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Potential barriers governing the 12C formation and decay through quasimolecular shapes
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The L-dependent potential barriers that govern the 8Be and 12C formation and decay through quasimolecular
shapes have been determined using a generalized liquid-drop model and adjusted to reproduce the experimental
Q value. For the ternary channel of 12C, the energies of prolate linear chain configurations and oblate triangular
configurations of three α particles have been compared. The triangular shape with three α nuclei in contact allows
the experimental rms radius and the negative quadrupole moment of the 12C ground state to be reproduced. The
difference between the energies of the minima in the prolate and oblate ternary shape paths is very close to the
energy of the excited Hoyle state of the 12C nucleus.

DOI: 10.1103/PhysRevC.90.024607 PACS number(s): 26.20.Fj, 25.60.Pj, 21.60.Ev, 21.10.−k

I. INTRODUCTION

Hydrogen burning in stars leads to a dense and hot core of
helium that fuels the nucleosynthesis of the heavier elements.
The “triple-α” capture phenomenon has been advanced to
explain the formation of the 12C nuclei. In a first stage of this
process two α particles resonate in the ground state of 8Be.
The half-life of this state (8.2 × 10−17s) allows the capture of
a third particle before it disintegrates leading to the 0+

2 excited
Hoyle state of 12C (E∗ = 7.6542 MeV). The probability of
such a process is non-negligible because this excitation energy
is very close to the Qα+8Be = 7.3666 MeV and Q3α = 7.2747
MeV thresholds. The knowledge of the shape of the 12C
nucleus in its ground and excited states is of great importance
to fully understand this fusion reaction.

Theoretically, after calculating transition densities derived
from the three-α resonating-group wave functions it was
concluded that the shape of the ground state of 12C is oblate
[1]. Within an isomorphic shell model it has been assumed
that both the ground state and the first 0+ excited state can be
associated with an α chain composed of three particles in a row
[2], but the decay width of the Hoyle state is not reproduced.
Calculations using antisymmetrized molecular dynamics and
Fermionic molecular dynamics without assuming α clustering
have allowed the low-lying spectrum of 12C to be reproduced
[3,4]. It has also been found that the 0+

2 Hoyle state has a
Bose-Einstein dilute 3α condensatelike structure [5,6]. Recent
ab initio lattice calculations have led to a compact triangular
configuration for the 12C ground state and the first excited state
2+

1 state and to a “bent-arm” or obtuse triangular configuration
of α clusters for the Hoyle state and the second excited 2+

2 state
[7]. The no core shell model has shown that the collective states
and states with clusterlike substructures can emerge out of a
fully microscopic shell model framework [8]. The Hoyle state
has also been described in terms of a local potential 8Be + α
cluster model [9].

Experimentally, the value of the root-mean-square charge
radius of the ground state of 12C is 〈r2〉1/2 = 2.47 fm [10].
The electric quadrupole moment of the 12C ground state
is Q0 = −22+

−10 e fm2 assuming that the nuclear charge
distribution is spheroidal with K = 0 [11], which indicates
a substantial oblate deformation incompatible with the linear

chain configuration of three α particles. To populate the
Hoyle state of 12C [12,13] fragmentation of quasiprojectiles
in the reaction 40Ca + 12C at 25 MeV/nucleon was employed;
7.5 ± 4% of the particle decays of the Hoyle state correspond
to direct decays in three equal-energy α particles and thus
fulfill the decay criteria of an α-particle condensate. Moreover,
events with increased kinetic energy dispersion in the 12C
center of mass, which amount to 9.5 ± 4%, point toward
the occurrence of a second molecular configuration, a linear
α-chain type. Different ratios have also been provided [14].
Beyond the excited 0+

2 Hoyle state, evidence has been observed
for a possible 2+ state at 9.6(1) MeV with a width of
600(100) keV [15]. Analyzing (α,α′) cross-section data, a
2+ excitation of the Hoyle state and the α-condensate state
at Ex = 9.84 ± 0.06 MeV with a width of 1.01 ± 0.15 MeV
have also been found [16].

