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Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior
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Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance.
Transition state theory is provided to determine the angular distribution of fission fragments which includes
standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point
statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several
heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point
statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction
systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely
used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the
prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an
anomalous behavior. For this purpose, we study the 14N,16O,19F + 232Th; 16O,19F + 238U; 24Mg,28Si,32S + 208Pb;
32S + 197Au; and 16O + 248Cm reaction systems. Finally, it is shown that the presented model is much more
successful than previous models.
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I. INTRODUCTION

The standard transition-state model was used to analyze
fission fragment angular distributions. Usually two limiting
assumptions on the position of the transition state and,
correspondingly, two versions of the transition-state theory
exist: the standard saddle-point statistical (SSPS) model [1],
and the scission-point statistical (SPS) model [2]. Most of the
information about the fission angular anisotropy is obtained
within the framework of the SSPS model [3]. It is well known
that the SSPS model reproduces reasonably well experimental
data on the angular anisotropies of fission fragments for
reactions induced by light projectiles like nucleons, 3He, and
alpha particles. Compound nuclei formed in these reactions
have a temperature of about 1 MeV and low values of
angular momentum [1,4]. In addition, experimental angular
anisotropies show that the SSPS model in the prediction of
the angular distribution of fission fragments from compound
nuclei with high angular momentum, temperature, and fis-
sility is unsuccessful [5,6]. For such systems, because of
the presence of the noncompound nucleus fission events,
fission fragment anisotropies have been observed to be
anomalous in comparison to the prediction of the SSPS
model.

The SPS model was proposed to predict the anomalous
fission fragment angular distribution of such systems. The
model assumes a well-defined configuration of scission
point that the strong nonadiabatic effects retain statistical
equilibrium, and then no nuclear interaction occurs between
fragments [1]. In addition, it is assumed that the fission barrier
was too small and the angular momentum and excitation
energy of the compound nucleus are too large. This model is
relatively accurate in the prediction of the angular distribution
in fissions induced by projectiles around the oxygen [3].
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The observation of anomalously large angular anisotropies in
heavy-ion-induced fission reactions involving actinide targets
resulted in a renewed interest in this topic [3,7,8]. The ad-
mixture of noncompound nucleus events such as quasifission,
fast fission, and pre-equilibrium fission with the compound
nuclear process was interpreted to be the possible reason for
this anomalous behavior [9–18]. The average contributions
of noncompound nucleus fission events are calculated for
several heavy-ion-induced fission reactions having anomalous
behaviors in fission fragment angular anisotropies [7]. It is
also observed that the contribution of noncompound nucleus
fission events increases with an increase in the mass number
of projectile for a given target and this contribution exhibits a
linear behavior as a function of the mass number of targets
for a given projectile as well. The noncompound nucleus
fission events involve full momentum transfer as in the case
of compound nucleus fission events, but fission occurs before
the formation of a fully equilibrated fissioning system. The
signatures of noncompound nucleus fission events are broader
or asymmetric mass distribution and higher anisotropy of the
fission fragment angular distribution compared to that for
compound nucleus fission.

An important issue is to provide a model that could be
successful in the prediction of angular anisotropy for the
systems with an anomalous behavior. Earlier calculations of
fission fragment anisotropies within the framework of the
SSPS model had been corrected to include the effects of
pre-fission neutron emission, the alignment of ground-state
nuclear spin with the nuclear deformation axis, and the effect
of the relaxation time of K degrees of freedom on the variance
of the K distribution [19–22].

In the present work, the upgraded saddle-point statistical
(USPS) model is introduced in the prediction of angular
anisotropy for the heavy-ion-induced fissions with an anoma-
lous behavior.

To make the present paper self-contained, we study in
Sec. II a brief description of the SSPS and the SPS models.
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Section III is devoted to introducing the USPS model.
Section IV contains the calculations of angular anisotropies
within the framework of the model. Section V is dedicated to
a summary and conclusions.

