wc.m. - PmN)] for ‘IB = z ’
]A A*—>na N f 2|ﬁc.m.|3
r = (=)
s(m) 2Jp +1 (m” 3nrmp
N P 3i
x [0, + Pmy] for J§ = 3 (32)
where |Pem.| = [im3 — (my + mz)*Hm3 — (my
—m "2 /2mp) and @, = (|Pem|* +m})"%. The

isospin factors are Iy+«—,y =3 and Ia a+—r,y = 1 for the
Nm decay channels of N* and A* (or A), respectively.

Now, I'y in Eq. (28) can be convoluted (see, e.g.,
Refs. [48,49]) as

mp+2Tp(mp)
Iy(mp) = —f dMpAp(Mp)I'n(Mp),
Ng Jiny—2rymp)
mp+2Tp(mp)
Np = / Ap(Msp), (33)
mp—2Tg(mp)
where

1 1
Ag(Mp) = ;Im|: } (34)

Mp —mp +il'p(Mp)/2

TABLE 1. From the left to right columns, the table contain the
baryons, their spin-parity quantum numbers J/, isospin I, total
decay width 'y, decay width in Nz channels I'g_, y, or 'gp(mp)
in Eq. (32) (brackets displaying its branching ratio), and, finally, the
coupling constants f/m,.

Baryons JE I ot Cs_.nz B.R) f/my
A(1232) 332 0017 0.117(100%) 15.7
N*(1440) %Jr 1/2 0.300 0.195 (65%) 2.5
N*(1520) %_ 1/2 0.115 0.069 (60%) 11.6
N*(1535) %7 1/2 0.150 0.068 (45%) 1.14
A*(1600) %+ 3/2 0.320 0.054 (17%) 3.4
A%(1620) 1732 0140 0.035(25%) 1.22
N*(1650) %_ 1/2 0.150 0.105 (70%) 1.14
A*(1700) 37 3/2 0300 0.045(15%) 95
N*(1700) %7 1/2 0.100 0.012 (12%) 2.8
N*(1710) %Jr 1/2 0.100 0.012 (12%) 0.35
N*(1720) %Jr 1/2 0.250 0.028 (11%) 1.18

PHYSICAL REVIEW C 90, 025202 (2014)

is the vacuum spectral function of baryons for their vacuum
decay width in the N channel. Replacing the baryon mass
mpg by its invariant mass Mg in Eq. (32), one can get the
off-mass shell expression of I" g (M). The values of the coupling
constants f/m,, which are fixed from the experimental values
of the baryon decay width in Nz channels [50], are shown in
Table I.

IV. RESULTS AND DISCUSSION

Let us first take a glance at the invariant mass distribution
of the imaginary part of the nucleon self-energy for different
B loops. Figure 2 shows the results for baryons B =
N (940), A(1232) (upper panel) and B = A*(1620), N*(1650),
N*(1720) (lower panel), whereas Fig. 3 displays the results for
baryons B = N*(1440), N*(1520), A*(1600) (upper panel)
and B = N*(1535), A*(1700) (lower panel). The numerical
strengths for B = N*(1700) and N*(1710) are too low to
display with the other baryons. These results are obtained
by replacing o) = (k* +m3)? by w = k> + M*)V? in
Egs. (28) (dashed line) and (33) (solid line) for the fixed values
ofk =0,uy =0,and T = 0.150 GeV. From the sharp ending
of the dashed line, the Landau regions for different loops are
clearly visible. As an example for the 7 N loop for the Landau
region is M = 0 to my — my, i.e., 0 to 0.8 GeV. Due to the
folding of the baryon spectral functions, these sharp endings
are smeared towards highf:r values of M. Since LX(M) also
depends on T, uy, and k, the total contribution of SR
from all loops has been shown in Fig. 4 for different sets of T,
un,and k.