The purpose of this work is to determine the L-dependent
potential barriers governing the evolution of the 8Be nucleus of
the 8Be + 4He system and the 4He + 4He + 4He oblate trian-
gular and prolate longitudinal configurations in the framework
of a generalized liquid-drop model (GLDM)and of binary and
ternary quasimolecular shapes.

II. GENERALIZED LIQUID-DROP MODEL

This version of the liquid-drop model has been used
previously to determine the fusion barriers and cross sections
[17,18], the binary [19] and ternary [20] fission barriers
and characteristics, and the α-decay potential barriers and
half-lives [21].

The GLDM energy is the sum of the volume, surface,
Coulomb, and nuclear proximity energies. For a one-body
shape nucleus, the first three contributions are given by

EV = −15.494(1 − 1.8I 2)A MeV, (1)

ES = 17.9439(1 − 2.6I 2)A2/3 S

4πR2
0

MeV, (2)

where I = (N − Z)/A is the relative neutron excess and S is
the surface of the deformed nucleus, and

EC = 0.6e2(Z2/R0)BC. (3)
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The Coulomb-shape-dependent function BC is expressed as

BC = 15

16π2R5
0

∫
dτ

∫
dτ ′

|r − r ′| . (4)

By using the axial symmetry of the system and complete
elliptic integrals it reduces to

BC = 0.5
∫

(V (θ )/V0)(R(θ )/R0)3 sin θdθ. (5)

V (θ ) is the electrostatic potential at the surface and V0 is the
surface potential of the sphere. The nuclear radius is defined
as

R0 = (1.28A1/3 − 0.76 + 0.8A−1/3) fm. (6)

This formula was derived from the droplet model and from the
proximity energy values.

All along the entrance or decay channels the proximity
energy term takes into account the effects of the nuclear
attractive forces between nucleons in a neck, in the case of
a deformed one-body shape or across the gap and in the
case of two or three nuclei. This is an additional term to
the surface energy which takes into account only the effects
of the nuclear forces in a half-space. This proximity term is
necessary to reproduce the fusion barrier heights, beyond the
pure Coulomb peak approximation. It is particularly important
when there are two or three spherical nuclei in contact and for
quasimolecular one-body shapes where the necks are narrow
and well developed. When the proximity energy is taken into
account, the potential barrier is smooth even at the contact
point and the top of the barrier corresponds to separated nuclei
maintained in unstable equilibrium by the balance between the
repulsive Coulomb forces and the attractive nuclear proximity
forces. As examples, the symmetric fission barrier of a 234U
nucleus through compact and creviced shapes is lowered by
around 40 MeV by the proximity energy [22,23] and then
the barrier height is comparable to the experimental data.
The proximity forces lower of 5.7 MeV the barrier against α
emission from a 264Hs nucleus, the displacement of the barrier
top to a more external position being of 2.1 fm [21].

The proximity energy reads

Eprox(r) = 2γ

∫
� [D(r,h)/b] 2πhdh, (7)

where r is the distance between the mass centers, � is the
proximity function of Feldmeier [24], h is the transverse
distance varying from the neck radius for one-body shapes
and zero for separated nuclei to the height of the neck border,
b is the surface width (b = 0.99 fm), D is the distance between
the opposite surfaces on a line parallel to the separation axis
(see Ref. [17]), and γ is the surface parameter:

γ = 0.9517(1 − ksI
2) MeV fm−2. (8)

The experimental Q value which incorporates the micro-
scopic corrections plays a main role. It has been taken into
account empirically in adding the difference between the
experimental and the theoretical Q values deduced from the
GLDM at the macroscopic potential energy of the mother
spherical nucleus with a linear attenuation factor vanishing at

FIG. 1. Potential barriers governing the 8Be ↔ 4He + 4He,
8Be → 7Li + 1H, and 8Be → 6Li + 2H reactions versus the distance
between the mass centers (at L = 0). The vertical dash indicates the
contact point between the two nuclei.

the contact point of the two or three fragments or incoming
nuclei.

