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Subthreshold pion production within a transport description of central Au + Au collisions
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Mapping out the equation of state of nuclear matter is a long-standing problem in nuclear physics. Recent
emphasis is on the density dependence of the symmetry energy, with experiments needing dedicated symmetry-
energy observables. Towards the latter goal, we employ the Boltzmann-Uehling-Uhlenbeck (pBUU) transport
model to simulate pion production in a heavy ion collision. We find that the net pion yield tests the momentum
dependence of the nuclear mean field. In exploring the sensitivity of pion observables to the symmetry energy
at higher than normal densities, we find that our calculations of pion ratios contradict, at some level, predictions
from both the isospin-dependent BUU (IBUU) and improved isospin-dependent quantum molecular dynamics
models. We propose to employ the pion ratio in the high-energy tail of spectra in future experiments to distinguish
between different variants of high-density symmetry energy.
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I. INTRODUCTION

A nuclear equation of state (EOS) relates different thermo-
dynamical properties of nuclear matter, such as the energy or
pressure of a nuclear system, with density and temperature.
The EOS relations are relevant for many physical processes,
excitation of giant collective resonances, the dynamics in
heavy ion collisions (HICs) [1], the formation of neutron stars
and for their properties [2], etc. In the latter situations, a wide
range of density and temperature is achieved in the course of
system evolution, providing study grounds for understanding
the EOS.

Nuclear matter itself stands for an infinite uniform nucleon
system at some fixed ratio of neutron to proton number, with
Coulomb interactions switched off. The EOS for symmetric
nuclear matter has been by now significantly constrained.
The zero-temperature energy minimizes at −16 MeV per
nucleon, at a normal density of ρ0 = 0.16 fm−3. The nuclear
incompressibility K, which is the scaled curvature of energy
at normal density, has been determined to be 240 ± 20 MeV,
by studying excitations to the giant monopole resonance [3].
However, the EOS for asymmetric nuclear matter still has large
uncertainties tied to the symmetry-energy term.

Energy per nucleon in an asymmetric nuclear matter can be
expanded in powers of asymmetry α of the system:

E

A
(ρ,α) = E

A
(ρ,0) + S(ρ)[α2 + O(α4)], (1)

where

α = ρn − ρp

ρn + ρp

. (2)

Here, the coefficient S(ρ) is the symmetry energy. The
density dependence of symmetry energy at ρ < ρ0 has been
constrained to some degree through various experimental
measurements of isospin diffusion, Pygmy dipole resonances,
giant dipole resonances, etc. [4–6]. For ρ > ρ0, on the
other hand, our knowledge about the density dependence
remains poor [7,8]. For example, while some theoretical
models predict that the symmetry energy keeps increasing
with increasing density, some models predict the opposite.

Symmetry energy impacts the composition of neutron stars
and neutrino processes which rapidly cool neutron stars [9],
neutron skin of heavy nuclei [10,11], etc. It is important to find
a sensitive observable for experiments to constrain the behavior
of symmetry energy at supranormal densities. Pions produced
in HICs generally originate from higher than normal density
regions, so pions might serve as a good probe of high-density
behavior of symmetry energy.

In this paper, we mainly rely on pion observables to
constrain the EOS. In Sec. II, we reexamine and optimize the
momentum-dependent nuclear mean field (MF) to describe
the net pion multiplicities in Au + Au collisions at various
beam energies, comparing the results of our calculations to
measurements of the FOPI Collaboration [12]. With the newly
optimized MF, we examine predictions for the baryonic elliptic
flow, encounter some difficulties in data comparisons, and
suggest a possible resolution. In Sec. III, we examine the
predictions for charged-pion ratios arrived at with different
variants of symmetry energy, compare our results with other
theoretical predictions, and seek observables to distinguish
between different density-dependent symmetry energies, thus
to provide guidance to central collision experiments.

