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We match three hadronic equations of state at low energy densities to a perturbatively computed equation of
state of quarks and gluons at high energy densities. One of them includes all known hadrons treated as point
particles, which approximates attractive interactions among hadrons. The other two include, in addition, repulsive
interactions in the form of excluded volumes occupied by the hadrons. A switching function is employed to make
the crossover transition from one phase to another without introducing a thermodynamic phase transition. A
χ 2 fit to accurate lattice calculations with temperature 100 < T < 1000 MeV determines the parameters. These
parameters quantify the behavior of the QCD running gauge coupling and the hard core radius of protons and
neutrons, which turns out to be 0.62 ± 0.04 fm. The most physically reasonable models include the excluded-
volume effect. Not only do they include the effects of attractive and repulsive interactions among hadrons, but
they also achieve better agreement with lattice QCD calculations of the equation of state. The equations of state
constructed in this paper do not result in a phase transition, at least not for the temperatures and baryon chemical
potentials investigated. It remains to be seen how well these equations of state will represent experimental data
on high-energy heavy-ion collisions when implemented in hydrodynamic simulations.
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I. INTRODUCTION

The equation of state of Quantum Chromodynamics (QCD)
at finite temperature is studied theoretically in a variety of
ways. Starting from low temperatures, one has a dilute gas
of pions and nucleons. With increasing temperature, hadron
resonances are created and contribute to the equation of state.
If the spectrum of resonances increases exponentially with
mass then one reaches a Hagedorn limiting temperature which
experiments and models suggest is about 160 MeV. This
conclusion is based on the treatment of hadrons as point
particles, which they are not. Starting from extremely high
temperatures one can use perturbation theory to calculate the
equation of state because QCD has the property of asymptotic
freedom whereby the effective gauge coupling decreases
logarithmically with temperature. As the temperature is low-
ered the coupling eventually becomes large and perturbation
theory is no longer useful. The only reliable approach for all
temperatures is to do numerical calculations with lattice QCD.

The goal of this paper is to find a means for switching
from a hadron-resonance gas at low temperature, preferably
treating the hadrons not as point particles but as extended
objects, to a plasma of weakly interacting quarks and gluons
at high temperature. We will construct a switching function
that does just that. The parameters will be adjusted to fit the
lattice equation of state at zero chemical potentials. Then the
model can make parameter-free predictions for both finite
temperature and chemical potentials. Lattice calculations at
finite chemical potentials face well-known problems, but
comparison to one of them at a baryon chemical potential
of 400 MeV is quite good. The equation of state constructed
in this paper can be used in hydrodynamical models of
high-energy heavy-ion collisions. It has the advantage that,
at the moment of freeze-out from fluid behavior to individual
hadrons, one will know the chemical abundance of all the

hadrons which then can either be compared to experimentally
observed abundances or used as the initial condition for a
cascade afterburner.

The outline of this paper is as follows: In Sec. II we compare
the hadron resonance model of point particles and the most
recent calculations of perturbative QCD to the lattice equation
of state to illustrate the problem we are addressing. In Sec. III
we review and extend two versions of the excluded-volume
model which take into account the extended spatial size of
hadrons. In Sec. IV we construct a switching function and
adjust its parameters and the other parameters in the model by
doing a χ2 fit to both the pressure and the trace anomaly
(sometimes called the interaction measure). The resulting
parameters provide physical information, such as the size
of hadrons and one optimum way to choose the scale of
the running gauge coupling as a function of temperature
and baryon chemical potential. In Sec. V we compare with
lattice results at a baryon chemical potential of 400 MeV. Our
conclusions are contained in Sec. VI.

II. HADRON RESONANCE GAS AND PERTURBATIVE
QCD

The equation of state of the hadronic phase is usually
assumed to be a hadron resonance gas where all observed,
and sometimes extrapolated, hadrons are included as free
noninteracting point particles. According to the arguments by
Dashen, Ma, and Bernstein [1], this is a reasonable way to
include attractive interactions. (Repulsive interactions will be
addressed in the next section.) Each hadronic species labeled
by α contributes to the pressure as

Pα = (2sα + 1)
∫

d3p

(2π )3

p2

3Eα

1

eβ[Eα (p)−μα ] ± 1
. (1)
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The sign is chosen according to whether the hadron is a boson
or a fermion. The inverse temperature is denoted by β and μα

is the chemical potential. Formulas for the energy density,
entropy density, and for the conserved quantum numbers
are standard. Following a well-trodden path, we include all
hadrons appearing in the most recent Particle Data Group
compilation. For completeness, and for use by others, we
provide a table in Appendix A.