The nucleon thermal width I'y is basically the contribution
of ImnX® at M = my, which is marked by dotted line. Being an
on-shell quantity, I'y is associated with the thermodynamical
probability of different on-shell scattering processes instead

0.1 — T T . J T T T 1
-0.08
-0.06

L

)
=)
=3
X
T

o

=

]
I
~

.E AN .
INA(1650, 5~

T=150 MeV
“Nzo : \
k=0 : \

S
(=3
(=3
(=]
N

T

A*(162Q)

S
(=3
(=3
(=3
2
T

*(1720) ll

0 R PR R AR R B
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M (GeV)

FIG. 2. Imaginary part of nucleon self-energy for different
B loops are individually shown before (dashed line) and after
(solid line) folding by corresponding baryon spectral functions.
B = N(940), A(1232) are in upper panel whereas B = A*(1620),
N*(1650), N*(1720) are in lower panel for fixed values of three-
momentum of N (l; = 0), temperature (7" = 0), and baryon chemical
potential (uy = 0).

025202-5



SABYASACHI GHOSH

-0.0008 T=150 MeV
=0
-0.0006F M
-0.0004
-0.0002
0- M I B : L . .
0 02 04 06 08 1 12 14 16

M (GeV)

FIG. 3. Same as Fig. 2 for the rest of the baryons B = N*(1440),
N*(1520), A*(1600) (upper panel) and B = N*(1535), A*(1700)
(lower panel).

of off-shell scattering processes as described by Weldon for
the imaginary part of the self-energy in Ref. [51]. Following
Weldon’s prescription, forward and inverse scattering of
nucleons can be respectively described as follows: During
propagation of N, it can disappear by absorbing a thermalized
7 from the medium to create a thermalized B. Again N can
appear by absorbing a thermalized B from the medium as
well as by emitting a thermalized 7. The n;(1 —n)) and
n (1 4+ n;) are the corresponding statistical probabilities of
the forward and inverse scattering, respectively [51], because
just by adding them, we get the thermal-distribution part of
Eq. (28), i.e., (n; + n}}).

From Eq. (28) or (33), we see that 'y depends on the
temperature 7', the baryon chemical potential wy, and the
three-momentum & of the nucleon. The upper panels of Figs. 5
and 6 are, respectively, displaying the variation of I'y with T
for different sets of (k un) and of I'y with py for different set
of (k T). The mean-free path can be defined as A N(k T, uy) =

20.02f- =~ (HN k)=(0, 0.3) GeV o
— — (1, K=(0.7, 0.3) GeV g T=0.1 GeV
J— (uN K)=(0, 0.5) GeV /’/ :
ceen (M K=(0.7,05) GeV | 4 .
-0.01 — 7
S e ’
[0 et _ Z /.
g /’// ‘/'
[’é 0 — =T | |
= — — (T, k)=0.1,03) GeV I
] (T, K)=(0.1,0.5) GeV SN 11,=0.2 GeV
0.06] = @0©15,03) Gev R4 ;"\
- «evs (T, k)=(0.15, 0.5) GeV ’/' :
0.04} a
002F et
00

FIG. 4. Imaginary part of total self-energy for different sets
of nucleon momentum (k), temperature (7°), and baryon chemical
potential (py).
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FIG. 5. The variation of nucleon thermal width I'y (upper
panel) and its corresponding mean-free path Ay (lower panel)
with T.

ié/ [cu,’{V FN(lz,T, un)] and its corresponding variation with T
and ppy are respectively shown in the lower panels of Figs. 5
and 6. The range of T and wy, in which Ay is smaller than the
dimension of the medium (~10-40 fm, a typical dimension
of strongly interacting matter, produced in the laboratories of
HIC), plays the main role of dissipation via scattering in the
medium because the larger A is associated with the scenario
after freeze-out of the medium. From the dashed line of Fig. 5
we see that 7 > 0.120 GeV (but up to 7, ~ 0.175 GeV) is
the relevant region for baryon-free nuclear matter (uy = 0).
Whereas for finite baryon chemical potential (e.g., solid line
of Fig. 5 at uy = 0.7 GeV), this relevant T region will be
shifted slightly toward lower temperature (in addition, 7, is
also expected to decrease with increase of wy). Since high
momentum (12) of constituent particles always helps them to
freeze-out from the medium, the relevant T region for nucleon
with high k is reduced by shifting towards the high T region.