To describe the evolution of one sphere to two spheres in
contact assuming volume conservation, elliptic lemniscatoids
have been retained because they allow the progressive for-
mation of a deep neck while keeping almost spherical ends
[17]. A generalization of this shape sequence permits one to
also describe the prolate ternary path that leads from a sphere
to three aligned spheres in contact [20] and then to simulate
the linear chain configurations of three α particles. The oblate
ternary fission or fusion has been described from the contact
point between three α particles arranged on an equilateral
triangle and which separate in keeping the same triangular
configuration [25]. The proximity energy is maximized for
such shape sequences.

III. 8Be NUCLEUS

First, the 8Be nucleus is considered. The potential barriers
of the three reactions 8Be ↔ 4He + 4He, 8Be ↔ 7Li + 1H,
and 8Be ↔ 6Li + 2H are displayed in Fig. 1 and the character-
istics are given in Table I. The figure displays the deformation

TABLE I. Characteristics of different 8Be entrance or decay
channels. rsph and rcont are, respectively, the distance between the
mass centers of the two parts of the system at the sphere and at
the contact point while rEmin and rEmax indicate the position of the
minimum and maximum of the potential barriers.

rsph rEmin rcont rEmax ∞
8Be ↔ 4He + 4He
r (fm) 1.65 3.39 3.49 7.45
E (MeV) 0 −7.95 −7.84 0.62 −0.0918
8Be → 7Li + 1H
r (fm) 1.73 3.33 6.89
E (MeV) 0 12.94 17.82 17.25
8Be → 6Li + 2H
r (fm) 1.69 3.42 7.38
E (MeV) 0 15.43 22.81 22.28
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FIG. 2. Comparison between the deformation energies calculated
without (broken curve) and with (full curve) a proximity energy term
for the 8Be ↔ 4He + 4He reaction.

energy relatively to the sphere energy, which explains that the
potential barriers start from the same energy point. For the
largest deformations the energy corresponds to the Q value of
the fusion process. The top of the barriers corresponds to two
separated spheres. The possibility of resonant states exists in
the 4He + 4He channel.

The influence of the proximity energy term is underlined
in Fig. 2. The unrealistic pure Coulomb peak is given by the
dashed curve. The maximum corresponds to the contact point.
When the effects of the proximity forces are taken into account
the energy at the contact point diminishes by around 9.4 MeV
while the barrier top is shifted 4 fm.

Within this macroscopic model the decay constant is simply
given by λ = ν0P . The assault frequency ν0 has been taken as
ν0 = 1020 s−1. The barrier penetrability P is calculated within
the action integral:

P = exp

[
−2

�

∫ rout

rin

√
2B(r)[E(r) − Eg.s.]dr

]
. (9)

The inertia B(r) is related to the reduced mass by

B(r) = μ{ 1 + 24 exp[−3.25(r − Rsph)/R0]}, (10)

where Rsph is the distance between the mass centers of the
future fragments in the initial sphere; Rsph/R0 = 0.75 in the
symmetric case. For shapes near the ground state the inertia
is largely above the irrotational flow value because a large
amount of internal reorganization occurs at level crossings.
For highly deformed shapes the reduced mass is reached
asymptotically. Such a prescription for the inertia parameter
has allowed the fission half-lives of the actinide nuclei to be
precisely reproduced [19]. A more detailed discussion of this
parameter may be found in Ref. [26].

The partial half-life is finally obtained by T1/2 = ln 2
λ

. Here,
the instability of the 8Be nucleus against its symmetric decay
leads to a theoretical half-life of 5.7 × 10−16 s, a value close
to the experimental value 8.2 × 10−17 s. The rotational energy
is given by

Erot = �
2l(l + 1)/2J, (11)

assuming a rigid moment of inertia. The L-dependent barriers
are displayed in Fig. 3. The indicated energy is the sum of

FIG. 3. Potential barriers of the 8Be ↔ 4He + 4He reaction as a
function of the angular momentum (in � units).

the deformation energy and of the rotational energy. The
theoretical energies of the 2 and 4 states are, respectively,
3.78 and 12.25 MeV, not too far from the experimental values,
3.03 and 11.35 MeV, of the energies of the 2+ and 4+ states.
Nevertheless, this potential does not allow us to reproduce the
half-life for the L = 2 level.