II. MOMENTUM-DEPENDENT NUCLEAR MEAN FIELD

A. Pion multiplicity from pBUU

The theoretical model used here is the Boltzmann-Uehling-
Uhlenbeck (BUU) transport model developed by Danielewicz
et al. (often called pBUU) [13] and originally formulated
in [14]. Within the model, Boltzmann equations for the
phase-space distributions of different particles fX( �p,�r,t) are
solved to describe the dynamics of nuclear collisions.

∂fX

∂t
+ ∂εX

∂ �p
∂fX

∂�r − ∂εX

∂�r
∂fX

∂ �p = K<
X(1 ∓ fX) − K>

XfX. (3)

The index X above is for different species of particles, and εX

is the single-particle energy. In the energy range of interest
here, the species accounted for are nucleons, pions, �, N*
resonances, and light (A � 3) clusters. The right-hand-side

0556-2813/2014/90(2)/024605(8) 024605-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.90.024605


JUN HONG AND P. DANIELEWICZ PHYSICAL REVIEW C 90, 024605 (2014)

factors K< and K> are the feeding and removal rates,
respectively, for specific momentum states.

The single-particle energy is related to the net energy E of
the spin-symmetric system with

εX( �p,�r,t) = (2π )3

gX

δE

δfX( �p,�r,t) , (4)

where gX is the spin degeneracy. In pBUU, the net energy
consists of four components: volume, surface, an isospin-
dependent component, and a Coulomb contribution:

E =
∫

e d�r + Es + ET + ECoul. (5)

See Ref. [13] for more details regarding the energy functional
used in the model. The set of equations (3) is solved
through a Monte Carlo procedure [14], with fx represented
in terms of test particles. Unless explicitly stated, details of the
calculations in this paper are such as in [13].

pBUU has been successful in describing various experi-
mental data [14,15]. However, the model has not been tested
against measurements of pion multiplicity at incident energies
near the NN pion production threshold (e.g., 400A MeV).
Figure 1 shows net pion multiplicity obtained when using
the momentum-independent and momentum-dependent MF
in pBUU [13], adjusted previously to different nuclear charac-
teristics and data. Specifically Fig. 1(a) shows calculations
done with momentum-independent MF and Fig. 1(b) with
the past flow-optimized momentum-dependent MF. The data
represented in the figure are from the FOPI measurements of
Au + Au central collisions (impact parameter b � 2 fm) at
400A MeV, 800A MeV, and 1.5A GeV [12]. As can be seen,
pBUU with momentum-independent MF overestimates, by a
factor of 2, the measured multiplicities at all energies. With
momentum-dependent MF, the calculations are consistent with
data at the two higher energies, but at 400 MeV, the predicted
yields are only about half of those measured. The results of the
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FIG. 1. (Color online) Pion multiplicity in central Au + Au
collisions. Symbols represent data of the FOPI Collaboration [12].
The lines represent pBUU calculations when following either
(a) the momentum-independent MF or (b) the past flow-optimized
momentum-dependent MF. Solid lines are predictions for π−, and
dashed lines are predictions for π+. The experimental error bars are
about the size of symbols.

calculations suggest that some weakening of the momentum
dependence is required in order to arrive at an agreement
between the pBUU results and FOPI data at the lowest of
the beam energies. Other than momentum dependence, we
explored the potential impact of in-medium changes in the
π and � production rates [13,14] consistent with detailed
balance, but we found the impact of such changes within
plausible range to be negligible on the final yields.

