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Coupling to two target-state bands in the study of the n+22Ne system at low energy
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One theoretical method for studying nuclear scattering and resonances is via the multichannel algebraic
scattering (MCAS) formalism. Studies to date with this method have used a simple collective-rotor prescription
to model target states with which a nucleon couples. While generally these target states all belong to the same
rotational band, for certain systems it is necessary to include coupling to states outside of that main band. Here,
we extend MCAS to allow coupling of different strengths between such states and the rotor band. This is an
essential consideration in studying the example examined herein, the scattering of neutrons from 22Ne.
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I. INTRODUCTION

As an example of the effects of considering states that
weakly couple to those within a collective band, we examine
neutron scattering from 22Ne. Besides the study of the mass-23
isobars being of interest inherently, the formation of these
nuclei by radiative capture is of great astrophysical interest
[1,2]. For example, it is important to understand the processes
leading to their presence in white dwarf stars, as 23Ne and
23Na form an Urca pair [3], emitting neutrinos and delaying a
supernova explosion. Such type Ia supernovae have properties
which are thought usable to measure the extent and expansion
of the universe.

Another topical problem associated with these isobars is
the so-called 22Na puzzle of ONe white dwarf novae [4–6],
where the abundance of 22Na predicted by existing stellar
models is not found, indicating there is yet more to learn about
how the distribution of elements in the universe occurred.
Two reactions possibly pertinent to this loss of abundance
are 22Mg(p,γ )23Al and 22Na(p,γ )23Mg. MCAS is well suited
to modeling the 22Mg(p,p)22Mg reaction (the mirror is the
system studied here) due to the low density of low-energy states
in 23Al and the low scattering threshold. This is a necessary
first step in analyzing the resonant capture 22Mg(p,γ )23Al
using the formalism of Ref. [7]. Development of the MCAS
project to obtain capture cross-section values is in progress.

This study is also a prelude to that of the p+22Ne system,
since that scattering and the associated capture cross section
is important in astrophysics. It is part of the hydrogen-burning
NeNa cycle which may occur in second-generation stars.
Speculated leakage from the CNO cycles into the NeNa
cycle is linked to the problem of anticorrelations having been
observed between sodium and oxygen when stars ascend the
red giant branch of the Hertzsprung-Russell diagram, despite
current stellar models predicting that the surface abundance of
elements should not change. The rate of the 22Ne(p,γ )23Na
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reaction depends on the strengths of several resonances which
have never been observed experimentally. Being afflicted by
extremely large uncertainties [8], theoretical treatment of both
resonant and direct capture will be desirable to complement
experimental investigations performed at LUNA [9] at E <
400 keV. Indeed, they are topics of future work.

The multichannel algebraic scattering (MCAS) formalism
[10] is one with which scattering observables and spectra
for quantum systems can be evaluated. To date it has been
used for nuclear processes. In the MCAS method, solutions
of coupled-channel Lippmann-Schwinger equations are found
in momentum space using finite-rank expansions of an input
matrix of nucleon-nucleus interactions. A set of Sturmian
functions is used as the expansion basis. The MCAS method
is able to locate all compound-system resonance centroids
and widths, regardless of how narrow, and has the ability to
determine subthreshold bound states by using negative ener-
gies. Further, use of orthogonalizing pseudopotentials (OPP)
in generating Sturmians, ensures that the Pauli principle is
not violated [11,12], even with a collective model formulation
of nucleon-nucleus interactions. Otherwise, some compound
nucleus wave functions possess spurious components [13].

Having the purview of low-energy scattering, with a range
of a few MeV, MCAS usually deals with target nuclei in which
only one mode of collective behavior is exhibited. To date, the
Tamura [14] collective model with rotational character has
been used to determine a coupled-channel interaction with
nucleons. Thus, target states selected for coupling should be
from within the principal rotation band of nuclei which exhibit
such behavior, and the βL (which determines the coupling
strengths) is the same coupling amongst all states. Often, these
calculations reproduce scattering observables very well, and
even possess predictive power [11,15,16]. At times, however,
it is necessary to include coupling to states outside of this
band, for example where experiment has shown γ decays to
states within a clearly defined collective band. Here, we extend
MCAS to allow coupling of different strengths between such
states and those in the rotor band.
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Section II shows details of the development of MCAS
rotor potentials for NA scattering, adding two facets to that
previously published [10]: a generalization to allow more
than one multipole deformation, and an extension to allow
a second band for a given deformation. As n+22Ne is the
system selected to illustrate these developments. Section III
shows results of a no-core (0 + 2)�ω shell model calculation
for 22Ne, allowing insight into structure of orbit occupancy
of the target states. Section IV shows a method of identifying
the ratio of β2 values linking second-band states to first-band
states, examines the effect of having different β2 bands on
the calculated spectrum, and determines which channels are
important in describing the n+22Ne system. Results are shown
for both spectra and elastic cross section. Finally, in Sec. VI,
conclusions are drawn.

II. A TALE OF TWO βLs

To illustrate the manner in which different coupling
strengths between channels stemming from different target
states are considered, the development of the rotational-type
coupled-channel NA-scattering potential is summarized. How
these potentials are treated with the MCAS solution of the
coupled-channel Lippmann-Schwinger equations is covered
in detail in Ref. [10].

With channels defined by

c = [(
l 1

2

)
jI ; JM

]
, (1)

(l 1
2 )j are the orbital, intrinsic spin, and total angular momen-

tum of relative motion of the projectile on the target, I is the
total angular momentum of the target state involved, and J,M
are the angular momentum quantum numbers of the compound
system. Then, we define a NA coupled-channels potential
matrix by

Vcc′ (r) = f (r){V0δcc′ + Vll[� · �]cc′ + Vss[s · I]cc′ }
+ g(r)Vls[� · s]cc′ , (2)

in which local form factors have been assumed, and parameters
of the potential governing central (V0), orbit-orbit (Vll), spin-
spin (Vss), and spin-orbit (V�s) components. (Note that, being
a parameter of the model, Vls contains the constant 2λ2

π , where
λπ is related to the inverse of the pion Compton wave length.)
We identify the functions f (r) and g(r) with deformed Woods-
Saxon form factors:

f (r) = [1 + e( r−R
a

)]−1; g(r) = 1

r

df (r)

dr
. (3)

To introduce a rotor character for this general nucleon-
nucleus interaction potential, let us first consider that the
quantum radius of a rigid drop of nuclear matter, with axial,
permanent deformation from the spherical, is represented by
the expansion

R(θ,φ) = R0

[
1 +

∑
L(�2)

√
4π

2L + 1
βL [YL(r̂)·YL(ϒ̂)]

]

= R0 [1 + ε] , (4)

where (r̂) = (θ,φ) designates internal target coordinates. ϒ̂ are
Euler angles specifying the transformation from body-fixed to
space-fixed frame co-ordinates.