II. STANDARD SADDLE-POINT AND SCISSION-POINT
STATISTICAL MODELS

A. Standard saddle-point statistical model

According to the SSPS model, the symmetry axis at the
saddle point could be known as the fission axis and direction
of this axis does not change between the saddle and the scission
points. In the framework of the SSPS model of the compound
nucleus fission, the fission fragment angular distribution is
determined by the total angular momentum I , its projection
M on the space fixed axis, and its projection K on the body
fixed symmetry axis that coincides with the direction of fission.
The rotational energy Erot(I,K) of a nucleus with total angular
momentum I and its projection K is given by

Erot(I,K) = �
2(I 2 − K2)

2�⊥
+ �

2K2

2�‖
, (1)

where �⊥ and �‖ are the moments of inertia perpendicular
and parallel to the symmetry axis, respectively. Therefore, the
rotational energy can be rewritten as

Erot(I,K) = �
2I 2

2�⊥
+ Erot(K), (2)

where Erot(K) = �
2K2

2 ( 1
�‖

− 1
�⊥

) = �
2K2

2�eff
is the change in rota-

tional energy associated with K �= 0 and the effective moment
of inertia �eff is usually independent of K . It was shown these
expressions, together with the dependence of the saddle-point
level density on Erot(I,K), lead to a Gaussian distribution
of K , centered around K = 0, which is characterized by the
variance K2

0 [23].
The variance of K distribution is given by

K2
◦ = �effT/�

2, (3)

where T =
√

Eex
a

is the nuclear temperature of the compound
nucleus at the saddle point. The quantity a is the level
density parameter whose value is adopted from AC.N./11 to
AC.N./8(AC.N. is the mass number of the compound nucleus).
The excitation energy of the compound nucleus at the saddle
point (Eex) is obtained from the following equation:

Eex = Ec.m. + Q − Bf − Erot − νgsEn, (4)

In this equation, Ec.m., Q, Bf , Erot, νgs , and En represent
the center-of-mass energy of the projectile, the Q value, the
fission barrier height, the rotational energy of the compound
nucleus, the number of pre-saddle neutrons, and the excita-
tion energy lost from evaporation of one neutron from the
compound nucleus prior to the system reaching the saddle
point, respectively. In the calculation of Eex, the pre-fission
neutrons are usually taken to be emitted before the saddle point
because it is not straightforward to separate experimentally
the contribution of neutrons emitted before the saddle and the

ones emitted after the saddle but before the scission point.
In this model, the fission fragment angular distribution W (θ )
for the fission of spin zero nuclei is given by the following
expression [1]:

W (θ ) ∝
∞∑

I=0

(2I + 1)TI

×
∑I

K=−I [(2I + 1)/2]|DI
0,K (θ )|2 exp

(−K2/2K2
0

)
∑I

K=−I exp
(−K2/2K2

0

) ,

(5)

where TI is the transmission coefficient for fission.
The angular anisotropy of fission fragments is defined as

A = W (0◦)

W (90◦)
. (6)

By the assumptions, I + 0.5 ≈ I and the I distribution is
triangular, it can be shown that the fission fragment anisotropy
is given by

A ≈ 1 + 〈I 2〉
4K2◦

, (7)

where 〈I 2〉 is the mean square angular momentum of the
compound nucleus.

The prediction of angular anisotropy of fission fragments
by using the SSPS model is valid only under restrictive
assumptions. At high angular momentum, or at high fissility,
the rotating liquid drop model (RLDM) predicts that the fission
barrier height [Bf (I )] vanishes even for a spherical nucleus,
which leads to K2

◦ → ∞. Subsequently, the distribution of K
is uniform and hence the prediction of the SSPS model for the
angular anisotropy of fission fragments is nearly uniform as
shown by Eq. (7). This predicted tendency toward isotropy for
fission fragments at high angular momentum is not seen in the
experiments. This discrepancy is taken as a clear indication
that the width of the K distribution is not determined at the
predicted spherical saddle-point shape, but at a point where the
nucleus is more deformed. Therefore, the SSPS model breaks
down at high spin and/or large values of Z2

A
of the compound

nucleus, and the angular distribution of fission fragments is
governed by an effective transition state different from the
saddle-point transition state.

