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Corrections to the eikonal approximation for nuclear scattering at medium energies
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The upcoming Facility for Rare Isotope Beams (FRIB) at the National Superconducting Cyclotron Laboratory
(NSCL) at Michigan State University has reemphasized the importance of accurate modeling of low energy
nucleus-nucleus scattering. Such calculations have been simplified by using the eikonal approximation. As a high
energy approximation, however, its accuracy suffers for the medium energy beams that are of current experimental
interest. A prescription developed by Wallace [Phys. Rev. Lett. 27, 622 (1971) and Ann. Phys. (NY) 78, 190
(1973)] that obtains the scattering propagator as an expansion around the eikonal propagator (Glauber approach)
has the potential to extend the range of validity of the approximation to lower energies. Here we examine the
properties of this expansion, and calculate the first-, second-, and third-order corrections for the scattering of a
spinless particle off of a 40Ca nucleus, and for nuclear breakup reactions involving 11Be. We find that, including
these corrections extends the lower bound of the range of validity down to energies as low as about 45 MeV. At
that energy the corrections provide as much as a 15% correction to certain processes.
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I. INTRODUCTION

Ongoing and planned experiments using rare isotopes
promise to further our understanding of nuclei and their role
in astrophysics [1]. Nuclear reaction theory is needed both
to interpret the data and to determine the necessary experi-
ments [2–4]. Use of the eikonal approximation (also known
as Glauber theory [5]) has long been known as an appealing
procedure to simplify the calculations, for medium and low
energies; see, e.g., [6–10]. This technique has often been
used to analyze experiments—see, e.g., [11–13]—performed
at energies less than 100 MeV per nucleon. A computer
program using the eikonal approximation, described as being
appropriate for knockout reactions for energies between 30 and
2000 MeV per nucleon, has been published [14]. However, as
stated in the orignal article [5], the Glauber theory rests on the
approximation that the product of the wave number k and the
range of the relevant potential a satisfy

k a � 1 (1)

and that the magnitude of the scattering potential V be very
small compared to the scattering energy, E, so that

V/E � 1. (2)

For a nucleon of energy 100 MeV and nucleus of radius ≈
3 fm, ka ≈ 6, and V/E ≈ 1/2. It is far from obvious that
the conditions for the accuracy of the Glauber approximation
are satisfied. Moreover, it is not clear if the relevant distance
appearing in the term ka should be the nuclear radius or the
nuclear diffuseness. If the latter, the beam energy must be
higher for the eikonal approximation to be valid. It is therefore
of interest to assess the accuracy of Glauber theory and the
lower limits on energy for which it may be applied [15]. In
the following we treat the terms “eikonal approximation” and
“Glauber theory” as synonymous.

The conclusions of Ref. [15] have been summarized [2] as
showing that the eikonal approximation is accurate to within a
few percent for energies as low as 20 MeV/nucleon. This con-

clusion is based on a comparison between the results of using
the eikonal approximation and a time-dependent Schrödinger
equation. The incoming projectile is treated as a bound state
of a nucleon and a core. The time-dependent Schrödinger
equation that includes the dynamics of the interaction of the
nucleon with the core as well as the nucleon-target interaction
was solved. We do not believe the conclusion that the eikonal
approximation is valid at 20 MeV [2] to be a valid summary
of the work of Ref. [15]. This is because the time-dependent
equation [their Eqs. (5) and (6)] treats the motion of the core
of the projectile as following the linear trajectory R = b + vt .
In other words, the eikonal approximation is used in the
time-dependent Schrödinger equation. Thus the work contains
no actual test of the eikonal approximation. However, Ref. [15]
does have the very useful result that the interaction between
the nucleon and the core that occurs during the nuclear reaction
can be neglected for energies as low as 20 MeV/nucleon. Thus
the so-called sudden approximation is justified, at least for one
particular state. However, the use of the eikonal approximation
has not been justified and the range of its validity has not been
fully determined. Thus the present paper is devoted to studying
the corrections to the eikonal approximation.