| [ (T.K=0.15,03) GeV o
0121 | _ _ (T, K=(0.15, 0.5) GeV .
S I P e Ll
QO e . UURRTITEL
[
0.04} ==
1 1 N 1 1
60|
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< T T T T T T T T e e ] o~
Qo T
0 I | | | |
0 0.2 0.4 0.6 0.8
by (GeV)

FIG. 6. The variation of nucleon thermal width I'y (upper panel)
and its corresponding mean-free path Ay (lower panel) as a function
of baryon chemical potential 1ty .
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FIG. 7. (Color online) The T dependence of ny (upper panel), sy
(middle panel), and ny /sy (lower panel) of the nucleonic component.
The straight red line denotes the KSS bound.

This can be understood by comparing the solid and dotted lines
in the lower panel of Fig. 5.

Using the numerical function FN(%,T,MN) in Eq. (23),
we get ny as a function of T and py, which is shown
in the upper panels of Figs. 7 and 8. Here we see ny is
monotonically increasing with both 7 and uy. By using the
simple equilibrium expression of entropy density (sy) for
nucleons,

d3k k2
sy = 4ﬁ/ i (a),iv + oy MN>nk+(a),f’), (35)

27)3 3

the ratio ny /sy has been generated as a function of 7 and
un. From the lower panels of Figs. 7 and 8, we see that
nn /sy can be reduced by increasing T as well as by decreasing
MUN-

In the left and right panels of Fig. 9, the contributions of
different loops (dominating loops only) are individually shown
in ny vs T and ny vs uy graphs, respectively. The w A loop

KSS bound
Il 1 Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 8. (Color online) The variation of ny (upper panel), sy
(middle panel), and ny /sy (lower panel) of the nucleonic component
with wy.
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FIG. 9. The contributions of different 7 B loops in ny(T) (left
panel) and ny(uy) (right panel).

plays aleading role to generate the typical values (0.0001-0.01
GeV?) of ny for strongly interacting matter because the major
part of the nucleon thermal width is coming from this loop
only.

Up to now, we calculated the contribution of shear viscosity
from the nucleon thermal width, although a major contribution
comes from the thermal width of pions. Hence, one should
add the pionic contribution to the nucleon contribution to get
total shear viscosity of nuclear matter at finite temperature and
density. In our recent work [52], the shear viscosity, coming
from the pionic thermal width, has already been addressed.
The one-loop Kubo expression of shear viscosity and the
ideal expression of entropy density for pionic components are
respectively given below:

31 16
s [ e o)) o)

- 1072 Fﬂwk

N

&Pk (. R .
Sy = 3,9[ W(w" + ﬁ>nk(a)k), 37)

where ni(w]) = 1/{ef — 1} is the Bose-Einstein distribu-
tion function for pions with wf = (122 + mi)l/ 2 and ', is the
thermal width of 7 mesons in the medium due to 7o and 7p
fluctuations.

Now, adding that pion contribution with the nucleon, one
can simply get the total shear viscosity of nuclear matter
as

Mot = Nz + 1N, (38)

where 71, and ny do not face any mixing effects of
pion density, p, =3 f %nk(a)}f) and nucleon density,

oy =4/ %n,‘f(w,ﬂv). However, the viscosity of a single-
component gas should be different from the viscosity of that
component in a mixed gas [24,53]. To incorporate this mixing
effect for a rough estimation, we follow the approximated

relation [24,53]

et = 4 g, (39)
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FIG. 10. The T dependence of shear viscosity for pionic (dotted
line) and nucleonic (dashed line) components and their total at uy =
0 (solid line) and py = 0.3 GeV (dash-dotted line). The upper and
lower panels contain the results without and with the mixing effect,
obtained from Eqgs. (38) and (39), respectively.

where
P = L : (40)
D (Br) () gl
pix — v . (1)

L () ()Y e

For simplicity, the cross sections of all kinds of scattering
are taken as constant with the same order of magnitude (i.e.,
Opx & 0xN = oyy). In the upper panels of Figs. 10 and 11, the
T and p dependence of 1, (dotted line), ny (dashed line), and
their total 7 (solid line and dash-dotted line for two different
values of uy and T) are separately shown. Whereas the lower
panels of the figures show their corresponding mixing effect
following from Egs. (40), (41), and (39). From Fig. 11, one
should notice that the independent nature of 7, (uy) has been