B. Scission-point statistical model

This model predicts angular anisotropies in reasonable
agreement with those measured for heavy-ion-induced fission
of some reactions where the fission barrier has vanished or be-
come very small relative to the nuclear temperature. Although
the formal equations for fragment angular distributions in the
SSPS and SPS models are of the same structure, the variances
in the distribution of angular momentum projections on the
fission direction are established at very different stages of the
fission process in the two models. The temperature of fission
fragments at the scission point is defined as

Tsci =
√

Ec.m. + Qff − Ek − Edef − Erot(�) − Eps

2a
, (8)
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where Qff , Ek , Edef , Erot(�), Eps , and a are the Q value
for the fission reaction, the total kinetic energy of fission
fragments, the deformation energy of fission fragments, the
orbital rotational energy for the angular momentum �, the
energy associated with pre-scission particle emission, and
the level density parameter, respectively. The total excitation
energy of the two fission fragments as a sum of their thermal
and intrinsic rotational energies is given by E − Erot(�), where
the orbital rotational energy for the angular momentum � is

Erot(�) = �2
�

2

2μR2
c

. (9)

In this equation, μ is the reduced mass of the fission channel,
and Rc is the distance between the centers of fission fragments
at the scission configuration, assuming this configuration to be
two spheres by the distance Rc that is given by the following
equation:

Rc = 1.44
Z1Z2

Ek

, (10)

where Z1, Z2 are the atomic numbers of fission fragments,
respectively [24]. The level density parameter in this model
depends on the mass number of one of the symmetry fission
fragments,

a = Aff

λ
, (11)

where Aff is the mass number of one of the symmetry fission
fragments and λ is usually taken to be a number between 8 and
12. The variance S2

0 for symmetric spherical fission fragments
is given by the following equation [24]:

S2
0 =

(
2�0T

�2

)[(
2�0 + μR2

c

)/
μR2

c

]
. (12)

The quantities �0 and T are the moment of inertia and
nuclear temperature of one of the symmetric fission fragments,
respectively.

The variance S2
0 for symmetric deformed fission fragments

is also given by the following equation:

S2
0 =

(
2�‖T

�2

)[(
2�⊥ + μR2

c

)/(
μR2

c + 2�⊥ − 2�‖
)]

.

(13)

Here, �‖ and �⊥ are the moments of inertia for a single fission
fragment perpendicular and parallel to its symmetry axis at
the scission point, respectively. The angular distribution of
fission fragments within the framework of the SPS model for
both spherical and ellipsoidal fission fragments and for a fixed
excitation energy is given by the following equation [2,24]:

W (θ ) ∝
Imax∑
Imin

(2I + 1)TI

×
∑I

m=−I [(2I + 1)/2]|DM=0,m(θ )|2 exp
(−m2/2S2

0

)
∑I

m=−I exp
(−m2/2S2

0

) ,

(14)

a formula reminiscent of the corresponding formula [Eq. (5)]
in the SSPS model. However, the variance K2

0 is replaced by
S2

0 , and S2
0 is calculated in a completely different way. The

angular anisotropy in this model is also calculated by a similar
equation as follows:

A ≈ 1 + 〈I 2〉
4S2

0

. (15)

III. UPGRADED SADDLE-POINT STATISTICAL MODEL

It was known that the SSPS model leads to an underesti-
mation of the measured fission fragment angular anisotropies
in several heavy-ion-induced fission reactions. Because of the
presence of the noncompound nucleus fission events, fission
fragment anisotropies have been observed to be anomalous in
comparison with the prediction of the SSPS model.