In this paper we assess the validity of the eikonal
approximation by computing the corrections (Sec. II) to
this approximation for potential scattering (Sec. III), and
for reactions involving halo nuclei (Sec. IV). The principal
tool is the expansion developed by Wallace [16,17] in
which the complete Green’s function is expanded about the
Glauber approximation to the complete Green’s function. Our
results and directions for further research are summarized
in Sec. V.

II. CORRECTIONS TO THE EIKONAL THEORY

We first apply the corrections to the eikonal approxi-
mation described by Wallace [16,17] for scattering of a
spin-zero particle off a generic potential. This exercise is
useful because we can calculate the scattering amplitude
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exactly using a partial wave expansion and compare it
with successive corrections in the eikonal expansion. We
will give a quick review of the corrections here using the
same notation as [16,17] before showing the results of our
calculations.

The T matrix for scattering at a center of mass energy
E = K2/2M is given by

T (E) = V + V G0(E)T (E) = V + V G(E)T (E), (3)

where G−1(E) = E − P 2/2M − V + iε is the particle prop-
agator and V is the interaction potential.

The Wallace eikonal expansion consists of expanding the
momentum operator P about a particular vector k and dropping
all terms quadratic in P − k. The choice k = Kk̂ with k̂
as the average of the projectile initial and final direction
[k = (ki + kf )/2] gives the Glauber approximation and the
propagator:

g−1 = v · (k − P) − V + iε. (4)

The difference between the full propagator G and the reduced
eikonal propagator g is given by

g−1 − G−1 = N, (5)

N = [1 − cos(θ/2)](g−1 + V )

+ [(P − kf ) · (P − ki)]/2M, (6)

where θ is the scattering angle.
It is then possible to solve for the T matrix as a perturbation

series:

T = (V + VgV ) + VgNgV + VgNgNgV

+VgNgNgNgV + · · · . (7)

The Glauber approximation consists of keeping only the
terms in parentheses, and Wallace showed how to systemati-
cally calculate higher order correction terms. The result is an
expansion in powers of the interaction energy over the kinetic
energy with corrections due to the spatial nonuniformity of
the potential. He explicitly calculated the first three correction
terms, initially with the conjecture of some advantageous
cancellations [16,17], and later [18] in an explicit calculation
he obtained the same results shown below as:

T (0)(b) = eiχ0(|b|) − 1, (8)

T (1)(b) = ei(χ0(|b|)+τ1(|b|)) − 1, (9)

T (2)(b) = ei(χ0(|b|)+τ1(|b|)+τ2(|b|))e−ω2(|b|) − 1, (10)

T (3)(b) = ei(χ0(|b|)+τ1(|b|)+τ2(|b|)+τ3(|b|)+φ3(|b|))e−ω2(|b|)−ω3(|b|) − 1.

(11)

Here b is the impact parameter, T (0) is the Glauber
approximation, and the phases are defined below, with
z ⊥ b, r = b + z, U (r) = V (r)/V (0), β̂n ≡ bn∂n/∂bn, and
ε = V (0)/2E:

χ0(b) = −2Kε

∫ ∞

0
dz U (r), (12)

τ1(b) = −Kε2(1 + β̂1)
∫ ∞

0
dz U 2(r), (13)

τ2(b) = −Kε3

(
1 + 5

3
β̂1 + 1

3
β̂2

)

×
∫ ∞

0
dz U 3(r) − b[χ ′

0(b)]3

24K2
, (14)

ω2(b) = bχ ′
0(b)

∇2χ0(b)

8K2
, (15)

τ3(b) = −Kε4

(
5

4
+ 11

4
β̂1 + β̂2 + 1

12
β̂3

)

×
∫ ∞

0
dz U 4(r) − bτ ′

1(b)[χ ′
0(b)]2

8K2
, (16)

φ3(b) = −Kε2

(
1 + 5

3
β̂1 + 1

3
β̂2

) ∫ ∞

0
dz

[
∂U (r)/∂r

2K

]2

,

(17)

ω3(b) = bχ ′
0(b)∇2τ1(b) + bτ ′

1(b)∇2χ0(b)

8K2
, (18)

We see that the corrections related to β̂n involve the derivatives
of the nuclear potential which are large in the region of the
nuclear surface. This indicates that the product of the wave
number and the nuclear diffuseness parameter needs to be
large compared to unity for the eikonal approximation to
be valid. This condition is more stringent than the one
involving the product of the wave number and the nuclear
radius. In addition, the nature of the expansion, occurring in
powers of ε, shows that the condition of Eq. (2) is important.

