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Charge-exchange excitations with finite-range interactions including tensor terms
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We study charge-exchange excitations in doubly magic nuclei by using a self-consistent Hartree-Fock plus
random phase approximation model. We use four Gogny-like finite-range interactions, two of them containing
tensor forces. We investigate the effects of the various parts of the tensor forces in the two computational steps
of our model, and we find that their presence is not negligible and improves the agreement with the experimental
data.
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I. INTRODUCTION

The study of charge-exchange excitations in neutron-rich
nuclei is an important issue not only for its intrinsic interest [1–
3] but also for the special role that these excitations play
in many astrophysical processes such as β decay, electron
capture, and the r-process in nucleosynthesis [4]. From the
theoretical point of view, it is desirable to have models which
can describe these excitations in every nucleus and also in
systems too short-lived to allow for experimental studies.

Collective nuclear excitations have been successfully de-
scribed by the random phase approximation (RPA) theory [5],
whose extension to handle charge-exchange excitations was
formulated some time ago [6–9]. The description of available
data has been conducted by using a phenomenological input
of the RPA, where the single-particle (s.p.) wave functions
and energies were generated by mean-field potentials, for
example of Woods-Saxon type, and the effective nucleon-
nucleon interaction had Landau-Migdal form [5]. From these
studies it has been possible to select the value of the
parameter defining the spin-isospin-dependent term of the
interaction [1,2]. The application of this phenomenological
approach is limited to nuclei whose ground-state properties are
experimentally known. The theoretical exploration of nuclei
in the experimentally unknown regions of the nuclear chart
requires a more microscopic approach.

In this perspective, the combination of Hartree-Fock (HF)
and RPA calculations carried out with a unique effective
interaction has been able to provide a good description of
known nuclear properties in a wide range of the nuclear chart,
from light nuclei, around the oxygen region, up to very heavy
nuclei such as uranium. This success induces us to believe that
this computational scheme can provide good predictions of the
properties of exotic nuclei which will be produced in the next
few years in radioactive ion beams facilities. This possibility
has increased interest in defining more precisely the details of
the self-consistent HF + RPA calculations.

Self-consistent studies of charge-exchange excitations have
been conducted mainly with zero-range Skyrme-type interac-

tions [10,11]. Recently, these interactions have been imple-
mented with tensor terms, and the effects of these new terms
on charge-exchange excitations have been studied [12–17].
Other authors have studied charge-exchange excitations within
a quasi-particle RPA using the Bonn-A two-body potential in
Woods-Saxon s.p. bases [18,19].

In this work we apply a HF + RPA computational scheme
based on Gogny-like finite-range interactions to study isobaric
analog states, Gamow-Teller, spin-quadrupole, and spin-dipole
excitations in 48Ca, 90Zr, and 208Pb. Our first task is to test the
validity of our model against the available experimental data.
We use four parametrizations of the Gogny-like interaction.
The D1S [20] and D1M [21] forces contain the traditional set
of parameters of the original Gogny interaction. Following
the procedure outlined in Ref. [22] we add to these two
parametrizations a tensor force, and we call D1ST2c and
D1MT2c these new interactions. The second task of the
present work is the study of the tensor effects on the various
observables related to charge-exchange excitations.

The paper is structured as follows. In Sec. II we briefly
present our HF + RPA model and also the quantities we
calculate to compare our results with the experiment. The
interactions we use in this investigation are discussed in
Sec. III. In the same section we provide some information
about the numerical details of the calculations. We dedicate
Sec. IV to the presentation of our results. In the first part
of the section we compare those results obtained by using
interactions with and without tensor forces. In the second part
we study the effects of the various terms of the interaction on
the different charge-exchange excitations we have considered.
Finally, in Sec. V we summarize the main results of our
investigation and we draw our conclusions.

II. MODEL

The RPA theory describes the excited state of a many-
body system as a linear combination of particle-hole and
hole-particle excitations. Because the states of the nucleus are
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characterized by a total angular momentum J , it is convenient
to work in an angular momentum coupling scheme, where the
RPA excited states are eigenstates of the J2 and Jz operators:

|JM〉 =
∑
qk

[
XJ

qk A†
qk(JM) − Y J

qk Ãqk(JM)
]|0〉, (1)

where XJ and Y J are the RPA amplitudes and we have defined

A†
qk(JM) =

∑
μqμk

〈jqμqjkμk|JM〉 a
†
jq ,μq

(−1)jk+μk ajk,−μk
,

(2)

Ãqk(JM) =
∑
μqμk

(−1)J−M 〈jqμqjkμk|J − M〉

× a
†
jk,μk

(−1)jq+μq ajq ,−μq
. (3)

In the above equations a† and a indicate the usual creation
and annihilation single-nucleon operators, k are the quantum
numbers characterizing a s.p. state below the Fermi surface
and q those of a state above it, and j and μ are, respectively,
the angular momentum and its projection on the z axis of the
nucleon. In the above expressions, we understood the explicit
dependence of the excited state and of the X and Y amplitudes
on the parity � and on the excitation energy ω.