Expanding f (r) in Eq. (2) to second order in ε gives

f (r) = f0(r) + ε

(
∂f (r)

∂ε

)
0

+ 1

2
ε2

(
∂2f (r)

∂ε2

)
0

. (5)

We wish to convert these derivatives to being in terms of r . If
we demand that f (r) = f (r − R(θ,φ)), that for every r there
is an accompanying subtraction of R, we use the following:

∂f (r)

∂ε
= ∂f (r − R)

∂R

∂R

∂ε
= −R0

∂f (r − R)

∂r
. (6)

Thus,

f (r) = f0(r) − R0

∑
L(�2)

√
4π

2L + 1
βL [YL(r̂)·YL(ϒ̂)]

df0(r)

dr

+ 1

2
R2

0

⎡
⎣ ∑

L(�2)

√
4π

2L + 1
βL [YL(r̂)·YL(ϒ̂)]

⎤
⎦

2

× d2f0(r)

dr2
. (7)

Keeping L general, and not assuming L = L′, i.e., that only
one β of deformation is considered, we obtain

ε2 =
⎡
⎣ ∑

L(�2)

√
4π

2L + 1
βL [YL(r̂)·YL(ϒ̂)]

⎤
⎦

2

=
∑

L,L′(�2)

4πβLβL′√
(2L + 1)(2L′ + 1)

× [YL(r̂)·YL(ϒ̂)] [YL′(r̂)·YL′(ϒ̂)]. (8)

Using a property of tensor products [17], we can express

[YL(r̂)·YL(ϒ̂)] [YL′(r̂)·YL′(ϒ̂)]

= (2L + 1)(2L′ + 1)

4π

×
∑

�

1

2� + 1
|〈L0L′0|�0〉|2 [Y�(r̂)·Y�(ϒ̂)] , (9)

where � runs from |L − L′| to L + L′, with the condition that
L + � + L′ is even. Thus,

f (r) = f0(r) − R0

∑
L(�2)

√
4π

2L + 1
βL [YL(r̂)·YL(ϒ̂)]

df0(r)

dr

+ 1

2
R2

0

∑
L,L′(�2)

βLβL′
√

(2L + 1)(2L′ + 1)

×
∑

�

1

2� + 1
|〈L0L′0|�0〉|2 [Y�·Y�]

d2f0(r)

dr2
. (10)

A similar equation applies for the expansion of g(r) in terms
of the deformation ε.

As the full potential is now rather detailed, we consider
it in terms of its zeroth, first and second order expansion
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components:

Vcc′ (r) = V
(0)
cc′ (r) + V

(1)
cc′ (r) + V

(2)
cc′ (r)

= {v(0)(r)}cc′

+
⎧⎨
⎩v(1)(r)

∑
L(�2)

βL

√
4π

2L + 1
[YL·YL]

⎫⎬
⎭

cc′

+
⎧⎨
⎩v(2)(r)

∑
L,L′(�2)

βLβL′
√

(2L + 1)(2L′ + 1)

×
∑

�

1

2� + 1
|〈L0L′0|�0〉|2 [Y�·Y�]

}
cc′

. (11)

This is a short-hand notation; as we focus on the βL,
the functions v(0)(r), v(1)(r) and v(2)(r) are employed to
subsume all terms independent of L, concerning the derivatives
of the Woods-Saxon form factors and potential variables.
For completeness, these are shown in full in the Appendix,
where the interplay of spin-angular operators and multipole
deformations are taken into account.

The above development is similar to that of Ref. [10], but is
generalised to consider more than one multipole deformation;
that is, cases where L �= L′. (N.B. This development has been
used previously [16], but heretofore has not been presented in
detail.)

Next, we consider cases where there exist states which
are outside the main rotational band, but which are known
to couple to states in the rotor band. To describe this weaker
coupling, it is necessary to include, for a given L, an additional
value of βL, which we denote here as βL. This can be done
with a scaling, viz.

βL = sLβL , (12)

whereby Eq. (11) becomes

Vcc′ (r) = {v(0)(r)}cc′

+
⎧⎨
⎩v(1)(r)

∑
L(�2)

sLβL

√
4π

2L + 1
[YL·YL]

⎫⎬
⎭

cc′

+
⎧⎨
⎩v(2)(r)

∑
L,L′(�2)

sLβLsL′βL′
√

(2L + 1)(2L′ + 1)

×
∑

�

1

2� + 1
|〈L0L′0|�0〉|2 [Y�·Y�]

}
cc′

, (13)

where{
sL = 1 if Iπ

i

∣∣
c

and Iπ
j

∣∣
c′ ∈ main band

0 < |sL| < 1 if Iπ
i

∣∣
c

and/or Iπ
j

∣∣
c′ /∈ main band,

I π
i being the ith I π target state, following the convention

of the channel definition in Eq. (2). These changes of band
correspond to a shape transition. In future works we intend to
refine this coupling scheme such that it takes into account

differences between reorientation within a given band and
transitions between different bands.

III. A SHELL MODEL FOR STATES IN 22Ne

Before considering scattering of neutrons from 22Ne as an
example of the expansion of MCAS considered here, it is
instructive to consider what can be gleaned about that target
nucleus from shell-model studies of adequate complexity as
has been used in Refs. [18–20].