The scattering amplitude is then simply

f (q) = −iK/2
∫

d2b eiq·bT (n)(b). (19)

III. EIKONAL EXPANSION VERSUS EXACT
PARTIAL WAVE RESULTS

Our focus is on reactions at Facility for Rare Isotope
Beams (FRIB) energies. We therefore evaluate the scattering
amplitude for protons scattering off of 40Ca using the potential
described by Varner et al. [19] for incident center-of-mass
kinetic energies between 16 and 98 MeV. We neglect the
spin-orbit and the Coulomb interaction because such terms
are neglected in Ref. [10].

This potential is then given by

V (r,E) = −Vr (E) fws(r,R0,a0) − iWv(E) fws(r,Rw,aw)

− i Ws(E)
d

dr
fws(r,Rw,aw), (20)

with

fws(r,R,a) = 1

1 + exp[(r − R)/a]
, (21)

Vr (E) = V0 + Ve(E − Ec) ± Vtε, (22)

Wv(E) = Wv0fws(Wve0,(E − Ec),Wvew), (23)

Ws(E) = (Ws0 ± Wstε)fws((E − Ec),Wse0,Wsew), (24)

where the ± indicates + for proton projectiles and − for
neutron projectiles. Parameters in the model can be found in
Table I and in the text.
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TABLE I. Parameters of interest from Ref. [19].

Parameter Value Uncertainty

ε (N − Z)/A
V0 52.9 MeV ±0.2
Vt 13.1 MeV ±0.8
Ve −0.299 ±0.004
r0 1.250 fm ±0.002
r

(0)
0 −0.225 fm ±0.009

R0 r0A
1/3 + r

(0)
0

a0 0.690 fm ±0.006
rc 1.24 fm
r (0)

c 0.12 fm
Rc rcA

1/3 + r (0)
c fm

Ec 6Ze2/5Rc MeV
Wv0 7.8 MeV ±0.3
Wve0 35 MeV ±1
Wvew 16 MeV ±1
Ws0 10.0 MeV ±0.2
Wst 18 MeV ±1
Wse0 36 MeV ±2
Wsew 37 MeV ±2
rw 1.33 fm ±0.01
r (0)

w −0.42 fm ±0.03
Rw rwA1/3 + r (0)

w fm
aw 0.69 fm ±0.01

The approximate eikonal solution to potential scattering
can be compared with an exact solution obtained by using a
partial wave technique. Phase shifts for arbitrary values of �
are obtained by numerically solving the radial Schrödinger
equation,

d2u�

dr2
+

(
k2 − 2mV − �(� + 1)

r2

)
u� = 0,

σ  
ba

rn
s

1005020 30 70
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FIG. 1. (Color online) Total nuclear cross section σ for a proton
incident on 40Ca as a function of beam energy. The exact partial wave
result is the thick (blue) line, the zeroth-order eikonal approximation
is the thin (magenta) line, the first-order eikonal approximation is the
(beige) dashed line, the second-order eikonal approximation is the
(green) dot-dashed line, and the third-order eikonal approximation is
the (red) dotted line.
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FIG. 2. (Color online) Differential elastic cross section dσ/d


for p + 40Ca at a beam energy of 40 MeV in logarithmic scale.
The angle θ is the scattering angle from the forward direction. The
designations for the lines are the same as in Fig. 1.

matching u�(R) = Reiδ� [cos(δ�)j�(kR) − sin(δ�)n�(kR)] for
R large enough such that V (R) ≈ 0, and solving for δ�.
Here, j� and n� are spherical Bessel functions of the first
and second kind, respectively. The scattering amplitude is
then

f (θ ) =
∞∑

�=0

(2� + 1)eiδ� sin δ�P�(cos θ ).