The equation of state of the quark-gluon plasma is calcu-
lated by using perturbation theory in the gauge coupling. Many
papers have contributed to this endeavor since the first papers
in the late 1970s. Here we use the latest results which include
terms up to order α3

s ln αs . The formula for the pressure is given
in Appendix B. We assume three flavors of massless quarks.
There are two issues with obtaining accurate numerical results.
First, it was observed early on that the series in αs is oscillatory,
so that, at nonasymptotic temperatures, the results depend to
some degree on where the series is terminated. Second, one
has some freedom in choosing the renormalization scale M for
αs . In Ref. [2] it was suggested to choose M2 roughly equal
to the average three-momentum of the quarks and gluons.
For massless particles with quark chemical potential μq =
μ/3 = 0, one finds M ≈ 3T , the exact coefficient depending
on whether they are bosons or fermions. For massless particles
with T = 0, one finds M ≈ μq . Another commonly used
argument for the choice of scale is that M = πT since that
is the smallest Matsubara frequency. We shall choose

M = CM

√
(πT )2 + μ2

q (2)

and adjust the coefficient CM to best represent the lattice
results. What is important here is the relative proportion of T
and μq , which is chosen on the basis of the above arguments.
The quantity labeled by t which enters into the solution of
the three-loop beta function for the running coupling would
usually be taken to be t = ln(M2/�2

MS
). This results in a

divergence of the running αs at small but finite values of the
temperature and chemical potential; the famous Landau pole.
In reality one would expect αs to remain finite even at zero
energy scale, although its value is most likely gauge dependent.
To address this problem we choose

t = ln
(
C2

S + M2/�2
MS

)
, (3)

where CS is a constant used to eliminate the Landau pole;
along with CM it will be adjusted to represent best the lattice
results. The introduction of this constant does not change
the behavior of the perturbative expansion at asymptotically
high temperatures because the applicability of perturbation
theory is predicated on the assumption that M � �MS . The
elimination of the Landau pole is crucial to obtaining a smooth
crossover from one phase to the other, as we will see later. An
alternative would be to take the running coupling from lattice
QCD calculations, but we do not pursue that here.

The lattice results at zero chemical potential to which we
compare were reported in Ref. [3]. They included 2 + 1 flavors
of quarks (strange quark is heavier than up and down quarks).
The temperature range sampled was from 100 to 1000 MeV,
extending even beyond the highest temperatures expected at
CERN’s Large Hadron Collider (LHC). Figure 1 shows the
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FIG. 1. (Color online) Pressure normalized by T 4. The dotted
curve represents the parameter-free, point-particle hadron-resonance
gas. The solid curve represents perturbative QCD with two parameters
adjusted to fit the lattice result taken from Ref. [3].

pressure divided by T 4. The hadron-resonance gas represents
the lattice results very well up to about T = 200 MeV
and then greatly exceeds them. If we had included a full
exponential spectrum of hadronic states, with level density
proportional to exp(m/TH ) where TH = 160 MeV is the
Hagedorn temperature, the pressure would either end at a
finite value or diverge at TH , depending on the pre-exponential
factor. This does not happen here because we include a very
large but still finite number of hadronic states. The perturbative
QCD result represents the lattice result very well down to a
temperature of about 200 MeV. It appears from this figure that
doing a little matching between the two limiting forms of the
pressure in the vicinity of 200 MeV would achieve our goal.

Figure 2 shows the trace anomaly, sometimes also called the
interaction measure, of (ε − 3P )/T 4. The hadron resonance
gas represents the lattice result very well up to a temperature
of about 150 MeV and then greatly exceeds it. This is due to an
increasing number of massive hadronic states with increasing
temperature, massively diverging from a free massless gas
which has ε = 3P . The perturbative QCD result represents
the lattice result very well down to a temperature of about
220 MeV. It also massively deviates at lower temperature

200 400 600 800 1000
T (MeV)

0

1

2

3

4

5

(ε
−

3P
)/

T
4

pt

pQCD

lat

μ = 0 MeV

FIG. 2. (Color online) Trace anomaly normalized by T 4. The
dotted curve represents the parameter-free, point-particle hadron-
resonance gas. The solid curve represents perturbative QCD with
two parameters adjusted to fit the lattice result taken from Ref. [3].
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because the renormalization group running coupling is becom-
ing large, reflecting the intrinsic QCD scale �MS . Between
these two limiting contributions there is a cusp around 190
MeV.