IV. 12C NUCLEUS

Several binary channels governing the 12C evolution are
compared in Fig. 4 and the characteristics are given in
Table II. The respective Q values are −7.365, −25.19,
−26.28, and −28.17 MeV. Resonant states are possible in
the very specific 12C ↔ 8Be + 4He channel. They correspond
to a quasimolecular one-body shape formed by two nuclei
connected by a narrow neck.

The potential barriers corresponding to the direct aligned
3α fusion and the 8Be + 4He fusion reaction are compared in
Fig. 5. The Q values are almost identical, respectively, 7.2747
and 7.3666 MeV. The proximity energy between three aligned
α particles is stronger than the proximity energy between an
assumed spherical 8Be nucleus and an α particle because there
are two necks for the ternary configuration. The proximity
forces act at larger values of the distance r in the ternary case,
which explains the crossing of the curves at r = 8 fm.

FIG. 4. Potential barriers governing the 12C ↔ 8Be + 4He,
12C → 10B + 2H, 12C → 9Be + 3He, and 12C → 6Li + 6Li reactions
versus the distance between the mass centers (at L = 0). The vertical
dash indicates the contact point between the two nuclei.
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TABLE II. Same as Table I but for the 12C nucleus reactions.

rsph rEmin rcont rEmax ∞
12C ↔ 8Be + 4He
r (fm) 1.91 3.41 3.96 7.43
E (MeV) 0.00 −1.95 −0.63 8.77 7.365

12C → 10B + 2H
r (fm) 1.98 3.81 7.49
E (MeV) 0.00 18.26 26.06 25.19
12C → 9Be + 3He
r (fm) 1.94 3.90 7.12
E (MeV) 0.00 20.97 27.73 26.28
12C → 6Li + 6Li
r (fm) 1.89 4.0 7.48
E (MeV) 0.00 19.63 29.44 28.17

The L-dependent potential barriers in the prolate ternary
shape path are shown in Fig. 6. A minimum persists even at
relatively high angular momenta.

Experimentally, the value of the electric quadrupole mo-
ment of the 12C ground state is Q0 = −22 ± 10 e fm2

assuming that the nuclear charge distribution is spheroidal with
K = 0 [11], which indicates a substantial oblate deformation
incompatible with the linear chain configuration of three α
particles. The other fundamental property is the root-mean-
square charge radius 〈r2〉1/2 = 2.47 fm for the 12C nucleus
[10].

To study these oblate ternary configurations three spherical
α particles have been placed in contact on an equilateral
triangle (see Fig. 7) and later separated and moved away from
each other in keeping the regular triangular configuration. At
the contact point, the rms radius is 〈r2〉1/2 = 2.43 fm and the
electric quadrupole moment is Q0 = −24.4 e fm2, both in very
good agreement with the experimental data.

All along the deformation path the rms radius is connected
with the distance l from the center of each fragment to the
mass center of the total system by [25]

〈r2〉 = 3
5R2

03−2/3 + l2. (12)

FIG. 5. Comparison between the potential barriers governing the
12C ↔ 8Be + 4He and 12C ↔ 4He + 4He + 4He binary and prolate
ternary reactions.

FIG. 6. Potential barriers of the 12C ↔ 4He + 4He + 4He reac-
tion as a function of the angular momentum and for a linear chain
configuration.

The L-dependent potential barriers seen by this oblate
configuration of three α particles are displayed in Fig. 8. For
such a shape the proximity energy between the nucleons is
very important; Eprox = −28.2 MeV at the contact point. For
the linear chain, there are only two necks and the proximity
energy is only −18.8 MeV at the touching point. Therefore the
characteristics of the oblate configuration of three α particles
in contact at the top of an equilateral triangle seem compatible
with the experimental data available on the ground state of the
12C nucleus. Furthermore the difference between the energy
of the minima of the potential barrier of the 3α linear chain
and the minima of the oblate equilateral configuration is
7.36 MeV, a value very close to the energy of the excited
Hoyle state. This is in favor of a linear chain configuration for
the Hoyle state. Then the L = 2 and L = 4 excited states of
the prolate longitudinal chain have energies of, respectively,
8.7 and 11.7 MeV compared with the experimental value of
the 2+ state at 9.6(1) MeV with a width of 600(100) keV [15].