We first sought results from a no-core (0 + 2)�ω shell-
model for 22Ne. The OXBASH program [21] with the WBT
interactions [22] was used. The single nucleon space chosen
encompassed the 15 orbits in shells from the 1s 1

2
through the

1g 9
2
-3s 1

2
, Those evaluations involved such large dimensioned

matrices that only vectors and energy values of the positive
parity J � 2 states in the low-energy excitation spectrum of
22Ne could be found. Allowing all 22 nucleons to be active
is beyond the capacity of the standard OXBASH program we
have used to find higher spin states and, as the associated
vectors are very large, we have been unable as yet to extract
many properties of those states. The results given then are
preliminary to a planned fuller study which will include more
nuclei in the mass region and made using a larger shell model
program.

We have also made calculations within a reduced (0�ω)
space, the 1d-2s shell for 22Ne, to give some indication of the
major shell transition strengths between the 2+

1 and 2+
2 and

the ground states as those three are of special interest in the
MCAS studies.

First consider the (preliminary) results found using the
large-space shell model. The evaluated excitation energies for
the low-lying 0+ and 2+ states are in good agreement with
data, as is evident in the listing in Table I.

Also shown in the table are the percentage admixture of
0�ω and 2�ω components in each state description. All states
are considerably mixed with, characteristically, 33% of 2�ω
component.

Further, all states are specified by numerous partitions of
the nucleons within the orbits. Those contributing the largest
percentages (greater than 5%) are listed in Table II. These
dominant partitions have the 1s-1p shells completely full

TABLE I. The low lying 0+ and 2+ state energy levels in 22Ne
compared with values determined using the large space shell model
calculation described in the text. Energies are in MeV and component
types are in percent.

State Exp. Shell model 0�ω 2�ω

0+
g.s. 0.000 0.000 67.62 32.38

2+
1 1.275 1.336 67.48 32.51

2+
2 3.358 4.244 67.15 32.85

2+
3 4.456 4.507 66.89 33.11

2+
4 5.363 5.579 66.57 33.43

2+
5 6.120 6.185 67.00 33.00

0+
2 6.234 5.803 66.72 33.28

0+
3 6.428 66.39 33.61
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TABLE II. Dominant partition (total nucleons) percentages (val-
ues � 5%) in the shell model ground, 0+

2 , 2+
1 , and 2+

2 states of 22Ne.

1d 5
2

1d 3
2

2s 1
2

0+
g.s. 0+

2 (5.803) 2+
1 (1.336) 2+

2 (4.244)

Percent Percent Percent Percent

4 2 0 7.82
4 1 1 5.59 7.84 8.45
5 1 0 5.64 4.57 7.11
3 1 2 9.21
5 0 1 6.67 8.13 15.65 12.08
4 0 2 12.47 21.59 6.43 6.88
6 0 0 20.05 5.00 14.16 14.12

(occupancies 4, 8, and 4) and those for the remaining six
nucleons (two protons and four neutrons) are listed according
to the shell indicated.

This shell model gave another 11 partitions for these states
all having percentages of between 1 and 5%; four having a
reduced occupancy in the 1p orbits (offset by some in the
2p orbits) and two more with occupancy in the 2d orbit. The
1d-2s shell is the most important in this description of these
states, with components are spread over all three orbits of that
shell, but the ∼33% involving the other shells is needed to find
the best result for the spectrum. There are also numerous other
entries having smaller (<1%) amplitudes.

Including 2�ω components in shell model descriptions
of nuclear states of several light-mass nuclei has lead to
predictions of transition rates enhanced on those found limiting
the structure evaluations to 0�ω. Often the latter models require
a significant polarization charge to give a match to measured
B(E2) rates and electron scattering form factors, for example,
while some studies using larger space structures do not [18,19].
Nevertheless we next present results obtained using a 0�ω
model (only the 1d-2s shell active with the USD interaction
of Brown and Wildenthal [23]) to illustrate that the 2+

1 and 2+
2

states should both have non-negligible transition strength to
the ground, though coupling to the 2+

1 is dominant. The one
body density matrices that link the 2+

1 and the 2+
2 states to the

ground are given in Table III.

TABLE III. The shell model one-body-density matrix values in
the 2s-1d shell linking the 2+

1 and 2+
2 states to the ground.

j1 j2 2+
1 (1.366) 2+

2 (4.244)

1d 5
2

1d 5
2

−0.9582 −0.1153

1d 5
2

1d 3
2

−0.3261 0.1030

1d 5
2

2s 1
2

−0.5945 −0.1140

1d 3
2

1d 5
2

0.3341 0.0503

1d 3
2

1d 3
2

−0.0886 −0.1142

1d 3
2

2s 1
2

0.2472 0.1433

2s 1
2

1d 5
2

−0.6954 −0.0830

2s 1
2

1d 3
2

−0.2073 0.0118

These quantities are defined by the (doubly reduced)
matrices for �T = 0, namely

Sj1j2I=2 = 〈
0+

g.s.

∣∣∣∣∣∣[a†
j2

⊗ ãj1

](I=2)∣∣∣∣∣∣2+
(1,2)

〉
. (14)

It is clear that, from these shell model results, ground state
coupling favors the 2+

1 state, but there is some non-negligible
strength to the 2+

2 state; of between 10 and 30 % for most
terms.

IV. INITIAL MCAS EVALUATION OF
THE n + 22Ne SYSTEM

The low-lying spectrum of 22Ne consists of ground state of
Jπ = 0+, a 2+ state at 1.274 MeV, and a 4+ state at 3.357 MeV.
Directly above this comes a 2+ state at 4.456 MeV which
decays by E2 transition to the ground state [24].

The 0+, 2+, and 4+ states, along with a state at 6.31 MeV
designated (6)+ in the literature [24], we characterize as a rotor
behavior. The actual spectrum of 22Ne to 7 MeV excitation is
shown in Fig. 1. The rotor-like spacing of the principal band
(shown in thick, solid lines) is evident.