This sum is taken to convergence and compared to scattering
amplitudes derived from the eikonal approximation. This
comparison provides an indication of the validity of the
approximation when applied to more complex systems for
which an exact solution is not feasible.

Results of calculations

Our main results for these calculations are presented in
Figs. 1–4. Figure 1 shows the total elastic nuclear cross section
of a spinless proton incident on a 40Ca nuclear potential
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FIG. 3. (Color online) Same as Fig. 2, but zoomed in on the
forward scattering region, and with a linear scale.
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FIG. 4. (Color online) Real and imaginary parts of the transition matrix elements T (n)(b) for successive orders n in the eikonal expansion.
The designations for the lines are the same as in Fig. 1. (a), (b) Beam energy at 20 MeV. (c), (d) Beam energy at 40 MeV. (e), (f) Beam energy
at 98 MeV.

in the exact calculation, and in successive orders in the
eikonal expansion. The zeroth-order eikonal approximation
has an error of at least 5% up to 100 MeV, while includ-
ing the correction terms reduces the error to <1% above
about 45 MeV. The relative degree of agreement between
the zeroth-order approximation and the exact calculation at
energies below 20 MeV is likely a coincidence. Thus the
third-order expansion is not effective for energies below about
45 MeV.

Figures 2 and 3 show the differential elastic cross sec-
tion for the same reaction at a beam energy of 40 MeV.
Even for forward scattering, the zeroth-order eikonal ap-
proximation severely underestimates the exact value, and

successive corrections monotonically improve the estimate.
The corrections also successively improve the range in the
polar angle θ over which the approximation is accurate.
However, the third-order expansion does not provide accu-
rate results for angles greater than 1 radian at energies of
40 MeV.

Figure 4 gives the real and imaginary parts of the T -matrix
elements T (n)(b) for successive orders n in the expansion as
a function of the impact parameter b at a variety of beam
energies. The rapid oscillations and drastic changes in T with
each correction at 20 MeV imply that the expansion is not
appropriate there. This is because the interaction potential is
energy dependent. In this case, it is the imaginary part of the
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FIG. 5. (Color online) (a) Imaginary surface (solid blue) Ws(E) and volume (dashed magenta) Wv(E) terms of Varner potential as a function
of beam energy. (b) Real (solid blue) and imaginary (dashed magenta) parts of τ3(b) at a beam energy of 20 MeV.

potential that is important. It has both a surface and a volume
term which have magnitudes that behave oppositely as a
function of beam energy, as shown in Fig. 5(a). At low energies,
the surface term dominates and the derivative operators β̂n in
τ3(b) are large, negative, and imaginary [see Fig. 5(b)], which
generate large oscillations in T (3)(b). [The frequencies of such
oscillations are given by the real part of τ3(b).] This behavior
also occurs in τ2(b) and τ1(b), but at lower energies. The point
at which this breakdown occurs provides a lower bound on
the effectiveness of the expansion that can be computed order
by order. For example, in Fig. 6(a), which was calculated at
25 MeV, the third-order correction has a real part of about
1, which is already an amplitude of oscillations in T (3)(b) of
about 2.7 at b ≈ 3.75. The second-order correction is about to
enter positive territory in Fig. 6(a) at b ≈ 3.25, and will start
to generate similar rapid oscillations in T (2)(3.25) at lower
eneries. This can be seen in Fig. 4(a), which was calculated
at 20 MeV. Thus, empirically, the second-order correction is
effective to about 25 MeV for this potential. Using the same
method, we find the third-order correction to be effective to
about 30 MeV.

Since the convergence of the expansion improves at higher
energies, calculating only the first-order correction should

be sufficient at some sufficiently high beam energy. From
Fig. 1 this appears to happen for this potential at a beam
energy of about 60 MeV. Above this value, the fractional
error in the second- and third-order corrections is only
marginally lower than the fractional error in the first-order
correction.