Charge-exchange excitations can be classified as isospin
lowering, T−, when the hole is a neutron and the particle is a
proton and isospin rising, T+<, when the hole is a proton and
the particle is a neutron. We use the usual convention of p and
n for a proton and a neutron state, respectively, and the bar to
indicate a hole state; therefore we have pn pairs in T− and np
pairs in T+ excitations.

Charge conservation allows us to write the secular RPA
equations in a compact form [7,8]. We define two new variables
UJ and WJ such that in the T− channel we have

XJ
pn = UJ

pn, Y J
np = WJ

np and ω = � (4)

and in the T+ channel we have

XJ
np = WJ

np, Y J
pn = UJ

pn and ω = −�, (5)

where we have indicated with ω the RPA excitation energy.
The normalization of the RPA excited states (1) implies∑

pn

(
UJ

pn

)2 −
∑
np

(
WJ

np

)2 = ±1, (6)

where the plus sign is for the T− excitations and the minus
sign for T+ ones.

With these definitions we write the RPA secular equations
as [

AJ
pnp′n′ BJ

pnn′p′

−BJ
npp′n′ −AJ

npn′p′

][
UJ

p′n′

WJ
n′p′

]
= �

[
UJ

pn

WJ
np

]
, (7)

where A and B are expressed in terms of the interaction matrix
elements and s.p. energies as

AJ
abcd = (εa − εb) δbc δad + V

J

abcd , (8)

BJ
abcd = (−1)jc−jd−J V

J

abdc. (9)

In the above equations, we have indicated with ε the s.p.

energies, and with the symbol V
J

abcd the antisymmetrized
matrix element of the interaction:

V
J

abcd =
∑
K

(−1)jb+jc+K
√

2K + 1

{
ja jb J
jc jd K

}

× [〈jajdK‖V ‖jbjcK 〉
− (−1)jb+jc+K 〈jajdK‖V ‖jcjbK〉]. (10)

In the above equation, the double bar symbol ‖ indicates the
reduced matrix element of the angular part.

The diagonalization of the system (7) produces at the
same time the solutions for T− and T+ excitations. For a
given excitation multipole, the charge-exchange RPA solution
provides the set of excitation energies, and, for each excited
state, the full set of RPA amplitudes XJ and Y J .

The strength function of the transition between the ground
state and an excited state |Jπ ; ω〉 of a nucleus with A nucleons
induced by a one-body transition operator of the type

Qα±
Jπ ,M =

A∑
i=1

ηα±
Jπ ,M (i) (11)

can be expressed as

�α±
Jπ (ω) =

∑
M

∣∣〈Jπ ,M; ω|Qα±
Jπ ,M |0〉∣∣2

=
∣∣∣∣∣∣
∑
qk

(
XJ

qk 〈q‖ηα±
Jπ ‖k〉

+ (−1)jq−jk+J+1 Y J
qk 〈k‖ηα±

Jπ ‖q〉)
∣∣∣∣∣∣
2

, (12)

where M is the z-axis projection of J . In the second line of
Eq. (12), we have applied the Wigner-Eckart theorem [23];
therefore we dropped the explicit dependence on M . Also in
this case, as in Eq. (1), we understand the dependence of the X
and Y amplitudes on the parity � and of the excitation energy
ω of the excitation. Since we consider even-even nuclei only,
the angular momentum and the parity, Jπ , of the excitation
coincide with those of the nuclear final state. We list here
below the transition operators which we consider in this work.
For the excitation of the 0+ states, the isobaric analog states
(IAS), we consider the Fermi (F) operator

QF±
0+,0 =

A∑
i=1

t±(i). (13)

For the excitation of the 1+ states we use the Gamow-Teller
(GT) operator

QGT±
1+,M =

A∑
i=1

σM (i) t±(i) =
√

4π

A∑
i=1

[Y0(i) ⊗ σ (i)]1
M t±(i)

(14)
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and the spin quadrupole (SQ) operator

QSQ±
1+,M =

A∑
i=1

r2
i [Y2(i) ⊗ σ (i)]1

M t±(i). (15)

Finally, we consider the excitations induced by the spin dipole
(SD) operator

QSD±
J−,M =

A∑
i=1

ri [Y1(i) ⊗ σ (i)]JM t±(i), (16)

which excites the multipoles 0−, 1−, and 2−. In this case, apart
from the strength functions corresponding to each individual
multipolarity, also the total strength

�SD±(ω) =
∑

Jπ =0−,1−,2−
�SD±

Jπ (ω) (17)

has been calculated. In the previous equations we used t± =
τ±/2, where τ+ and τ− are the isospin operators transforming,
in our convention, a proton into a neutron and vice versa,
respectively. Furthermore, we have indicated with YL the
spherical harmonics and with σ the Pauli matrix operator
acting on the spin variable. The symbol [A ⊗ B] indicates
the usual tensor product between irreducible spherical ten-
sors [23]. The expressions of the reduced matrix elements of
Eq. (12) are given in Appendix for the operators we have
presented above.