0.000

1.274

3.357

6.310

4.455

5.523

0

1

2

3

4

5

6

7
MeV

0+

2+

4+

2+

2+

2-

(4)+
3+
3-

1+

2+0+

4+(6)+
3+1-

2+
1+ (0,1)+

(a) - (d)

(a) - (d)

(a) - (d)

(a) - (d)

(c) - (d)

(b)

FIG. 1. (Color online) The low-energy experimental 22Ne spec-
trum [24]. Thick, solid lines denote states of the ground-state band,
thick dashed lines denote the other states used in this paper. Letters
correspond to usage in specific calculations in Figs. 2, 5, and 6.

024616-4



COUPLING TO TWO TARGET-STATE BANDS IN THE . . . PHYSICAL REVIEW C 90, 024616 (2014)

A. β2 values for the two 2+ states in 22Ne.

Given that the 2+
2 state (shown as a dashed line in Fig. 1)

decays to the ground state but is not within the sequence of
the first rotation-like band, we can expect that it exhibits some
other degree of rotor character. Thus, we assign a different β2

value (denoted β2 to distinguish it from that used for the main
band) to link this state with those taken to be the principal rotor
band.

The half-lives of states (ground state γ decay) relate to the
transition probabilities (for E2 multipolarity) via

τ 1
2

= ln(2)

W(E2)(Eγ )
= 0.693

W(E2)(Eγ )
(15)

and transition probabilities link to B(E2) values via

W(E2)(Eγ ) = 1.23 × 109 (Eγ )5 B(E2), (16)

where Eγ is the photon energy.
To first order, and without consideration of band quantum

numbers, a collective (rotational) model gives B(E2) that are
proportional to β2

2 .
For 22Ne, the two low excitation 2+ states (at 1.275 and

4.456 MeV) both decay by γ emission via E2 transitions
to the ground state with half-lives of 3.63 ps and by 37 fs,
respectively. Thus the relevant transition probabilities are

W(E2)(1.275) = 0.693

3.63
1012

= 1.23 109 (1.275)5 B(E2,1.275),

W(E2)(4.456) = 0.693

37
1015

= 1.23 109 (4.456)5 B(E2,4.456), (17)

from which B(E2,1.275) = 46.06 and B(E2,4.456) = 8.67
(units are e2 fm) and their ratio is 0.188. Then assuming that the
B(E2) scale as β2

2 , the deformation length for the 4.456 MeV
decay would be ∼0.43 times that for the 1.275 MeV decay,
i.e., β2 = 0.43β2.

B. Results using the lowest four target states

For a scattering nucleon impinging upon a partially filled
shell of a target nucleus, the Pauli principle does not neces-
sarily imply a binary rule—that the shell is completely open
or completely blocked [25–31]. We label as Pauli hindrance
the intermediate situation, where the present nucleons do
not completely, but only partially block additional nucleons.
Considering such an interpretation, the dominant configura-
tions of the shell model descriptions of the states in 22Ne,
shown in Table II, that are of particular interest in MCAS
calculations prescribe full blocking of the 1s 1

2 , 1p 3
2 , and 1p 1

2

orbits, while suggesting Pauli hindrance for the 1d 5
2 ,1d 3

2 ,2s 1
2

orbits, meaning an orthogonalizing pseudopotential (OPP) that
creates only a partial blocking of those d-s orbits. Those shell
model functions further suggest that all higher subshells have
essentially no blocking.

For simplicity, however, in this study we have considered
purely allowed or purely blocked states. Consequently, param-
eters used to scale these OPP, denoted as λ(OPP) and in units

TABLE IV. Parameter values defining the n+22Ne interaction.
λ(OPP) are blocking strengths of occupied shells, in MeV.

Odd parity Even parity

V0 (MeV) −65.20 −51.30
Vll (MeV) −1.01 −0.30
Vls (MeV) 7.00 7.00
Vss (MeV) −0.20 −1.45

R0 a β2 β2
a β4

3.1 fm 0.75 fm 0.22 0.1034 −0.08

1s1/2 1p3/2 1p1/2 1d5/2

0+
1 λ(OPP) 106 106 106 0.0

2+
1 λ(OPP) 106 106 106 0.0

4+
1 λ(OPP) 106 106 106 0.0

2+
2 λ(OPP) 106 106 106 0.0

aβ2 for linking 2+
2 to other states; 43% of 0.22. See Sec. IV A.

of MeV, are assigned a value of 106 MeV (which is adequate
to remove all influence of blocked states) for the orbitals 1s 1

2 ,
1p 3

2 , and 1p 1
2 , and 0 MeV for 1d 5

2 , as shown in Table IV. Full
details of the Pauli principle in MCAS, including the blocking
strengths of the OPP method, are given in Refs. [11,12].

The parameter set used to define the scattering potential is
shown in Table IV. As with Ref. [32], which studied analyzing
powers from 22Ne(p,p)22Ne, it was found that a small β4

deformation of 22Ne was required in MCAS. However, the
best-fit MCAS deformations differ from those of Ref. [32]
(being β2 = 0.47 and β4 = 0.05), which is understandable
given the differences between the models, where the MCAS
potential includes V0, Vll , Vls , and Vss terms and the same
radius and diffusivity for Vls as the other terms, Ref. [32] uses
V0 and Vls alone (with a different prescription for the latter), but
with different radius and diffusivity for V0 and Vls . Despite this,
both values are of the same order of magnitude in each paper.
We note, however, that a value of β2 = 0.562 was proposed in
Ref. [33], based upon an adopted value of the reduced B(E2)↑
from the 0+ ground state to the 2+ first excited state. While two
values of β2 are used in this work as E2 transitions are observed
between rotor and non-rotor-like states in 22Ne, the same value
of β4 is used in all instances throughout the paper. In Ref. [4],
studies of the mirror system 22Mg(p,p)22Mg were made
using Glauber-type calculations [34]. In these, a Woods-Saxon
potential was used (as it is in MCAS for nuclear and Coulomb
potentials) for the proton binding potential, with standard
nucleus radius (similar to ours) and diffuseness a = 0.60 fm.