Back et al. have used an expression as a correcting factor
which depends on the ratio of Coulomb to centrifugal energies
to estimate the associated correction to the extracted values of
K2

0 as follows [17]:

K2
0 = (Ḱ0)2

[
122 + I 2

A
4
3 Z2

]2

. (16)

They found an expression in terms of the fissility parameter
χ and the y parameter of the rotating liquid drop model
(RLDM) [25] by the following equation:

K2
0 = (Ḱ0)2

(
1 + 1.245

y

χ

)2

, (17)

where (Ḱ0)2 is the standard deviation of the final (measured)
total helicity distribution. The fissility parameter χ and the y
parameter of the RLDM are given:

χ = Z2/A

50.883
[
1 − 1.7826

(
N−Z

A

)2] , (18)

y = 1.9249[
1 − 1.7826

(
N−Z

A

)2] I 2

A
7
3

. (19)

By applying this correction and the assumption that the
standard deviation of the K2

0 distribution at the scission point
is identical to the saddle-point K distribution, Back et al.
obtained the following relation:(�sph

�eff

)
Back

≈
(�sph

�eff

)
RLDM

(
1 + 1.245

y

χ

)−2

, (20)

where �sph is the rigid moment of a sphere of equal volume.
To upgrade the SSPS model, several factors can be

corrected. In the present study, the effective moment of inertia
of the compound nucleus at the saddle point is corrected,
with the assumption that the calculated nuclear temperature,
as well as the second moment of spin distribution of the
compound nucleus based on the SSPS model at this point,
are correct. For this purpose, the systematic study on the
experimental data of fission fragment angular distribution for
several heavy-ion-induced fission systems with an anomalous
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TABLE I. The studied heavy-ion-induced fission systems along
with their compound nucleus, Q values, and their fissility parameters.

Heavy-ion-induced Compound Q value (MeV) χ

fission system nucleus

24Mg + 208Pb 232Pu −74.05 0.800
28Si + 208Pb 236Cm −91.13 0.818
32S + 208Pb 240Cf −105.80 0.837
14N + 232Th 246Bk −25.62 0.817
16O + 232Th 248Cf −36.53 0.826
19F + 232Th 246Es −40.55 0.834
16O + 238U 254Fm −38.33 0.842
19F + 238U 257Md −43.17 0.849

behavior show that it is necessary to correct the above equation
by using the rotating finite range model (RFRM) [26] for the
calculation of effective moment of inertia and to introduce an
adjustable parameter n2 as shown by the following equation:(�eff

�2

)
corr.

≈ n2

(�eff

�2

)
RFRM

(
1 + 1.245

y

χ

)2

. (21)

It is also observed that the n can be parametrized in terms of
the entrance channel mass asymmetry α [α = (AT −Ap)

(AT +Ap) ] (where
AT and Ap are the mass number of target and the mass number
of projectile, respectively). The parameter n(α) is given by the
following relation for the studied heavy-ion-induced reaction
systems:

n(α) = −14.08 + 36.34α − 22.14α2. (22)

IV. RESULTS AND DISCUSSION

In the present work, we determined the necessary quantities
for the prediction of angular anisotropies within the SSPS,
SPS, and the USPS models for eight heavy-ion-induced fission
systems having an anomalous behavior in angular anisotropy.
In Table I, the systems are listed along with their compound
nucleus, Q values, and their fissility parameters χ .

Calculated necessary quantities for the prediction of angular
anisotropies within the models are also given in Table II.
The values of 〈I 2〉 for the studied systems are taken from
Refs. [17,22,27–31]. The level density parameter a is taken
AC.N.