0.002 T T T
« 1 (T=0.12 GeV)
0.0015
_ — — N (T=0.12 GeV)
i n+N (T=0.12 GeV)
:f‘i 0.001 + =+ 1N (T=0.15 GeV)
=

0.0005frrrrrT"T""" s s st Wit a ittt

0.0015

0.001

mix (GBV})

=
0.0005

FIG. 11. Corresponding results of Fig. 10 against the py axis
with two different temperatures.
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FIG. 12. (Color online) The entropy density (upper panel), vis-
cosity to entropy density ratio without (middle panel) and with (lower
panel) the mixing effect as functions of 7'.

changed to a decreasing function due to the mixing effect. A
similar qualitative trend was seen in Ref. [24].

The entropy density of the nucleon component from
Eq. (35), the pion component from Eq. (37), and their total
Stot = Sy + 8, are individually shown in the upper panels
of Figs. 12 and 13 as functions of 7 and py, respectively.
The corresponding n/s without (middle panel) and with
(lower panel) the mixing effect are shown in Figs. 12 and
13 as a function of 7' and py, respectively. The decreasing
nature of the total 7/s(T) qualitatively remains the same
after incorporating the mixing effect, whereas an increasing
function of the total n/s(uy) transforms to a decreasing
function due to this mixing effect. Comparing our results with
the results of Itakura et al. [24], where n/s(u ) also decreases
with wy, the mixing effect appears to be very important.
However, the total n/s(uy) in the mixing scenario becomes
an increasing function beyond uy =~ 0.5 GeV because the
increasing rate of nW*(uy) dominates over the decreasing

-+ 7 (T=0.12 GeV) o

0015 — — N (T=0.12 GeV) e
4N (T=0.12 GeV) 7

. — . m+N (T=0.15 GeV) e

(=]
i
}

FIG. 13. (Color online) The corresponding results of Fig. 12 are
shown with respect to iy .
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rate of n?i"(mv) in that region. Using the effective hadronic
Lagrangian, the conclusion of our results should be concen-
trated within the regions of 0.100 GeV < T < 0.160 GeV and
0 < uy < 0.500 GeV.

V. SUMMARY AND CONCLUSION

Owing to the Kubo relation, the shear viscosity can be
expressed in terms of a two-point function of the viscous
stress tensors at finite temperature. By using the real-time
thermal field theoretical method, this two-point function has
been represented as an NN loop diagram when the nucleons
are considered as constituent particles of the medium. A
finite nucleon thermal width I'y was traditionally included
in the nucleon propagators of the NN loop for getting a
nondivergent shear viscosity 7. This nucleon thermal width
is obtained from the one-loop self-energy of nucleons at finite
temperature and density. Different possible pion-baryon loops
are considered to calculate the totaj 'y, which depends on
the three-momentum of nucleons (k) as well as the medium
parameters T and py. By using the numerical function
Iy, T,un), ny and ny/sy are numerically generated as
functions of 7" and py. Adding the pionic contribution taken
from Ref. [52] with the numerical values of the nucleonic
component, we obtained the total shear viscosity, where a gross

PHYSICAL REVIEW C 90, 025202 (2014)

mixing effect of a two-component system was implemented.
Along the temperature axis, the shear viscosity of both pion
and nucleon components appear as an increasing function,
whereas along the py axis the shear viscosity of the pion
component changes from its constant behavior to a decreasing
function due to the presence of the mixing effect. The total
shear viscosity to entropy density ratio (nMiX/s,) for the
pion-nucleon mixed gas reduces with increasing 7' as well
as uy and quantitatively becomes very close to the KSS
bound. This behavior indicates that n{‘(}ti" /Stor tends to reach its
minimum value near the transition temperature at vanishing
as well as finite values of py. According to these results, the
finite baryon chemical potential helps the nuclear matter to
come closer to its (nearly) perfect fluid nature.
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