The momentum dependence of MF has been implemented
in pBUU through the parametrization of local particle velocity
in the following form:

v∗
X(p,ξ ) = p√

p2 + m2
X/

(
1 + C mN

mX

AXξ

(1+λp2/m2
X)

)2
. (6)

Here, ξ = ρ
ρ0

and AX and mX are, respectively, the mass
number and mass of species X. The energy density of the bulk
part of the net energy of system is obtained from integration
of the velocity over momentum, i.e.,

e =
∑
X

gX

∫
d �p

(2π )3
fX( �p)

(
mX +

∫ p

0
dp′ v∗

X(p′,ρ)

)

+
∫ ρ

0
dρ ′ U (ρ ′). (7)

In the equations, U (ρ) represents part of the MF that only
depends on density, with three parameters a, b, and ν:

U (ξ ) = −a ξ + b ξν

1 + (ξ/2.5)ν−1
. (8)

In Eq. (6), it is the denominator in the parametrization of
velocity that gives rise to the momentum dependence of
MF. In pBUU, the bulk of the MF, following from Eq. (7),
only acts on baryons. The momentum dependence of the
MF impacts the dynamics of nucleons, thus it indirectly
affects pion production and pion spectra. Previously the
parametrization of momentum-dependent MF was adjusted
using elliptic flow [13]. In the context of this paper, that pre-
vious parametrization will be referred to as the v2-optimized
MF.

We explored different possibilities for the momentum de-
pendence of the MF by modifying the underlying parametriza-
tion for the local particle velocity. At first, we tested different
density dependencies of momentum dependencies for the MF
by replacing the factor in Eq. (6) linear in ξ by different
functions of ξ that reduced to 1 at ξ ≡ ρ

ρ0
= 1. However, we

found the sensitivity of pion yields to that replacement to be
too meager to eliminate the discrepancy between the measured
and calculated pion yields. On the other hand, we found that
a mere adjustment of the parameter values in Eq. (6) could
reduce substantially the discrepancy between the calculated
and measured net pion yields, without overly compromising
the description of measured baryonic flow by the model. More
discussion of that issue will come later in the paper.

In what follows, we refer to the momentum-dependent MF
with the new parameters as the Nπ -adjusted MF. Parameter
values for the Nπ -adjusted and previous v2-optimized MFs are
listed in Table I. From those, C and λ dictate the momentum
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TABLE I. Parameters used in the previous and new momentum-
dependent MFs. In both cases, the parameters were adjusted to yield
sensible nuclear incompressibility K and nucleon effective mass m*.

Parameter Previous (v2-optimized) New (Nπ -adjusted)

C 0.643 0.300
λ (1/c2) 0.948 0.400
a (MeV) 203.92 173.71
b (MeV) 65.18 68.23
ν 1.4838 1.6541
K (MeV) 210 230
m ∗ /m 0.7 0.75

dependence. The net pion yields for the Nπ -adjusted MF are
displayed, together with the data, in Fig. 2.

In testing the characteristics of the Nπ -adjusted MF, we
examine the momentum dependence of optical potentials in
zero-temperature matter. For the optical potential U opt(p), we
employ in the relativistic context the following definition:

U opt(p) = ε(p) − m − T (p). (9)

In the equation, ε(p) is the single-particle energy correspond-
ing to momentum p, and T (p) is the kinetic energy.

In Fig. 3 we plot the optical potentials for the two
parametrizations, as a function of momentum, with different
lines representing different indicated densities. The dashed and
solid lines represent, respectively, optical potentials from v2-
optimized and Nπ -adjusted MFs. The momentum dependence
in the Nπ -adjusted MF is indeed softened, consistently with
expectation developed on the basis of Fig. 1.

In [13], the momentum dependence of the optical potential
from Eqs. (6)–(8) was compared to that found for potentials
from microscopic calculations including those relying on the
Urbana v14 (UV14) two-body interaction combined with
model UVII three-body interactions, i.e., UV14 + UVII [16]
and AV14 + UVII [16], as well as Dirac-Brueckner-
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FIG. 2. (Color online) Pion multiplicity in central Au + Au
collisions, as a function of beam energy. Symbols represent data of the
FOPI Collaboration [12], while lines represent the pBUU calculations
with the Nπ -adjusted momentum-dependent MF. The experimental
error bars are about the size of symbols.
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FIG. 3. (Color online) Optical potential in nuclear matter at
different indicated densities, as a function of momentum. Dashed and
solid lines represent, respectively, the v2-optimized and Nπ -adjusted
MFs.