8 (AC.N. is the mass number of the compound nucleus) for
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FIG. 1. (Color online) The effective moments of inertia at the
saddle point for the 32S + 208Pb system. The continuous, dashed,
and dot-dashed lines are the best fit on the experimental data, the
calculated effective moments of inertia based on the USPS model, and
the prediction of the RFRM, respectively. The experimental values of
the effective moments of inertia denoted by circles and squares are
taken from Refs. [17,27], respectively.

the angular anisotropies calculations based upon the SSPS
and the USPS models. For the studied heavy-ion reaction
systems, the derived effective moments of inertia at the
saddle point based on the USPS model are in agreement
with the experimental values of the effective moments of
inertia as indicated for the 32S + 208Pb reaction system in
Fig. 1. In this figure, the experimental values of the effective
moments of inertia, the effective moments of inertia based
on the RFRM, as well as the calculated effective moments
of inertia for the 32S + 208Pb reaction system at the saddle
point are shown. It can be clearly seen that for the system, the
agreement between the calculated effective moments of inertia
and the corresponding experimental data is satisfactory. The
agreement between the experimental values of the effective
moments of inertia and the calculated effective moments of
inertia based on the USPS model are also observed for the other
reaction systems. Figures 2–4 show the calculated angular
anisotropies based upon the SSPS, the SPS, and the USPS
models for the studied reaction systems. In these figures,
points also show the experimental values of fission fragment
angular anisotropies. It is observed that our results are in good

TABLE II. The studied systems and calculated necessary quantities for the prediction of angular anisotropies within the models.

Heavy-ion-induced Excitation energy
(
K2

0

)
SSPS

(σ 2)SPS

(
S2

0

)
SPS

(y(〈I 2〉))USPS

fission system (in MeV)

24Mg + 208Pb 32.63–61.15 (143.29 + 0.030〈I 2〉)Tsad 39.59Tsci 93.06Tsci 6.27 × 10−6〈I 2〉
28Si + 208Pb 31.72–58.84 (136.99 + 0.036〈I 2〉)Tsad 40.73Tsci 95.60Tsci 5.98 × 10−6〈I 2〉
32S + 208Pb 37.12–73.35 (198.69 + 0.076〈I 2〉)Tsad 41.89Tsci 98.20Tsci 5.71 × 10−6〈I 2〉
14N + 232Th 42.07–73.76 (148.69 + 0.020〈I 2〉)Tsad 43.56Tsci 102.43Tsci 5.51 × 10−6〈I 2〉
16O + 232Th 37.80–69.09 (195.58 + 0.050〈I 2〉)Tsad 44.24Tsci 103.75Tsci 5.41 × 10−6〈I 2〉
19F + 232Th 29.75–47.95 (211.53 + 0.067〈I 2〉)Tsad 45.14Tsci 105.80Tsci 5.26 × 10−6〈I 2〉
16O + 238U 26.76–96.54 (200.00 + 0.140〈I 2〉)Tsad 46.04Tsci 107.85Tsci 4.97 × 10−6〈I 2〉
19F + 238U 46.09–58.09 (174.00 + 0.310〈I 2〉)Tsad 46.95Tsci 109.94Tsci 5.11 × 10−6〈I 2〉
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FIG. 2. (Color online) Experimental fission fragment angular
distributions for the induced fission of the 208Pb by different
projectiles are compared with the predictions of the SSPS (dot-dashed
curve), the SPS (dashed curve), and the USPS (continuous curve). (a)
For the induced fission of the 208Pb target by 24Mg, the experimental
values of angular anisotropy are taken from Ref. [17]. (b) For the
induced fission of the 208Pb target by 28Si, the experimental values of
angular anisotropy are taken from Ref. [17]. (c) For the induced fission
of the 208Pb by 32S, the experimental values of angular anisotropy
denoted by circle and square points are taken from Refs. [17,27],
respectively.

agreement with the experimental data of angular anisotropies
as shown in these figures.