The perturbative QCD parameters were chosen by doing
a χ2 combined fit to the pressure and the trace anomaly for
T > 200 MeV. For definiteness we fixed �MS = 290 MeV,
but it should be noted that the choice is irrelevant since the
value of CM can be adjusted accordingly. The result of the
fit is CM = 3.293 and CS = 1.509 with a χ2 per degree of
freedom of 1.397. This value of CM is in the range usually
considered; namely, 1 � CM � 4 [4,5].

It would appear from these results that one could just
terminate the hadron-resonance gas contribution somewhat
below 200 MeV and the perturbative QCD contribution
somewhat above, and find an interpolating function to fill
in the middle. The problem is that eventually one will find
that some nth-order derivative of P with respect to T will
become discontinuous at each of the matching points, leading
to a phase transition of order n. This is unacceptable. We
tried various matching functions, arguing that if n is large
enough it would have no practical effects for use in modeling
heavy-ion collisions, but we did not succeed. In addition, one
would have to do this interpolation as a function of μ, and
the equation of state for arbitrary T and μ is not known from
lattice calculations.

III. EXCLUDED VOLUME MODELS

Hadrons are not point particles, and repulsive interactions
can be implemented via an excluded-volume approximation
whereby the volume available for the hadrons to move in
is reduced by the volume they occupy, as first suggested
in Refs. [6–8]. There are at least two thermodynamically
self-consistent versions of this model. Here we extend one of
these models, referred to as model I [9], which was originally
formulated at finite temperature, to include finite chemical
potentials. Then we compare and contrast it to what we refer
to as model II [10], which appeared a decade later. Model II
has been compared to experimental data a number of times,
such as in Refs [11,12]. Our arguments are phrased in terms
of classical statistics, or Boltzmann distributions, for clarity
of presentation. However, this is not a limitation, and the
extension to quantum statistics is deferred to later.

A. Model I

In the independent-particle approximation the partition
function for a hadron of species α is V zα where V is the
total volume of the system and

zα = (2sα + 1)
∫

d3p

(2π )3
e−β[Eα (p)−μα ]. (4)

In the canonical ensemble the total number of particles is fixed,
whereas in the grand canonical ensemble only the average is
fixed. Let n denote the total number of species. The partition
function in the grand canonical ensemble in the point-particle

approximation is

Zpt =
∞∑

N=0

∞∑
N1=0

· · ·
∞∑

Nn=0

δN1+···+Nn,N

(V z1)N1

N1!
· · · (V zn)Nn

Nn!
,

(5)

where N is the total number of particles irrespective of
species. The excluded-volume approximation being applied
here reduces the total volume V by the amount occupied by
the N hadrons:

Vex = 1

ε0

⎡
⎣ N1∑

j=1

E1(pj ) + · · · +
Nn∑
j=1

En(pj )

⎤
⎦ . (6)

The assumption is that the volume excluded by a hadron is
proportional to its energy with the constant of proportionality
ε0 (dimensions of energy per unit volume) being the same for
all species. It is also assumed that hadrons are deformable so
that there is no limitation by a packing factor as there would
be for rigid spheres, for example. This is model I.

In the pressure ensemble [6,7] the partition function is the
Laplace transform of the grand canonical partition function in
volume space:

Z̃(T ,μ,ξ ) =
∫

dV Z(T ,μ,V )e−ξV . (7)

In the present context the relevant integral is∫ ∞

Vex

dV (V − Vex)Ne−ξV = N !

ξN+1
e−ξVex . (8)

Then

Z̃ex(T ,μ,ξ ) = 1

ξ

∞∑
N=0

∞∑
N1=0

· · ·
∞∑

Nn=0

δN1+···+Nn,N

N !

N1! · · · Nn!

×
(

z̃1

ξ

)N1

· · ·
(

z̃n

ξ

)Nn

, (9)

where

z̃α = (2sα + 1)
∫

d3p

(2π )3
e−(β+ξ/ε0)Eα (p)eβμα . (10)

The factor

N !