The resultant MCAS spectrum of 23Ne, relative to the
scattering threshold, is shown in Fig. 2 for the energy range
from the ground state to the scattering threshold. A number
of states in the low-lying experimental spectrum are still
not assigned with certainty [35]. With four of the fourteen
states below −1 MeV having had more than one possible Jπ

suggested, and a further two between −1.5 and −1 MeV with
no conjectured Jπ , this MCAS evaluation makes an excellent
match to the well-assigned states and can make a prediction
of two of the four uncertainly assigned states. Specifically,
the MCAS calculation suggests that the state at −3.5 MeV
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FIG. 2. The experimental 23Ne spectrum [35] and that calculated
from MCAS evaluation of the n+22Ne, with target state set (a): 0+

1 ,

2+
1 , 4+

1 , 2+
2 . The bar denotes the use of reduced coupling for channels

involving this state.

until now denoted ( 5
2 , 7

2
+

) is a 7
2

+
, and the ( 5

2 , 7
2 ) at −2.685 is

a 7
2

−
. For the remaining uncertainly assigned states, MCAS

gave states with the suggested spin-parities with energies in
the proximity. We make no attempt to suggest spin-parities for
states where none has been made previously, but we do note
that the density of states above −1.5 MeV, where the number
of states begins to tend towards continuum is recreated well
by MCAS.

Regarding the 9
2

+
state found by MCAS but not seen in

experiment, it is possible that such state exists somewhere in
this regime and is as yet unobserved. This is suggested by
the existence of low-lying 9

2
+

states in other mass-23 isobars.
23Na, whose low-energy spectrum has many similarities with
that of 23Ne, has a 9

2
+

state 2.703 MeV above the ground
state, and its mirror, 23Mg, has a state currently designated

9
2

+
, 5

2

+
at 2.714 MeV above the ground state. Preliminary

development of extensions upon this work indicate that the
13
2

−
at −2.696 MeV could be moved to higher energy by

employing Pauli hindrance.

C. The effect of varying βL values in MCAS

In Sec. IV A we illustrated an example of where it is
advantageous to extend the MCAS formalism to allow pairs of
coupling target states to have unique values of a given βL. In
that section, one method of selecting the ratio of these values
was outlined. Herein, we perform a gedanken investigation
where this scaling factor spans all values from 0 to 1.

The results of diverse MCAS calculations of the spectrum
of 23Ne to over 20 MeV excitation are given in Figs. 3 and
4. In Fig. 3, both the subthreshold and resonance parts of
the spectrum are presented, while the subthreshold region is
shown in greater detail in Fig. 4. The first MCAS calculation,
the results of which are shown in the left most panels of these
figures identified as ‘3-state’, used just the three rotor-like
states of 22Ne (0+

1 ,2+
1 and 4+

1 ) finding in all 63 states (bound
and resonant) as the spectrum of 23Ne (with Pauli blocking
included). The spectrum labeled ‘4-state, one β’ in these
figures resulted on using additionally the 2+

2 state of 22Ne with
β2 = β2, giving a four-state MCAS calculation. The spectrum
that results has 89 states of 23Ne in the excitation energy range
shown. The central panels show the results of four-state MCAS
calculations allowing β2 to vary according to the scale variable
0 � s2 � 1 on β2. The number of states for both the three-state
and four-state calculations are shown, by Jπ , in Table V.

Figure 4 shows the MCAS results for the subthreshold
spectrum of 23Ne. The spin-parities of the eleven most
bound from the four-state evaluations are given. The effect
of changing the scale factor, s2, is most noticeable, with some
states moving by as much as 2 MeV so that energy spacing and
level sequence alters. The dashed line (at s2 = 0.43) indicates
the spectrum found when the ratios of B(E2) values from
the ground state γ decays of the 2+

1 and 2+
2 states define the

scaling.
There are differences between the three-state result and the

result of the four-state one when s2 = 0. The disconnections
are the result of two factors. The first is that while going
from right to left in the central panels, the scaling of the
β2 is reduced from 1 to 0 but the scaling of β4 = −0.08 is
not, producing a small difference generated by the residual
β4 coupling. The remaining discontinuity comes from the
spin-spin component of the zeroth-order term which links
channels involving different target states having the same
angular momentum, even with no deformation. This is evident
in Eq. (A2) of the Appendix, wherein more details are given.

In the subthreshold region (� −1 MeV), the 3-state result
has equivalent states with those of the four-state evaluations.
That is not the case for higher energies, especially as shown
in Fig. 3 in which the above threshold resonance centroids
found from the same three- and four-state MCAS calculations
are displayed. For energies � −1 MeV (see Fig. 4), the
four-state model model gives 27 more states, most of which
are resonances. The differences in resonance centroid energies
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FIG. 3. (Color online) MCAS evaluation of n+22Ne compound
states with scaling of β2 of 22Ne 2+

2 coupling. States shown by thin
(red) lines are from coupling to the 2+

2 state.

with variation of s2 can be as much as 3 MeV and the
sequencing of the states alters.

Thus, in addition to what is learnt in general about the effect
of the varying the β2 in an MCAS calculation, it is evident
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FIG. 4. (Color online) Detail of Fig. 3, showing subthreshold
MCAS evaluation of the energy centroids of n+22Ne resonances
as β2 of 22Ne 2+

2 coupling is scaled with respect to other couplings.
The dashed line indicates value obtained from theory in Sec. IV A.

that the consideration of the 22Ne 2+
2 has a large impact on the

ground and low-lying states of 23Ne. Indeed, no 23Ne spectrum
from the resonances of n+22Ne0+

1 ,2+
1 ,4+

1
achieved the level of

agreement with data as that of the four-state calculation of
Fig. 2. This is as would be expected, given that the 2+

2 state is
known to decay to the 22Ne ground state.

V. THE EFFECTS OF ADDITIONAL CHANNELS

Given the result of Sec. IV C, it is instructive to examine
the influence of additional channels on results.

A. Effects on the spectrum

The impact of including the next target state in the
rotation-like band, that experimentally identified as (6)+ at
6.310 MeV is now considered. This fits well with the typical
rotational band spacing of the 0+

1 , 2+
1 , and 4+

1 states. In

TABLE V. Number of states by J π . Pauli blocking reduces the numbers of states in each case.