Hartree-Fock [17,18], Brueckner-Bethe-Goldstone [19,20]
and UV14 + TNI (three-nucleon interaction) [16] models.
Regarding those microscopic calculations, the Nπ -adjusted
MF produces optical potentials closest in form and values to
UV14 + UVII, with the respective comparison illustrated in
Fig. 4. Similar to [16], we compare the single-particle energy,
ε(p,ρ) − m(ρ), between our potential and that of UV14. The
momentum dependence in this representation is implicit.

B. Elliptic flow

In the past, anisotropies of the collective flow and, in
particular, the elliptic flow were used to test the characteristics
of MF momentum dependence in collisions [13]. The elliptic
flow is defined as the second-order Fourier coefficient of
the azimuthal angle with respect to the reaction plane at
midrapidity: v2 = 〈cos(2φ)〉.
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FIG. 4. (Color online) Optical potential in nuclear matter at
different indicated densities, as a function of nucleon energy. Dashed
and solid lines represent, respectively, UV14 + UVII variational
calculations and our Nπ -adjusted MF.
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FIG. 5. (Color online) Ratio of out-of-reaction plane to in-plane
proton yields, as a function of transverse momentum. Symbols
represent data from the measurements of the KaoS Collaboration
of midperipheral Bi + Bi collisions at the beam energy of 400A MeV
(b 	 8.7 fm) [21]. Solid line represents pBUU calculations with the
Nπ -adjusted momentum-dependent MF and dashed line represents
calculations with the v2-optimized momentum-dependent MF. The
indicated theoretical errors are statistical, associated with the Monte
Carlo sampling in the transport calculations.

Obviously when more constraints are placed on an MF, such
as the proper description of total pion yields, the description
of the measured elliptic flow cannot be generally as well as
that achievable without those additional constraints. Figure 5
shows the out-of-plane to in-reaction-plane ratio, R = 1−v2

1+v2
,

for protons emitted at midrapidity from midperipheral Bi+Bi
collisions at 400A MeV, as a function of proton transverse
momentum. The stronger the elliptic flow, the larger the
deviation of R from 1. The filled triangles in Fig. 5 represent
the data of the KaoS [21] Collaboration, while the dashed
and solid lines represent, respectively, the pBUU calculations
with v2-optimized and Nπ -adjusted MFs. The two calculations
describe about equally well the KaoS data at intermediate
momenta, but the v2-optimized MF is far superior at high
momenta.

The difficulty in the simultaneous description of high-
momentum v2 and near-threshold pion yields is puzzling and
likely points to some limitation in our MF parametrization.
One possibility is the lack of anisotropy in the momentum
dependence, for anisotropic momentum distributions f , when
employing Eqs. (6)–(9). While our implementation (6)–(9) of
the MF momentum dependence allows in practice a higher
precision of calculations than other MF parametrizations [22],
it may turn out to be a handicap here. We already undertook
steps, cf. the work of Simon and Danielewicz [22], towards
implementing anisotropy without compromising calculational
precision or speed.

III. NUCLEAR SYMMETRY ENERGY

A. Charged-pion ratios

Pion observables in HICs are also very important for
constraining the stiffness of symmetry energy. Li was the
first to propose that the charged-pion ratio is a sensitive
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FIG. 6. (Color online) Pion ratios in central Au + Au collisions,
as a function of beam energy. (a) Comparison of predictions from
IBUU and ImIQMD models to the FOPI data; the calculations
employed stiff and soft symmetry energies. (b) Comparison of
predictions from the pBUU model to the FOPI data; the calculations
employed v2-optimized and Nπ -adjusted MFs. In our calculations
here, the potential part of symmetry energy is linear in density.

observable for high-density behavior of symmetry energy [23].
The link between the pion yield ratio and symmetry energy
turned out subsequently to be less straight forward than
first proposed [23], though with different transport models
contradicting each other as is, in particular, illustrated in Fig. 6.