The feasibility of such a liquid-drop approach for such
light systems is evidently questionable. At least, one may be
confident with the calculation of the proximity energy because
it allows one to reproduce precisely the fusion barrier heights
and positions of symmetric and very asymmetric light systems
such as 9Be + 10B, 4He + 44Ca, 4He + 233U [27] and also to
determine precisely the α-decay potential barriers [21] with the

FIG. 7. Oblate ternary configuration of three α particles in
contact. l is the distance between the mass center of an α particle
and the mass center of the whole system.
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FIG. 8. L-dependent potential barriers for the 12C ↔ 4He +
4He + 4He reaction and a triangular configuration. Q is the rms
radius.

help of the experimental Q value. One may also wonder that
such a liquid-drop model is available (when taking also into
account other terms) to reproduce the mass of light nuclei even
though the accuracy is lower than that for heavier nuclei [28].
Another open question is the availability of such an approach
for such distorted quasimolecular or two-body and three-body

shapes. The question is the same for microscopic theories using
mean fields.

As stated in the Introduction, much more elaborated
microscopic quantum theories have been developed recently.
They allow one to determine accurate density profiles and, in
particular, to obtain one-body “bent-arm” or obtuse triangular
configurations. The reproduction of the transition from one-
body to two- or three-body shapes or the fusion process is
more difficult and time-consuming.

V. SUMMARY AND CONCLUSION

In conclusion, within a GLDM taking into account the
proximity energy and adjusted to reproduce the experimental
Q value, the L-dependent potential barriers for the binary
12C ↔ 8Be + 4He and 12C ↔ 4He + 4He + 4He prolate and
oblate ternary reactions have been calculated. The oblate
triangular configuration of three α particles in contact is
compatible with the experimental rms radius and electric
quadrupole moment while the linear configuration of three
aligned α particles allows one to reproduce roughly the energy
of the excited 0+ Hoyle state and the energy of the excited 2+
Hoyle state.

[1] M. Kamimura, Nucl. Phys. A 351, 456 (1981).
[2] G. S. Anagnostatos, Phys. Rev. C 51, 152 (1995).
[3] Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).
[4] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[5] T. Yamada and P. Schuck, Eur. Phys. J. A 26, 185 (2005).
[6] H. Horiuchi, in Proceedings of the 13th International Confer-

ence on Nuclear Reaction Mechanisms, edited by F. Cerutti et al.
(CERN Proceedings-2012-002) (ARACNE editrice S.r.l, Roma,
2012), p. 261.

[7] E. Epelbaum, H. Krebs, T. A. Lähde, D. Lee, and Ulf-G.
Meissner, Phys. Rev. Lett. 109, 252501 (2012).

[8] A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, and
C. Bahri, Phys. Lett. B 727, 511 (2013).

[9] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 87,
024304 (2013).

[10] I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).
[11] W. J. Vermeer et al., Phys. Lett. B 122, 23 (1983).
[12] A. R. Raduta et al., Phys. Lett. B 705, 65 (2011).
[13] A. R. Raduta et al., J. Phys.: Conf. Ser. 420, 012087 (2013).
[14] T. K. Rana et al., Phys. Rev. C 88, 021601(R) (2013).

[15] M. Freer et al., Phys. Rev. C 80, 041303(R) (2009).
[16] M. Itoh et al., Phys. Rev. C 84, 054308 (2011).
[17] G. Royer and B. Remaud, Nucl. Phys. A 444, 477 (1985).
[18] G. Royer and J. Gaudillot, Phys. Rev. C 84, 044602 (2011).
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