With these calculations, it is apparent that for at least
some interactions, these third-order corrections to the eikonal
approximation are meaningful over a range of energies. It
is therefore worthwhile to apply the corrections to a more
interesting reactions to further evaluate their effectiveness.

IV. BREAKUP REACTIONS OF HALO NUCLEI 11Be

We now apply these calculations to the study of scattering
of 11Be off of various targets, using the reaction theory
of Hencken, Bertsch, and Esbensen [10]. They computed
the diffractive, neutron stripping, core stripping, and total
absorption cross sections for 11Be scattered off targets with
mass numbers ranging from 9 to 208 using the Glauber eikonal
approximation at an energy of 40 MeV/nucleon. They used
the Varner potential [19] as the model for nucleon-nucleon
scattering. Given that we see a significant improvement in the
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FIG. 6. (Color online) Real and imaginary parts of ln[T (n)(b)] for n = 0 (thin magenta), n = 1 (dashed beige), n = 2 (dot-dashed green),
and n = 3 (dotted red) calculated at a beam energy of 25 MeV.
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FIG. 7. Coordinates used in this calculation. R is the coordinate
of the center of mass of the halo nucleus, and bc and bn denote
the components of Rc and Rn that are transverse to the beam
direction.

performance of the eikonal approximation at that energy when
the Wallace corrections are included for the Varner potential,
it is fruitful to investigate whether or not the cross sections
evaluated by Hencken and Bertsch also experience similar
improvement.

The relevant formulas of Ref. [10] are displayed next. The
reaction considered is H + T → c + X, where the projectile
halo nucleus H is treated in a single-particle model as
c + n, with c corresponding to a specific final state of the
core. The halo nuclear ground state is described by a wave
function φLM (r) which depends on the relative coordinate �r
between the nucleon and the core; see Fig. 7. The function is
generally specified by φLM (r) = RL(r)YLM (̂r) where YLM (̂r)
are spherical harmonics. Here we take RL(r) to be the solution
to the radial Schrödinger equation in an L = 0 state with the
appropriate binding energy of 0.503 MeV.

The scattering wave function of the halo nucleus has the
form

�(r,R) = Sn(bn)Sc(bc)φLM (r) , (25)

in its rest frame, where (Fig. 7) R is the coordinate of the
center of mass of the halo nucleus, and bc and bn are the
impact parameters of the core and the nucleon with respect
to the target nucleus, i.e., bn = R⊥ + r⊥Ac/(Ac + 1) and
bc = R⊥ − r⊥/(Ac + 1), where Ac is the mass number of the
core and the designation ⊥ refers to components transverse to
Rn and Rc. The two profile functions, Sn(bn) for the nucleon
and Sc(bc) for the core, are generated by interactions with
the target nucleus. In the eikonal approximation, they are
defined by the longitudinal integrals over the corresponding
potentials:

S(b) = exp

[−i

�v

∫
dzV (b + ẑz)

]
, (26)

where v is the beam velocity and potential V is the optical
potential. The relation between S(b) and the quantities denoted
as T (b) of Sec. II is given by

S(b) = T (b) + 1. (27)

We compute the order n corrections by replacing S(b) from
Eq. (26) with T (n)(b) + 1 from Eq. (18).

The scattering wave function is the difference be-
tween Eq. (25) and the wave function of the undisturbed
beam,

�scat = (SnSc − 1)φLM. (28)

with the shorthand notation Sn = Sn(bn) and Sc = Sc(bc).
Scattering cross sections are calculated by taking overlaps

of �scat with different final states. For diffractive breakup
the final state depends on the relative momentum �k of
nucleon and core in their center-of-mass frame as well as
on the transverse momentum �K⊥ of the center of mass.
Writing the continuum nucleon-core wave function as φk(�r)
[normalized asymptotically to a plane wave, φk ∼ exp(ik · r)]
the diffractive breakup cross section is given by

dσdiff.