J π 1
2

− 1
2

+ 3
2

− 3
2

+ 5
2

− 5
2

+ 7
2

− 7
2

+ 9
2

− 9
2

+ 11
2

− 11
2

+ 13
2

− 13
2

+ 15
2

−
Total

three-state 4 3 6 5 7 6 7 5 6 4 4 2 2 1 1 63
four-state 6 5 9 8 11 9 10 7 8 5 5 2 2 1 1 89
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FIG. 5. Experimental data compared to MCAS 23Ne spectra using
(a) 0+

1 , 2+
1 , 4+

1 , 2+
2 (as per Fig. 2); and (b) 0+

1 , 2+
1 , 4+

1 , 2+
2 , (6)+1 . The

bar in 2+
2 denotes the use of reduced coupling for channels involving

this state.

Fig. 5, the experimental spectrum of 23Ne is compared with
the MCAS calculation result of Fig. 2, denoted (a), and with
that additionally including the 6+ state, denoted (b). Both
calculations use the parameter set of Table IV, which were
tuned for (a), with the Pauli blocking strengths for the 6+ state
as per the others. Essentially the inclusion of this 6+ state
affects only the energies of the 9

2
+

, 11
2

+
, and 13

2
+

states in this
spectrum, adding to their binding.

Next we consider the influence of other states in the 22Ne
spectrum that may be weakly coupled to the ground state band.
We include states deemed important in a study of the mirror
system, p+22Mg→23Al [4]. In Ref. [4], the configuration

mixing of the ground state of 23Al was studied experimentally
by observing the γ rays emitted by 22Mg after proton emission.
They found the relevant components to be 22Mg(0+

1 )⊗p1d5/2 ,
with 18.5 of an observed 78.3 mb proton-emission cross
section; 22Mg(2+

1 )⊗p1d5/2 and 22Mg(2+
1 )⊗p2s1/2 with 39.3 mb;

22Mg(4+
1 )⊗p1d5/2 with 9.5 mb; and 22Mg((4)+2 )⊗p1d5/2 with

10.9 of 78.3 mb observed. The γ rays observed were 2+
1 → 0+

1 ,
4+

1 → 2+
1 , and (4)+2 → 4+

1 , the latter they describe as ‘less
expected’. Those results correspond to a relevant spectrum of
22Mg being 0+ (g.s.), 2+

1 (1.247 MeV), 4+
1 (3.308 MeV), (4)+2

(5.293 MeV), the ground state, first, second, and sixth excited
states. Having not observed the relevant γ , they did not include
the 2+

2 (4.402) state, the analogue of the 2+
2 in 22Ne, and which

is known to decay via M1 + E2 to the 2+
1 state. It also decays

by undetermined γ decay to the ground state and to the 4+
1

[24].
In 22Ne, the equivalent tabulated (4)+2 state is at 5.523 MeV.

This state is denoted uncertainly as (4)+, with J = 3 also a
possibility [24], though considering the spectrum of the mirror
[4,24], the J = 3 possibility is less likely. It is the seventh
excited state, with decays to lower states uncertain. (Ref. [24]
gives only that the 4+ Jπ assignment comes from L = 4 in
(6Li,d)). It is shown as a dashed line in Fig. 1.

As it is unclear to what states this (4)+2 couples by γ
emission, it is not possible to assign a βL value as stringently
as in Sec. IV A. Thus, the first calculation which includes
the second 4+ state assigns its β2 to be that between states
in the main rotational band, so the effect of its coupling
is over- rather than underestimated. The second calculation
assigns the same value as for the 2+

2 state: 43% coupling
strength of that between states in the principal rotor band.
Fig. 1 graphically summarizes the states used in the various
calculations presented.

Results of including this state in MCAS calculations are
shown in Fig. 6, where, it is stressed, the parameters of
the interaction potential are as listed in Table IV for all
calculations. While the calculations including the (4)+2 do not
change the ground state energy, indicating that within this
model the ground state does not have any large component
from mixing with this state, it does show a significant influence
from the (4)+2 target state in the 7

2
+
1 and 5

2

+
2 compound states,

as well as those of the speculated 9
2

+
1 and 13

2
+
1 . A small change

is also seen in the 3
2

+
1 . In the case where the coupling strength

is 43% of that within the main rotor band, denoted (d), results
are improved from the calculation (a) where the (4)+2 target

state is not included, with the 7
2

+
1 and 5

2

+
2 being brought closer

to observed energies.
The spectrum of 23Ne from calculation (d) and experiment,

within the energy range where this calculation is most
pertinent, has been highlighted in a solid box. This is the
best result. The result of (a) is highlighted with a dashed box.

B. Effects on the cross section

The MCAS results for the n+22Ne cross section are
shown in Fig. 7. It is important to note that these were not
considered during the parameter fit, and as such the results are
‘predictions’ of the model.
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FIG. 6. (Color online) Experimental data compared to MCAS 23Ne spectra using (a) 0+
1 , 2+

1 , 4+
1 , 2+

2 (as per Fig. 2); (c) 0+
1 , 2+

1 , 4+
1 , 2+

2 ,

(4)+2 (as per Ref. [4]); and (d) 0+
1 , 2+

1 , 4+
1 , 2+

2 , (4)+2 . The bar denotes the use of reduced coupling for channels involving this state. Best result
presented in the solid blue box.

Given the density of states around this threshold, and that
the NA potential used has a limited energy range in which it
well reproduces results, and that this was tuned to the deeply
bound low-lying states, the study of an MCAS elastic cross
section for neutron scattering can only be qualitative. As seen
in Fig. 2, this span of energies is beyond where the current
MCAS evaluations can accurately place centroids. While only

the elastic, and for incident energies above 1.274 MeV, the
inelastic scattering processes are entertained with MCAS, the
only missing possible reaction process in the energy range
examined is that of neutron capture. However, capture cross
sections for this system are negligible, with, for example,
Ref. [36] giving the capture background below ∼0.5 MeV
in the order of, at most, 100 μb. Thus, the sole factor in the
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FIG. 7. (Color online) The MCAS n+22Ne elastic cross section: (i) 0–4.4 MeV, three calculations; (ii) 0–1 MeV, 0+
1 , 2+

1 , 4+
1 calculation;

(iii) 0–1 MeV, 0+
1 , 2+

1 , 4+
1 , 2+

2 calculation [corresponding to (a) in Figs. 2, 5, and 6]; and (iv) 0–1 MeV, 0+
1 , 2+

1 , 4+
1 , 2+

2 , (4)+2 calculation
[corresponding to (d) in Fig. 6]. (Red) squares from Ref. [37], black circles from Ref. [38], J π assignments from Ref. [35].

overestimation of the elastic scattering cross section MCAS
result at low energies is the limitation of the coupled-channel
interaction used.