N1! · · ·Nn!

is just the number of ways to choose N1 particles of type 1, N2

particles of type 2, etc. out of a total of N = N1 + · · · + Nn

particles. Hence

Z̃ex(T ,μ,ξ ) = 1

ξ

∞∑
N=0

(
z̃1

ξ
+ · · · + z̃n

ξ

)N

=
(

ξ −
n∑

α=1

z̃α

)−1

. (11)

In the pressure ensemble the pole ξp furthest to the right
along the real axis determines the pressure as ξp = βPex(β,μ).
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Note that
n∑

α=1

z̃α = β∗Ppt(β∗,μ∗), (12)

where Ppt is the point-particle pressure with effective inverse
temperature β∗ = β + ξp/ε0 and baryon chemical potential
μ∗ = βμ/β∗. (The generalization to more-than-one conserved
charge is obvious.) This implies that the pressure in the
excluded-volume approximation is expressed in terms of the
point-particle pressure as

Pex(T ,μ) = Ppt(T∗,μ∗)

1 − Ppt(T∗,μ∗)/ε0
, (13)

with the real temperature and chemical potential expressed in
terms of the effective ones by

T = T∗
1 − Ppt(T∗,μ∗)/ε0

, (14)

μ = μ∗
1 − Ppt(T∗,μ∗)/ε0

. (15)

Straightforward but tedious thermodynamic relations lead to

sex(T ,μ) = spt(T∗,μ∗)

1 + εpt(T∗,μ∗)/ε0
, (16)

nex(T ,μ) = npt(T∗,μ∗)

1 + εpt(T∗,μ∗)/ε0
, (17)

εex(T ,μ) = −Pex(T ,μ) + T sex(T ,μ) + μnex(T ,μ)

= εpt(T∗,μ∗)

1 + εpt(T∗,μ∗)/ε0
. (18)

Note that in this model there is a natural limiting energy
density of ε0. The model is solved by picking specific values
for T∗ and μ∗, calculating the point-particle properties with
these values, and using them to calculate the true T and
μ and thermodynamic properties in the excluded-volume
approximation. The chemical potential for each species has
the same multiplicative factor.

It is rather tedious to present the derivation with quantum
statistics. The result is simply to calculate the point-particle
quantities with the inclusion of Bose or Fermi statistics. The
fundamental thermodynamic relations may easily be checked.

It is instructive to take the nonrelativistic limit with one
species of particle with mass m and with classical statistics.
Using Ppt = nptT∗, εpt = (m + 3

2T∗)npt, and assuming T � m
and nexT � ε0, one finds the standard van der Waals equation
of state Pex(1 − v0nex) = nexT where v0 = m/ε0.

B. Model II

Now let us consider a different version of the excluded-
volume approximation where a hadron species α has volume
vα . This is referred to as model II. Following the same
procedure as for model I we find

z̃α = (2sα + 1)
∫

d3p

(2π )3
e−βEα (p)eβ(μα−vαT ξ ). (19)

Thus the chemical potential for species α is shifted by the
amount

μα → μ̄α = μα − vαT ξp = μα − vαPex(T ,μ). (20)

Thus the pressure must be calculated self-consistently from
the equation

Pex(T ,μ) =
n∑

α=1

P pt
α (T ,μ̄α), (21)

where P α
pt(T ,μ̄α) is the point-particle pressure for species α

with effective chemical potential μ̄α . Then the application
of standard thermodynamic identities yields the following
expressions:

nex(T ,μ) =
∑

α bαn
pt
α (T ,μ̄α)

1 + ∑
α vαn

pt
α (T ,μ̄α)

, (22)

sex(T ,μ) =
∑

α s
pt
α (T ,μ̄α)

1 + ∑
α vαn

pt
α (T ,μ̄α)

, (23)

εex(T ,μ) = −Pex(T ,μ) + T sex(T ,μ) + μnex(T ,μ)

=
∑

α ε
pt
α (T ,μ̄α)

1 + ∑
α vαn

pt
α (T ,μ̄α)

. (24)

One must pay attention to the notation used above: n
pt
α (T ,μ̄α)

is the number density of particles of species α treated as
noninteracting point particles, whereas the baryon density for
point particles is

∑
α bαn

pt
α (T ,μα), with bα being the baryon

number of species α. In this version of the excluded-volume
model one first calculates the thermodynamic properties with
the true T and μ using the point-particle expressions. Then one
solves for the pressure self-consistently and uses it to renor-
malize the thermodynamic properties. Note that the chemical
potential for each species has the same shift, they are additively
modified, not multiplicatively renormalized as in model I.
For example, the effective chemical potential for nucleons is
μ − vNPex(T ,μ), for antinucleons it is −μ − vNPex(T ,μ), and
for pions of any charge it is −vπPex(T ,μ) (always negative).
Here we choose vα to be proportional to the mass; namely,
vα = mα/ε0 where ε0 is a constant. Then the model should
give results very similar to the other excluded-volume model
where it is proportional to the single-particle energy.