(d2 K⊥d3k)
= 1

(2π )5

1

2L + 1

∑
M

∣∣∣∣
∫

d3rd2R⊥e−iK⊥·R⊥φ∗
k(r)

×ScSnφLM (r)

∣∣∣∣
2

. (29)

To obtain the relative momentum distribution in �k, integrate
over K⊥ to get

dσdiff.

d3k
= 1

(2π )3

1

2L + 1

×
∑
M

∫
d2R⊥

∣∣∣∣
∫

d3rφ∗
k(r)ScSnφL,M (r)

∣∣∣∣2

. (30)

A convenient expression for the total diffractive cross
section can be derived using completeness if φLM is the only
bound state of the system. The result is

σdiff. = 1

2L + 1

∑
M

∫
d2R⊥

[ ∫
d3�rφL,M (r)∗|ScSn|2φL,M (r)

−
∑
M

∣∣∣∣
∫

d3rφ0,M ′
0
(r)∗ScSnφL,M (r)

∣∣∣∣2 ]
. (31)

Other contributions to the total cross section come from
absorption, present when the eikonal S factors have moduli
less than 1. There are three of these so-called stripping
processes. The nucleon-absorption cross section, differential
in the momentum of the core, is given by

dσn-str.

d3kc

= 1

(2π )3

1

2L + 1

∑
M

∫
d2bn[1 − |Sn(bn)|2]

×
∣∣∣∣
∫

d3re−ikc ·rSc(bc)φL,M (r)

∣∣∣∣2

. (32)

The corresponding total cross section for stripping of the
nucleon is

σn-str. = 1

2L + 1

∑
M

∫
d2bn[1 − |Sn(bn)|2]

×
∫

d3rφL,M (r)∗|Sc(bc)|2φL,M (r). (33)
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The stripping of the core is expressed in a similar way,
interchanging subscripts n and c.

The expression for absorption of both nucleon and core is
given by

σabs. = 1

2L + 1

∑
M

∫
d2bc[1 − |Sc(bc)|2]

×
∫

d3�rφ∗
L,M (r)[1 − |Sn(bn)|2]φL,M (r). (34)

A. The potential for the nucleon-target
and core-target interaction

Evaluation of the profile functions requires a potential
model for the interaction between the target nucleus and the
constituents of the halo nucleus. At low energies, extending up
to about 100 MeV/n, one can find optical potentials that are
fit to nucleon-nucleus scattering. We use the optical potential,
Vop of Ref. [19], which was fit to scattering data in the range
of 10 to 60 MeV. The potential has the usual Woods-Saxon
form, with volume and surface imaginary terms, but we
neglect the spin-orbit and Coulomb interactions as does [10].
This potential represents the target-nucleon interaction. The
core-target interaction potential is obtained by folding Vop

with the core density distribution,

Vc(r) =
∫

d3xρc(x)Vop(|r − x|). (35)

For the core density we use a harmonic oscillator density
with parameters taken from the charge distribution of the core
nucleus [20] (a = 2.5 fm and α = 0.61).

B. Results of eikonal expansion calculations

In this subsection we present the results of applying the
Wallace corrections to the total cross-sections described above
[Eqs. (31), (33), and (34)]. Our primary results for these
calculations are summarized by Figs. 8–10.

Figure 8 shows the effect of the first order corrections for
scattering at 40 MeV/nucleon. These corrections are generally
not negligible for any value of A.

Figure 9 compares our results to scattering data collected at
41 MeV/nucleon by Anne et al. [21]. The data were collected
by detecting the 10Be core, so the processes that contribute
are diffractive scattering, neutron stripping, and Coulomb
breakup, which we did not consider. The Coulomb cross
section was taken from [21] and added to our calculations.
Although the corrections have a noticeable effect when
compared to the zeroth-order calculations, it is unclear from
this data whether the effect is actually significant since the
error in the measurements is so large. With more precise
experimental measurements the utility of these corrections will
become clearer.