Despite the simplicity of the chosen interaction form,
MCAS has been able to recreate some features of the observed
data, which comes from Refs. [37] and [38] for 0.14 to
1.93 MeV and 1.89 to 3.54 MeV, respectively. This is shown
in Fig. 7, where the marked experimental Jπ assignments are
from Ref. [35]. The result of the basic 0+

1 ,2+
1 , 4+

1 target state
calculation is shown by the dotted-and-dashed line, the result

of calculation (a), with the addition of the 2+
2 state (the bar

denoting the weak coupling), is shown by the dashed line, and
the result of (d), with the (4)+2 , is shown by the solid line.
It should be noted that this is a region with a high density
of observed states: as well as the seven marked Jπ values,
there are four further observed and two possibly observed
resonances that have not been assigned Jπ values between 0
and 0.6 MeV above threshold.

The upper panel shows that, above around 1.9 MeV, MCAS
recreates the resonance background to a remarkably good
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degree. It also shows that the addition of both the 2+
2 and 4+

2
states is required to begin some representation of the resonance
structure seen at this energy.

In the lower panels, it is shown that the addition of the
2+

2 changes the shape of the calculated cross section, and
brings some resonance features into better agreement with
experiment, principally the 1

2
+

observed on the shoulder at
0.521 MeV (lab). In the three-state calculation we see this
structure, but at 0.905 MeV (lab). Thus, the inclusion of weakly
coupling target states is shown to have an impact over a wide
range of energies.

The addition of the (4)+2 state brings more features into

agreement with data. In the four-state calculation, the 3
2

+

resonance seen in the experimental data at 0.545 MeV (lab)
is located at overly high energy, whereas in the five-state
calculation the centroid is brought down to the appropriate
energy. The addition of the (4)+2 brings the calculated 3

2
−

closer

to the uncertainly assigned 1
2

−
, 3

2
−

resonance at 0.268 MeV

(lab). Finally, in all three the cases, the 1
2

−
resonance observed

at 0.674 MeV (lab) is detected, though not discernible from
the scattering background, and is placed correctly in energy.

VI. CONCLUSIONS

Historically, the multichannel algebraic scattering formal-
ism when applied to a nucleon-nucleus system used a rotational
collective model to describe the selected states of the nuclear
target and of the interactions between those states and the extra
nucleon. All coupling interactions were specified by single βL

deformation strengths. Most applications were of light mass
systems and for a relative small range of neutron energies in
which, usually, there were few target states deemed to belong
to the main rotational band. Use of single values of βL for
the selected deformations, then sufficed to produce spectra
of the compound system. For some systems of importance,
however, it is necessary to include coupling to states outside
of the main rotational band; such as cases where experiment
shows γ decays from those extra states to ones within the
collective band. Accordingly, MCAS has been extended to
allow coupling of different strengths between some of the set
of target states used.

This extended form of MCAS has been applied to the n +
22Ne system. The results showed that by varying the β2 value
of one state, the 2+

2 (4.455 MeV), with regards to others has a
marked effect upon the evaluated spectrum of the compound,
23Ne. The value of coupling of the 2+

2 state with the rotor band
states (0+

1 ,2+
1 , and 4+

1 ) was determined by using the B(E2)
values of the ground state γ decays of the 2+

1 and 2+
2 states.

Treating the decays in a collective model defined the ratio of
β2(2+

2 ) to that of β2(2+
1 ). Addition of the (4)+2 state to the target

set with coupling to others defined as being the same as the
β2(2+

2 ), improves the description of the spectrum as well as
the 22Ne(n,n)22Ne elastic cross section.

The MCAS cross section recreated some resonance features
observed experimentally, and for higher energies reproduced
the observed background. The importance of coupling to target

states outside of the main rotor band was illustrated by the
non-negligible changes they make to the cross section.

The system investigated in this work is highly complex, and
there are avenues to improve the presented results in future
studies. For example, the interpretation of the Pauli principle
effect, by assuming only strictly forbidden or completely
allowed shells could be relaxed. It is known in cluster
physics that the allowance of intermediate ‘Pauli hindrance’
is important [3]. Such consideration may move unobserved
low-lying high-spin states to higher energies, though we cannot
exclude the possibility that a 9

2
+

state may exist in the first few
MeV of the spectrum.
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research Project No. 2009TWL3MX. S.K. acknowledges
support from the National Research Foundation of South
Africa. J.P.S. acknowledges support from the Natural Sciences
and Engineering Research Council of Canada (NSERC).

APPENDIX

In this appendix, further details are presented of the NA
scattering potential based on a Tamura [14] collective model
with rotational character for even-mass targets.

Equation (11) presented the potential, in terms of its zeroth,
first-, and second-order components of expansion in terms of
the perturbation of the nuclear surface from spherical. It is in a
form with all terms not dependent on L subsumed in equations
v(0)(r), v(1)(r), and v(2)(r):

Vcc′ (r) = V
(0)
cc′ (r) + V

(1)
cc′ (r) + V

(2)
cc′ (r)

= {v(0)(r)}cc′

+
⎧⎨
⎩v(1)(r)

∑
L(�2)

βL

√
4π

2L + 1
[YL·YL]

⎫⎬
⎭

cc′

+
⎧⎨
⎩v(2)(r)

∑
L,L′(�2)

βLβL′
√

(2L + 1)(2L′ + 1)

×
∑

�

1

2� + 1
|〈L0L′0|�0〉|2 [Y�·Y�]

}
cc′

.