A derivation which includes quantum statistics is straight-
forward. The obvious result is that one just calculates the
point-particle properties with the Bose–Einstein or Fermi–
Dirac distributions instead of the Boltzmann distribution.

IV. SWITCHING FROM HADRONS TO QUARKS
AND GLUONS

In this section we study the problem of a smooth switching
from a purely hadronic equation of state at low temperatures to
a purely quark-gluon equation of state at high temperatures. We
will introduce a switching function to accomplish this. We will
also deduce best-fit values for ε0 in the two excluded-volume
models, which is a physically interesting result in its own right.

The idea of a switching function has been used in atomic
and molecular systems for a long time, usually with little
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FIG. 3. (Color online) Pressure of crossover models using those
parameters from Table I that minimize χ 2 per degree of freedom.
Lattice data is from Ref. [3].

success. For example, it was found in Ref. [13], in the context
of the properties of steam, that it is generally impossible to
interpolate monotonically all thermodynamic functions over
a range where a system has a transition from one phase to
another. While it may be straightforward to make a switching
function from a free energy f1(T ) to f2(T ), either its first
or second derivative will deviate greatly from any kind of
weighted average of the derivatives of f1 and f2 alone.
Sometimes this is physical: in a first-order phase transition,
the first derivative of the free energy ∂f/∂T is discontinuous
at the transition temperature, corresponding to a discontinuous
change in heat capacity as well as a latent heat for the phase
transition. However, lattice QCD calculations show no such
discontinuities, at least for zero chemical potential, and the
switching has to be done with great care.

We begin by constructing a pressure P which includes
a hadronic piece Ph, a perturbative QCD piece Pqg , and a
switching function S:

P (T ,μ) = S(T ,μ)Pqg(T ,μ) + [1 − S(T ,μ)]Ph(T ,μ). (25)

Here Ph may be computed with any of the three hadronic
models (pt, exI, exII). The switching function must approach
zero at low temperatures and chemical potentials and approach
one at high temperatures and chemical potentials. The switch-
ing function must also be very smooth to avoid introducing
first-, second-, or higher-order phase transitions. We choose
the following functional form:

S(T ,μ) = exp{−θ (T ,μ)},

θ (T ,μ) =
[(

T

T0

)r

+
(

μ

μ0

)r]−1

, (26)

with integer r . This function is infinitely differentiable and
goes to zero faster than any power of T as T → 0 (when
μ = 0). It has three parameters. However, we will choose
μ0 = 3πT0. There are two reasons for this choice. First, it is
consistent with Eq. (2). Second, the crossover region at μ = 0
occurs around T = 170 MeV, whereas the crossover or phase
transition is estimated to occur around μ = 1.25 GeV when
T = 0; see Ref. [14].

The other thermodynamic variables must be calculated
from the pressure:
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FIG. 4. (Color online) Trace anomaly of crossover models using
those parameters from Table I that minimize χ 2 per degree of freedom.
Lattice data is from Ref. [3].

s = Ssqg + (1 − S)sh + rθ2

T

(
T

T0

)r

(Pqg − Ph)S, (27)

n = Snqg + (1 − S) nh + rθ2

μ

(
μ

μ0

)r

(Pqg − Ph)S, (28)

ε = −P + T s + μn. (29)

We now have two parameters in the switching function, two
parameters in the perturbative QCD equation of state, and one
parameter in the excluded-volume equation of state (ε0 is not
necessarily the same for both models).

We now do a search on the parameters in each of the three
models to obtain the best overall χ2 fit to both the pressure and
the trace anomaly. Quantum statistics are used for the hadronic
piece of the equation of state. The results of the fit are shown
in Figs. 3 and 4. The switching function is shown in Fig. 5,
and the best-fit parameters are shown in Table I.

Some points to remark on follow:

(a) There is essentially no noticeable difference between
the model I and model II curves. The only physical
difference between these models is whether the volume
excluded by a hadron is proportional to its total energy
or to its mass. At low temperatures, the particle-number
density is so low that the excluded volumes do not

200 400 600 800 1000
T (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

S
w

it
ch

in
g

F
u
n
ct

io
n

pt

exI

exII

μ = 0 MeV

FIG. 5. (Color online) Switching function.
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FIG. 6. (Color online) Pressure of crossover models. Lattice data
is from Ref. [15].

matter, and both model I and II reduce to the point-
particle model.