The isospin contribution to the energy ET in Eq. (5) for
pBUU is

ET = 4
∫

d�r S(ρ)
ρ2

T

ρ
, (10)

where ρT = ∑
X ρX t3X and t3X is the third component of

isospin for species X. The symmetry-energy factor S can be
conveniently decomposed as

S(ρ) = Skin0

(
ρ

ρ0

) 2
3

+ Sint(ρ), (11)

where the first right-hand-side term, with Skin0 	 12.3 MeV,
represents the symmetry energy in the absence of interactions,
due to the Pauli principle, and the second term represents the
interaction contribution. In [13] and the calculations here so
far, the interaction contribution was of the simplest possible
linear form

Sint0(ρ) = Sint0

(
ρ

ρ0

)
. (12)

However, this can be modified to a power parametrization

Sint0(ρ) = Sint0

(
ρ

ρ0

)γ

(13)

for more generality. Larger values of γ produce symmetry
energies that rise quickly with density around ρ0. Such
symmetry energies are generally called “stiff.” Low values of γ
yield symmetry energies that change slowly around ρ0. These
are termed “soft.” The description of nuclear masses requires
Sint0 ∼ 20 MeV, best accompanied by a positive correlation
between Sint0 and γ .
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Au + Au collisions at 400A and 200A MeV, as a function of the
stiffness of symmetry energy γ , from pBUU calculations using Nπ -
adjusted MF. The colored region represents the 400A MeV FOPI
measurement. The theoretical errors are due to statistical sampling in
the pBUU calculations.

Figure 6 displays ratios of net yields of charged pions
stemming from central Au + Au collisions at different beam
energies. The filled triangles represent measurements of the
FOPI Collaboration [24]. Other symbols represent results of
different transport calculations. In Fig. 6(a), it is seen that
within IBUU calculations [25], a stiff symmetry energy gives
rise to a lower π−/π+ ratio than does a soft energy. However,
the converse is true for the ImIQMD calculations [26], as seen
in the same figure, which is the current contradiction in the
literature, mentioned before.

In our own calculations, the π−/π+ net yield ratio is
practically independent of the details in the momentum
dependence of MF, as illustrated in Fig. 6(b), where we show
results utilizing both v2-optimized and Nπ -adjusted MFs. The
results are obtained for Au + Au collisions at b < 2 fm. We use
here the linear Sint, Eq. (12), and either set of results agrees, in
practice, with the FOPI measurements. Importantly, we further
find that the net charged-pion ratio and the agreement with the
measurements remain largely independent of the stiffness of
symmetry energy. That is illustrated in Fig. 7, where we show
pBUU results obtained in calculations of central Au + Au
collisions at 200A and 400A MeV, when changing γ in the
symmetry energy of Eq. (13).

One detail in pBUU that may give rise to different sensitivity
to the symmetry energy for net pion yields than in other
transport calculations is the presence of a strong interaction
potential acting on pions and driven by isospin imbalance.
From Eq. (10), that potential is

Uπ± = ∓8 Sint0 ρT

ργ−1

ρ
γ
0

. (14)

In IBUU and ImIQMD, strong-interaction potentials acting on
pions are lacking.