To determine the deformed channel potential, it is not
simply a matter of taking the matrix elements of the radial
operators between channels states c and c′ and substituting
them into Eq. (2). The channel potential expression involves
matrix elements of the products of two operators and so one
must first make symmetric the potential matrix form. With
the zeroth order interaction, this is applicable only to the
nondiagonal term involving the operator I · s, so one replaces

Vssw(r)[I · s]|cc′ ⇒ 1
2Vss {w(r)[I · s]‖c′c′ + [I · s]|ccw(r)}

≡ 1
2

[
V (c)

ss + V (c′)
ss

]
w(r)[I · s]|cc′ . (A1)
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Thus, the zero-order term in Eq. (11) is

{V (0)(r)}cc′ =
{[

V
(c)

0 + V
(c)
ll l(l + 1)

]
w(r) + W

(c)
ls

1

r

∂w(r)

∂r
{l · s}

}
δcc′ + 1

2

[
V (c)

ss + V (c′)
ss

] {I · s}cc′ w(r) . (A2)

The δcc′ is added to stress that the included terms contribute only on the diagonal. (This potential accounts for some of the
discontinuities between the three- and four-state calculations in Figs. 3 and 4 when s2 = 0. While the first term does not
contribute, being diagonal in channels, the dependence of the second term on {I · s}cc′ has the consequence that, even with no
deformation, channels of the same spin-parity Iπ are coupled. Thus, the 2+

2 state is linked to the 2+
1 .)

In the first- and second-order terms, the other two components also need be taken with symmetrised operators, and therefore

{V (1)(r)}cc′ = −R0

{
∂w(r)

∂r

1

2

[
V

(c)
0 + V

(c′)
0 + V

(c)
ll {l · l}cc + V

(c′)
ll {l · l}c′c′

]

− 1

2
R0

1

r

∂2w(r)

∂r2

(
W

(c)
ls {l · s}cc + W

(c′)
ls {l · s}c′c′

)}[√
4π

2L + 1
βL [YL·YL]

]
cc′

− 1

2
R0

∂w(r)

∂r

∑
c′′

{
V (c′)

ss

[√
4π

2L + 1
βL [YL·YL]

]
cc′′

[I · s]c′′c′ + V (c)
ss [I · s]cc′′

[√
4π

2L + 1
βL [YL·YL]

]
c′′c′

}

(A3)

and

{V (2)(r)}cc′ = R2
0

{
1

4

∂2w(r)

∂r2

[
V

(c)
0 + V

(c′)
0 + V

(c)
ll {l · l}cc + V

(c′)
ll {l · l}c′c′

]

+ R2
0

4

1

r

∂3w(r)

∂r3

(
W

(c)
ls {l · s}cc + W

(c′)
ls {l · s}c′c′

)}

×
[∑

LL′
βLβL′

√
(2L + 1)(2L′ + 1)

2L∑
� even

1

(2� + 1)
|〈L0L′0|�0〉|2 [Y�·Y�]

]
cc′

+ R2
0

4

∂2w(r)

∂r2

∑
c′′

{
V (c)

ss {I · s}cc′′

[∑
LL′

βLβL′
√

(2L + 1)(2L′ + 1)
2L∑

� even

1

(2� + 1)
|〈L0L′0|�0〉|2 [Y�·Y�]

]
c′′c′

+V (c′)
ss

[∑
LL′

βLβL′
√

(2L + 1)(2L′ + 1)
2L∑

� even

1

(2� + 1)
|〈L0L′0|�0〉|2 [Y�·Y�]

]
cc′′

{I · s}c′′c′

}
. (A4)

The matrix elements of the operators l · l, I · s, and l · s are

〈l · l〉 = 〈l′j ′I ′J |l · l|ljIJ 〉 = δll′δjj ′δII ′ l(l + 1) (A5)

and

〈s · l〉 = δll′δjj ′δII ′ ×
{

l
2 , if j = l + 1

2

− l+1
2 , if j = l − 1

2

. (A6)

The spin-spin matrix element is more complicated [17], namely,

〈s·I〉 = (−)(j+j ′+J )

{
j ′ j 1

I I ′ J

}
〈I ′‖I‖I 〉〈s‖s‖s〉

= δII ′δll′ (−)(1/2+j−j ′+I+J+l)
√

(2j + 1)(2j ′ + 1)(2I + 1)

√
3

2
I (I + 1)

{
j ′ j 1

I I J

}{
1
2 l j

j ′ 1 1
2

}
. (A7)

The operator is diagonal in I and l, and zero if either I or I ′ is zero.
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Finally, the matrix elements of the scalar product of two rank L spherical harmonics are needed. They are

〈YL·YL〉 = 〈l′j ′I ′J |YL(r̂)·YL(ϒ̂)|ljIJ 〉

= (−)(j+I ′+J)
{
j ′ j L
I I ′ J

} 〈(
l′

1

2

)
j ′‖YL(r̂)‖

(
l
1

2

)
j

〉
〈I ′‖YL(ϒ̂)‖I 〉

= (−)(j+I ′+l′− 1
2 )√(2j + 1)(2j ′ + 1)(2I + 1)(2l + 1)

× 1

4π
(2L + 1)〈I0L0|I ′0〉〈l0L0|l′0〉

{
j ′ j L

I I ′ J

}{
l 1

2 j

j ′ L l′

}
, (A8)

which, on using the identity{
l 1

2 j

j ′ L l′

}
〈l0L0|l′0〉 = (−)(l+j ′+ 1

2 ) 1√
(2l + 1)(2j ′ + 1)

〈
j

1

2
L0

∣∣∣∣ j ′ 1
2

〉
, (A9)

reduce to

〈l′j ′I ′J |YL(r̂)·YL(ϒ̂)|ljIJ 〉 = (−)(J− 1
2 +I ′) 1

4π

√
(2I + 1)(2j + 1)(2j ′ + 1)(2L + 1)

× 1

2
[1 + (−)l+l′+L]〈I0L0|I ′0〉

〈
j−1

2
j ′ 1

2

∣∣∣∣L0

〉{
j ′ j L

I I ′ J

}
. (A10)
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