(b) In excluded-volume model I, ε0 is the limiting energy
density as T becomes large while the pressure increases
linearly with T . In model II, both the energy density
and the pressure grow slightly faster than T . Hence
Ph/T 4 ∼ 1/T 3 at high temperature. When multiplied
by 1 − S the hadrons contribute much less than the
quarks and gluons, which behave approximately as
Pqg/T 4 ∼ constant.

(c) The best fit for model I is obtained with ε0 =
1.149 GeV/fm3 and for model II it is ε0 =
797 MeV/fm3. These can be used to infer the hard
core radius of the proton or neutron to be 0.580 fm
for model I and 0.655 fm for model II; very sensible
numbers.

(d) For the point-hadron gas model the best fit is obtained
with r = 4 while the second-best fit is obtained with
r = 5. For the excluded-volume models it is just the
opposite. However, the difference in the χ2 between
those two values of r is very small.

(e) The value of T0 for the point-hadron gas is about
30 MeV smaller than for the excluded-volume models.
Thus the switching from hadrons to quarks and gluons
occurs at a lower temperature. The reason is that Ph for
the point-hadron model grows much faster with T than
for the excluded-volume models; see Fig. 1 and point
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FIG. 7. (Color online) Trace anomaly of crossover models. Lat-
tice data is from Ref. [15].
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FIG. 8. (Color online) Pressure of crossover models.

(b). This fast growth must be cut off by the switching
function. An unnatural consequence is that there is a
minor dip in the trace anomaly near a temperature of
115 MeV.

V. NONZERO CHEMICAL POTENTIAL

The equation of the state can be computed for nonzero
baryon chemical potential. Comparisons are made with lattice
results for μ = 400 MeV in Figs. 6 and 7. Again the two
excluded-volume models agree very well with the lattice
results. The model with point hadrons does not agree as well.
It should be emphasized that there are no free parameters in
making these comparisons. All parameters were fixed already.

In Figs. 8 and 9 we show our results for the larger value μ =
600 MeV. The difference between the two excluded-volume
models continues to be insignificant, but now there are large—
factor of two—differences between them and the point-hadron
model in the vicinity of T = 150 MeV.

VI. CONCLUSION

In this paper we matched three semirealistic hadronic
equations of state at low energy densities to a perturbatively
computed equation of state of quarks and gluons at high energy
densities. All three hadronic equations of state include all
known hadronic resonances, which approximates attractive
interactions among hadrons. The other two include, in ad-
dition, repulsive interactions in the form of excluded volumes
occupied by hadrons of finite spatial extent. A switching
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FIG. 9. (Color online) Trace anomaly of crossover models.
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function was employed to make the crossover transition from
one phase to another without introducing a thermodynamic
phase transition. A χ2 fit to accurate lattice calculations at zero
chemical potentials, with temperatures 100 < T < 1000 MeV,
fixes the various parameters in the models. These parameters
quantify the behavior of the QCD running gauge coupling and
the physical size of hadrons. Notably, the hard core radius of
protons and neutrons turns out to be 0.62 ± 0.04 fm, a very
sensible range that lends credence to the models.

The most physically reasonable models include the
excluded-volume effect. Not only do they include the effects
of attractive and repulsive interactions among hadrons, but
they also represent the lattice results the best. As pointed out
by Ref. [13], it is very important to make the best-possible
approximation to the equation of state in two different phases
when attempting to match them, especially when there is no
true thermodynamic phase transition but only a crossover.

The equations of state constructed in this paper do not
result in a phase transition, at least not for the temperatures
and baryon chemical potentials investigated. It might be
possible to introduce a thermodynamic phase transition with
a different form of switching function, one that has some
singularities built into it. It remains to be seen how well
these equations of state will represent experimental data
on high-energy heavy-ion collisions when implemented in
hydrodynamic simulations.
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TABLE I. First and second best-fit parameters for switching
function equations of state built with pt, exI, and exII hadronic models.
Fitting was done at μ = 0 with lattice data from Ref. [3]. The last
column gives the χ 2 per degree of freedom (dof) for each fit.