Pion-nucleus optical potential has been used to explain the
existence of pionic atoms. Toki et al., in particular, constructed
a pion potential that successfully described the deeply bound
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FIG. 8. (Color online) S-wave contribution to π−197Au optical
potential. Solid line represents the work of Toki [27]. Long-dashed,
dotted and dash-dotted lines represent pion potentials from pBUU
parametrization for γ = 0.5,1.0,2.0, respectively, in the interaction
part of the symmetry energy. Short dashed line represents the lack of
corresponding potentials in the IBUU and ImIQMD models.

states of pionic atoms [27]. In Fig. 8, the potentials in pBUU
for three values of γ are compared to that of Toki for 197Au.
Given that our potential in the form (14) can only represent
the so called s-wave contribution to the π -nucleus potential,
we drop, in the comparison, the small p-wave contribution to
the potential of [27]. The tails are different in our potentials
compared to [27], due to excessively abrupt changes of density
in the semiclassical Thomas-Fermi model (the T = 0 limit
of our transport model) in the surface region. For pions
moving across a HIC zone, however, the most important is the
magnitude of the potential over regions where density changes
slowly, including nuclear interior in the ground state. In the
interior, our potentials for γ from 1 to 2 are within 30% away
from the Toki’s potential.

The potentials of different sign for π+ and π−, each equal
in magnitude to the difference between neutron and proton
mean fields, and also a difference in the potentials for �, may
produce enough difference in the propagation of charged pions
in the pBUU and other models to affect predictions.

B. Differential pion ratios

While we found no sensitivity of net charged-pion yield
ratios in pBUU, around threshold, to S(ρ), still the general
idea [23] contains convincing elements. Potentially, more
differential ratios of charged-pion yields could provide access
to S(ρ) at supranormal densities.

In Figs. 9–11, we explore the sensitivity of charged-pion
spectra to the stiffness of symmetry energy. The first two
figures illustrate the π−/π+ ratio as a function of pion c.m.
energy and the third illustrates the average c.m. energies for
the charged pions. The difference in the average c.m. energies,
between π+ and π−, is additionally plotted in Fig. 12, as a
function of the stiffness γ of the symmetry energy for Au + Au
at 200 MeV/nucleon.

The figures display competing effects of the isospin content
of the system, of Coulomb interactions, and of symmetry
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FIG. 9. (Color online) Charged-pion ratio in central Au + Au
collisions at 200A MeV, as a function of kinetic energy in the center-
of-mass frame for different values of the stiffness γ of the symmetry
energy, from 0.5 to 2.0. The horizontal line represents the ratio of net
charged-pion yields.

energy. Obviously, the neutron excess generally makes neg-
ative pions more abundant than positive ones, with the effect
amplified by larger isospins for the pions than nucleons.
The long-range Coulomb interactions play the primary role
in making the π−/π+ ratio dependent on the energy of the
emitted pions. Thus, after the pions cease to interact strongly
and move out from the reaction region, described then by
primordial spectra sharing to a degree characteristics between
π+ and π− (and π◦), the Coulomb interactions accelerate
π+ and decelerate π−. The relative Coulomb push boosts the
π−/π+ ratios at low c.m. energies, above the overall ratio for
the reactions, and lowers the ratios at high c.m. energies, see
Figs. 9 and 10. The push also gives rise to substantially higher
average c.m. energies for π+ than π−, see Figs. 11 and 12.

Contributions to mean-field potentials associated with the
symmetry energy principally act opposite to Coulomb inter-
actions, but they act there where pions continue to rescatter,
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FIG. 10. (Color online) Charged-pion ratio in central
124Sn + 132Sn collisions at 300A MeV, as a function of kinetic
energy in the c.m. frame for different values of the stiffness γ of the
symmetry energy, from 0.5 to 2.0.
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FIG. 11. (Color online) Average c.m. kinetic energy of π+ and
π− in central Au + Au collisions at 200A MeV, plotted against
stiffness γ of the symmetry energy. The error bars are smaller than
the symbol size.