It is well known that the entrance channel mass asymmetry
parameter α with respect to the Businaro-Gallone critical mass
asymmetry parameter αBG plays a very dominant role in the
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FIG. 3. (Color online) Experimental fission fragment angular
distributions for the induced fission of the 232Th by different
projectiles are compared with the predictions of the SSPS (dot-dashed
curve), the SPS (dashed curve), and the USPS (continuous curve). (a)
For the induced fission of the 232Th target by 14N, the experimental
values of angular anisotropy denoted by triangles are taken from
Ref. [28]. (b) For the induced fission of the 232Th target by 16O,
the experimental values of angular anisotropy denoted by circles and
squares are taken from Refs. [17,29], respectively. (c) For the induced
fission of the 232Th target by 19F, the experimental values of angular
anisotropy denoted by circles are taken from Ref. [32].

reaction dynamics. The Businaro-Gallone mass asymmetry
parameter αBG is parametrized as αBG = 0 for χ < χBG, and

αBG = 1.12
√

(χ−χBG)
(χ−χBG)+0.24 for χ > χBG, where χ is the fissility

parameter, and χBG = 0.396 [33,34]. For the systems having
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FIG. 4. (Color online) Experimental fission fragment angular distributions for the induced fission of the 238U by different projectiles are
compared with the predictions of the SSPS (dot-dashed curve), the SPS (dashed curve), and the USPS (continuous curve). (a) For the induced
fission of the 238U target by 16O, the experimental values of angular anisotropy denoted by squares and triangles are taken from Refs. [17,30],
respectively. (b) For the induced fission of the 238U target by 19F, the experimental values of angular anisotropy denoted by circles are taken
from Ref. [31].

the entrance channel mass asymmetry parameter α larger
than the Bussinaro-Gallone mass asymmetry αBG, values of
anisotropies are normal, while for systems having α smaller
than αBG, the measured anisotropy values are much larger than
the SSPS model predictions. Table III includes the entrance
channel mass asymmetry parameter α, Businaro-Gallone mass
asymmetry parameter αBG, and n(α) for the systems. The
entrance channel mass asymmetry parameter for the all studied
systems is smaller than the Businaro-Gallone mass asymmetry
parameter as shown in Table III. The USPS model is also tested
for the two 32S + 197Au and 16O + 248Cm reaction systems.
Figure 5 is shown the calculated angular anisotropies based
upon the SSPS, the SPS, and the USPS models for the two
reaction systems. It is observed that the fission fragment
angular distributions calculated based upon the USPS model
are able to explain consistently the energy dependence of the
angular anisotropies for the two systems.

V. SUMMARY AND CONCLUSIONS

Fission fragment angular distributions for the eight reaction
systems with an anomalous behavior within the framework
of the standard saddle-point statistical, the scission-point
statistical, and the upgraded saddle-point statistical are calcu-
lated. The prediction of the upgraded saddle-point statistical
model for the studied systems are found in better agreement
with the experimental data of angular anisotropies than the
predictions of the standard saddle-point statistical and the
scission-point statistical models. In addition, the upgraded
saddle-point statistical model is tested for the two reaction
systems with an anomalous behavior anisotropy. It is observed
that the upgraded saddle-point statistical model also acts more
successful for these two systems than the two other models. As
a result, the upgraded saddle-point statistical model can be used
to predict the anomalous angular fragment distributions for
most reaction systems with anomalous fragment anisotropies.
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FIG. 5. (Color online) Experimental fission fragment angular distributions for the induced fission of the 32S + 197Au and 16O + 248Cm
reaction systems are compared with the predictions of the SSPS (dot-dashed curve), the SPS (dashed curve), and the USPS (continuous curve).
(a) For the induced fission of 32S + 197Au, the experimental values of angular anisotropy denoted by circles are taken from Ref. [17]. (b) For
the induced fission of 16O + 248Cm, the experimental values of angular anisotropy denoted by circles are taken from Ref. [17].
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TABLE III. The entrance channel mass asymmetry parameter, Businaro-Gallone
mass asymmetry parameter, and n(α) for the studied reaction systems.

Heavy-ion-induced fission system α αBG n(α)

24Mg + 208Pb 0.793 0.877 0.815
28Si + 208Pb 0.763 0.894 0.758
32S + 208Pb 0.733 0.901 0.662
14N + 232Th 0.866 0.894 0.737
16O + 232Th 0.871 0.897 0.776
19F + 232Th 0.849 0.900 0.815
16O + 238U 0.874 0.903 0.769
19F + 238U 0.852 0.905 0.810
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