ε
1/4
0 (MeV) r T0 (MeV) CS CM χ 2/dof

pt NA 4 145.33 4.196 2.855 0.558
pt NA 5 157.44 3.896 2.965 0.616
exI 306.50 5 177.12 4.281 3.352 0.342
exI 342.27 4 175.21 1.573 3.614 0.461
exII 279.71 5 177.65 4.325 3.351 0.343
exII 316.28 4 175.33 1.510 3.608 0.457

APPENDIX A

This Appendix contains a listing of the hadrons included in
our calculations. They are taken from the Particle Data Group.
There are a few baryons whose spins are not known; in these
cases we conservatively take them to be spin 1

2 .This table does
not include hadrons with charm, bottom, or top quarks and is
therefore the appropriate set of particles for comparisons of
equations of state with lattice QCD results including only up,
down, and strange quarks. The degeneracies of the hadrons in-
cludes isospin degeneracy when the mass splitting is small (for
example, for the � baryons); otherwise the hadrons are listed
separately (for example, p and n). Antibaryons are not listed.

APPENDIX B

In this Appendix we summarize the perturbative QCD
equation of state used to describe the quark-gluon plasma
phase (see Table II). These are obtained from Refs. [4,5]. Note
that both f4 and f6 depend on ln(αs/π ).

P = 8π2

45
T 4

[
f0 + f2

(αs

π

)
+ f3

(αs

π

)3/2
+ f4

(αs

π

)2
+ f5

(αs

π

)5/2
+ f6

(αs

π

)3
]

, (B1)

where

f0 = 1 + 3Nf

32

(
7 + 120μ̂2

q + 240μ̂4
q

)
, (B2)

f2 = −15

4

[
1 + Nf

12

(
5 + 72μ̂2

q + 144μ̂4
q

)]
, (B3)

f3 = 30

[
1 + Nf

6

(
1 + 12μ̂2

q

)]3/2

, (B4)

f4 = 237.223 + (
15.963 + 124.773 μ̂2

q − 319.849μ̂4
q

)
Nf − (

0.415 + 15.926 μ̂2
q + 106.719 μ̂4

q

)
N2

f

+135

2

[
1 + Nf

6

(
1 + 12μ̂2

q

)]
ln

[(
αs

π

)(
1 + Nf

6

(
1 + 12μ̂2

q

))]

− 165

8

[
1 + Nf

12

(
5 + 72μ̂2

q + 144μ̂4
q

)] (
1 − 2Nf

33

)
ln M̂, (B5)
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TABLE II. Resonances included in hadronic and crossover model calculations.

Hadron mα(GeV) Degen. bα Hadron mα(GeV) Degen. bα Hadron mα(GeV) Degen. bα

π 0 0.135 1 0 K∗0
2 (1430) 1.432 10 0 K∗

3 (1780) 1.776 28 0
π± 0.140 2 0 N (1440) 1.440 4 1 �(1800) 1.800 2 1
K± 0.494 2 0 ρ(1450) 1.465 9 0 �(1810) 1.810 2 1
K0 0.498 2 0 a0(1450) 1.474 3 0 π (1800) 1.812 3 0
η 0.548 1 0 η(1475) 1.476 1 0 K2(1820) 1.816 20 0
ρ 0.775 9 0 f0(1500) 1.505 1 0 �(1820) 1.820 6 1
ω 0.783 3 0 �(1520) 1.520 4 1 �(1820) 1.823 8 1
K∗±(892) 0.892 6 0 N (1520) 1.520 8 1 �(1830) 1.830 6 1
K∗0(892) 0.896 6 0 f ′

2(1525) 1.525 5 0 φ3(1850) 1.854 7 0
p 0.938 2 1 �0(1530) 1.532 4 1 N (1875) 1.875 8 1
n 0.940 2 1 N (1535) 1.535 4 1 �(1905) 1.880 24 1
η′ 0.958 1 0 �−(1530) 1.535 4 1 �(1910) 1.890 8 1
a0 0.980 3 0 �(1600) 1.600 16 1 �(1890) 1.890 4 1
f0 0.990 1 0 �(1600) 1.600 2 1 π2(1880) 1.895 15 0
φ 1.019 3 0 η2(1645) 1.617 5 0 N (1900) 1.900 8 1
� 1.116 2 1 �(1620) 1.630 8 1 �(1915) 1.915 18 1
h1 1.170 3 0 N (1650) 1.655 4 1 �(1920) 1.920 16 1
�+ 1.189 2 1 �(1660) 1.660 6 1 �(1950) 1.930 32 1
�0 1.193 2 1 π1(1600) 1.662 9 0 �(1940) 1.940 12 1
�− 1.197 2 1 ω3(1670) 1.667 7 0 f2(1950) 1.944 5 0
b1 1.230 9 0 ω(1650) 1.670 3 0 �(1930) 1.950 24 1
a1 1.230 9 0 �(1670) 1.670 2 1 �(1950) 1.950 4 1
� 1.232 16 1 �(1670) 1.670 12 1 a4(2040) 1.996 27 0
K1(1270) 1.272 12 0 π2(1670) 1.672 15 0 f2(2010) 2.011 5 0
f2 1.275 5 0 �− 1.673 4 1 f4(2050) 2.018 9 0
f1 1.282 3 0 N (1675) 1.675 12 1 �(2030) 2.025 12 1
η(1295) 1.294 1 0 φ(1680) 1.680 3 0 �(2030) 2.030 24 1
π (1300) 1.300 3 0 N (1680) 1.685 12 1 K∗