in fact with large cross sections due to the formation of �
resonance, down to low densities. The scattering tends to
erase the impact of different accelerations for π+ and π−
(and for nucleons and �’s with different isospin as well) due
to the isospin dependence of mean fields. With the scattering
rates being linear in density, the mean fields can win over
the rescattering, in the low-density region if their dependence
on density is slower than linear. The low-energy part of the
spectrum is generally dominated by particles emitted from
lower density regions, late in the history of the reactions. In
Figs. 9 and 10, we can see that the symmetry energy is indeed
effective in countering the effects of Coulomb enhancement of
the low-energy π−/π+ ratio when γ � 1 and the interaction
symmetry energy is large at low densities. At γ > 1, the
effect fizzles out. Notably, excitation of the medium suppresses
the role of the Pauli principle and of the associated kinetic
contribution to the symmetry energy. In Fig. 11, we can see that
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FIG. 12. (Color online) Difference between average c.m. kinetic
energy of π+ and π− in central Au + Au collisions at 200A MeV,
plotted against stiffness γ of the symmetry energy. The error bars are
smaller than the symbol size.

024605-6



SUBTHRESHOLD PION PRODUCTION WITHIN A . . . PHYSICAL REVIEW C 90, 024605 (2014)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0  5  10  15  20  25  30  35  40

n/
p

t [fm/c]

Au+Au

γ=0.5

γ=1.0

γ=2.0

FIG. 13. (Color online) Ratio of neutron-to-proton numbers at
net supranormal densities, ρ > ρ0, in central Au + Au collisions
at 200A MeV, as a function of times. At early times, the numbers in
the ratio are marginal, and the ratio is thus not very meaningful.

the impact of the stiffness of symmetry energy, on π+ − π−
average-energy difference, weakens past γ ≈ 1.

With regard to the particles emitted at higher c.m. energies
that tend to stem from early stages of the reaction and higher
densities, another high-density effect of the symmetry energy
comes into play. Namely, a stiff symmetry energy pushes
away the neutron-proton asymmetry from the high-density
region [25], see Fig. 13. With the reduction in the high-
density asymmetry, the π−/π+ ratio gets reduced at high c.m.
energies. Thus, qualitatively a stiff symmetry energy acts in
this energy region as the relative Coulomb boost, cf. Figs. 9
and 10. With this, it becomes possible to access the stiffness
of high-density symmetry energy through the high-energy
π−/π+ yield ratio.

In the earlier version of this work [28], we also explored the
π−/π+ yield ratio in the direction out of the reaction plane as
a probe of the symmetry energy at supranormal densities. In
that direction the high-density matter is directly exposed to the
vacuum. However, with a higher statistics in the calculations,
our claimed directional signal for the symmetry energy has
weakened.

IV. CONCLUSION

With a new parametrization for momentum-dependent MF,
pBUU gives a reasonable description of pion multiplicities in
moderate-energy central HICs. The puzzling finding is that
the same parametrization of the MF momentum dependence
cannot be simultaneously used for describing the net pion
yields around threshold and the high-momentum elliptic flow
of protons. One potential avenue for resolving this puzzle
is in the need for an anisotropy in the MF momentum
dependence, when the underlying momentum distribution is
anisotropic. We compared our new momentum dependence
of nucleonic optical potential with several microscopic cal-
culations. The modified potential is within the realm of
uncertainties for microscopic predictions, just like the previous
potential.

Next, we used pion ratio observables to study the symmetry-
energy behavior at higher density than normal. While IBUU
and ImIQMD yield opposing sensitivities to the density
dependence of symmetry energy, for π−/π+ net yield ratios,
we find no significant sensitivity for that ratio to S(ρ) in
pBUU. One factor affecting that sensitivity may be the pion
optical potential in pBUU, driven by isospin asymmetry. We
examined the dependence of the charged-pion ratio on pion
c.m. energy. To isolate the effect of symmetry energy at
supranormal densities, we looked at the high-energy tail of
the spectra—there a clear sensitivity of pion ratio to different
forms of supranormal symmetry energy is seen. Additionally,
the difference of average c.m. kinetic energy of emitted
π+ and π− also shows a distinguishing power for different
symmetry energies. In the first version of this paper, we
applied combined energetic and angular cuts to the pion ratios
and proposed it as a new differential observable for future
experiments [28].
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