Figure 10 gives the fractional correction at each order,
which more clearly illustrates the effects of the corrections.
The corrections to neutron stripping and total absorption are
only significant at first-order, and appear to be independent
of A. The corrections to diffractive scattering are significant
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FIG. 8. (Color online) Comparison of first-order corrections with
standard (zeroth-order) eikonal approximation with a beam energy
of 40 MeV/nucleon. The zeroth-order terms are shown with solid
markers, and the first-order terms are with outlined markers. The
solid (blue) line with circles is diffractive scattering, the dashed
(magenta) line with squares is core stripping, the dotted (beige) line
with diamonds is neutron stripping, and the dash-dotted (green) line
with triangles is total absorption of the core and neutron.

at large values of A all the way through third-order, but are
less significant at low values of A. We have also performed
the same calculations at the higher energy of 100 MeV
[see Fig 10(d)]. As expected, the corrections are smaller at
first order (less than 10%), and are less than 1% at higher
orders.

Diffractive scattering is primarily a surface effect (see
Fig. 11), which is why the diffractive corrections have a
markedly different behavior as a function of A than the
other types of scattering. As A changes, the radius of the
target nucleus changes as well. The corrections are larger
for surface effects than for volume effects (especially at low
energies) because of the derivative operators β̂n that arise.
Since diffractive scattering is the only type of scattering studied
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FIG. 9. (Color online) Comparison of corrections to scattering
data at 41 MeV/nucleon from [21]. The designations for the lines are
the same as in Fig. 4, with the Coulomb breakup cross section as a
dashed (black) line. Because we did not calculate corrections to the
Coulomb cross section, the corrections appear smaller on this plot at
high energies where the Coulomb term is larger.
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FIG. 10. (Color online) Fractional corrections at various orders and beam energies. The designations for the lines are the same as in
Fig. 8. (a) Effect of first-order corrections at beam energy of 40 MeV/nucleon. (b) Effect of second-order corrections at beam energy of
40 MeV/nucleon. (c) Effect of third-order corrections at beam energy of 40 MeV/nucleon. (d) Effect of first-order corrections at a beam energy
of 100 MeV/nucleon.

here that is almost entirely a surface effect, changes in the
radius of the target affect it more than the other types of
scattering we studied.
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FIG. 11. (Color online) The integrand of Eq. (31) (solid blue) for
a 208Pb target, and the second term in the same integrand, which is
the elastic scattering for the system (dashed magenta). Both are given
as functions of R⊥ (see Fig. 7) with all other variables integrated
out.

V. SUMMARY AND DISCUSSION

We have calculated corrections to the eikonal approxima-
tion to nuclear scattering in an eikonal expansion framework
for many different processes. We find that for the case
of simple potential scattering it is clear that application
of these corrections improves the accuracy of the eikonal
approximation at beam energies between 30 and 100 MeV.
It is reasonable to expect that the first-order correction would
be significant at even higher beam energies. However, the fact
that the eikonal theory works reasonably well for energies
between about 50 and 100 MeV is somewhat surprising.

We also see from application to the interactions of 11Be with
nuclei at 40 MeV that these corrections can be as high as 15%
for neutron stripping and diffractive scattering. As expected,
the corrections decrease as the beam energy increases.

We compare our theory with the data of Anne et al. [21]
and find that the corrections are substantial, although not as
large as the experimental uncertainties.

It is interesting to note that the diffractive corrections have
a strikingly different behavior from the corrections to stripping
and absorption. We attribute this to surface effects that have
a stronger influence on diffractive scattering than on the other
processes.
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The first-order corrected cross sections do not require much
more computational effort to calculate than the zeroth-order
calculations. We performed our calculations on an eight-core
node of the Hyak scientific computing cluster at the University
of Washington, and saw less than a factor of 2 increase in
computation time after including the first-order corrections.
Even adding in the second- and third-order corrections usually
resulted in less than a factor of 2 increase in computation
time, although the calculation of the T -matrix elements does
increase in complexity [Eqs. (8)–(18)].

Thus we believe that our proposed framework of using
the eikonal approximation as improved by the corrections of

Wallace would be a useful way to analyze data produced
at FRIB. Future work will focus on specific reactions of
experimental interest.
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