4 (2045) 2.045 36 0
�0 1.315 2 1 ρ3(1690) 1.689 21 0 �(2100) 2.100 8 1
a2 1.318 15 0 �(1690) 1.690 4 1 �(2110) 2.110 6 1
�− 1.322 2 1 �(1690) 1.690 4 1 φ(2170) 2.175 3 0
f0(1370) 1.350 1 0 N (1700) 1.700 8 1 N (2190) 2.190 16 1
π1(1400) 1.354 9 0 �(1700) 1.700 16 1 N (2200) 2.250 20 1
�(1385) 1.385 12 1 N (1710) 1.710 4 1 �(2250) 2.250 6 1
K1(1400) 1.403 12 0 K∗(1680) 1.717 12 0 �−(2250) 2.252 2 1
�(1405) 1.405 2 1 ρ(1700) 1.720 9 0 N (2250) 2.275 20 1
η(1405) 1.409 1 0 f0(1710) 1.720 1 0 f2(2300) 2.297 5 0
K∗(1410) 1.414 12 0 N (1720) 1.720 8 1 f2(2340) 2.339 5 0
ω(1420) 1.425 3 0 �(1750) 1.750 6 1 �(2350) 2.350 10 1
K∗

0 (1430) 1.425 4 0 K2(1770) 1.773 20 0 �(2420) 2.420 48 1
K∗±

2 (1430) 1.426 10 0 �(1775) 1.775 18 1 N (2600) 2.600 24 1
f1(1420) 1.426 3 0

f5 = −
√

1 + Nf

6

(
1 + 12μ̂2

q

)[
799.149 + (

21.963 − 136.33 μ̂2
q + 482.171 μ̂4

q

)
Nf

+(
1.926 + 2.0749 μ̂2

q − 172.07 μ̂4
q

)
N2

f

] + 495

12

[
6 + Nf

(
1 + 12μ̂2

q

)] (
1 − 2Nf

33

)
ln M̂, (B6)

f6 = −
[

659.175 + (
65.888 − 341.489 μ̂2

q + 1446.514 μ̂4
q

)
Nf + (

7.653 + 16.225 μ̂2
q − 516.210 μ̂4

q

)
N2

f

− 1485

2

(
1 + 1 + 12μ̂2

q

6
Nf

)(
1 − 2Nf

33

)
ln M̂

]
ln

[(αs

π

) (
1 + Nf

6

(
1 + 12μ̂2

q

))
4π2

]
− 475.587 ln

[(αs

π

)
4π2CA

]
.

(B7)
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For QCD we have Nc = 3, CA = 3, and we take Nf = 3. The
M is the renormalization scale. If μ is the baryon chemical
potential then μq = μ/3. The hat denotes division by 2πT so
that μ̂q = μq/(2πT ) and M̂ = M/(2πT ).

We use the three-loop coupling constant from the Particle
Data Group [16] (we drop the b3 term):

αs = 1

b0t

[
1 − b1

b2
0

ln t

t
+ b2

1(ln2 t − ln t − 1) + b0b2

b4
0t

2

−b3
1

(
ln3 t − 5

2 ln2 t − 2 ln t + 1
2

) + 3b0b1b2 ln t

b6
0t

3

]
,

(B8)

where

b0 = 33 − 2Nf

12π
, (B9)

b1 = 153 − 19Nf

24π2
, (B10)

b2 = 1

128π3

(
2857 − 5033

9
Nf + 325

27
N2

f

)
. (B11)

We make one modification to t : we introduce a constant CS

to soften its divergence at low temperatures and chemical
potentials.

t ≡ ln
(
C2

S + M2/�2
MS

)
. (B12)

We recover the equation of state of [5] when CS = 0 and take
�MS = 290 MeV as in that paper.
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