The sum rules are an important tool to investigate the
global properties of the charge-exchange excitations. In order
to obtain the sum rule expressions, it is useful to define the
energy moments

mα±
λ =

∑
Jπ

mλ

(Qα±
Jπ

)
, (18)

where

mλ

(Qα±
Jπ

) =
∫ ∞

0
dω ωλ �α±

Jπ (ω). (19)

According to these expressions, we define the centroid
energy of an excitation induced by the α-type operator as

ωα±
cen = mα±

1

mα±
0

. (20)

In the case of the SD transitions, we have also calculated the
centroid of the distributions of the individual multipolarities:

ωSD±
cen,J π = m1

(QSD±
Jπ

)
m0

(QSD±
Jπ

) . (21)

By using the property (τ±)† = τ∓, and the completeness of
the RPA excited states we have that [8,9]

mα−
0 − mα+

0 =
∑
Jπ

∫ ∞

0
dω

(∣∣〈Jπ ; ω|Qα−
Jπ |0〉∣∣2

− ∣∣〈Jπ ; ω|Qα+
Jπ |0〉∣∣2)

= 〈0|[Qα−
Jπ ,Qα+

Jπ

]|0〉, (22)

which depends only on the nuclear ground state. In particular,
the F operator satisfies the IAS sum rule [1]

�F ≡ mF−
0 − mF+

0 = N − Z, (23)

which is the difference between neutron and proton numbers.
For the GT operator we have the well-known sum rule, often
called the Ikeda sum rule [24],

�GT ≡ mGT−
0 − mGT+

0 = 3 (N − Z). (24)

The SD transitions satisfy

�SD ≡ mSD−
0 − mSD+

0 = 9

4π

[
Nr2

n − Zr2
p

]
, (25)

where rn and rp are the mean square radii of neutrons and
protons, respectively.

III. DETAILS OF THE CALCULATIONS

The only input required by our self-consistent approach
is the effective nucleon-nucleon force. In this work we
use Gogny-like interactions which are composed by five
finite-range terms: the scalar, isospin, spin, spin-isospin, and
Coulomb terms. These interactions contain, in addition, a
density-dependent term and a spin-orbit zero-range term. We
carried out calculations with the D1M force [21], with the
more traditional D1S [20] parametrization, and also with two
other forces, which we built by adding tensor terms to the
two basic parametrizations. In these new forces, which we
name D1MT2c and D1ST2c, we did not change any value of
the parameters of the original D1S and D1M interactions but
only that related to the spin-orbit force. Following the work of
Refs. [22,25,26], we include two tensor terms of the form

Vtensor(i,j ) = (
VT1 + VT2 P τ

ij

)
Sij exp

[
− (ri − rj )2

μ2
T

]
, (26)

where μT = 1.2 fm corresponds to the longest range used in
the D1M and D1S forces, P τ

ij is the usual isospin exchange
operator defined as

P τ
ij = 1 + τ (i) · τ (j )

2
, (27)

and VT1 and VT2 are two constants. Equation (26) can be
rewritten as

Vtensor(i,j ) = [VT + VTτ τ (i) · τ (j )] Sij exp

[
− (ri − rj )2

μ2
T

]
,

(28)

and, in the following, we shall call the term dependent on
VT = VT1 + VT2/2 the pure tensor term and that dependent on
VTτ = VT2/2 the tensor-isospin term. In the previous equations
we have used the following definition of the tensor operator:

Sij = 3
σ (i) · rij σ (j ) · rij

r2
ij

− σ (i) · σ (j ), (29)

where

rij = ri − rj (30)

represents the relative coordinate of the two interacting
nucleons.

024326-3



V. DE DONNO, G. CO’, M. ANGUIANO, AND A. M. LALLENA PHYSICAL REVIEW C 90, 024326 (2014)

TABLE I. Values of the parameters of the tensor force, given
in Eq. (26), and of the spin-orbit term of the nucleon-nucleon
interactions considered in the present work.

VT1 (MeV) VT2 (MeV) WLS (MeV fm5)

D1ST2c −135 60 103
D1MT2c −175 40 95

We select the values of VT1 and VT2 by following the
procedure described in Ref. [22] consisting in reproducing the
experimental energy splitting between the neutron 1f7/2 and
1f5/2 states in 40Ca, 48Ca, and 56Ni nuclei, whose values are
6.8, 8.8, and 7.16 MeV, respectively [27]. These observables
are also sensitive to the spin-orbit term of the force, whose
strength is characterized by the parameter WLS. The number
of experimental data we have reproduced corresponds to the
number of the free parameters we have to choose. The values
of the tensor and spin-orbit parameters which characterize the
D1MT2c and D1ST2c forces are given in Table I.

We show, in Fig. 1, the pure tensor, vT, and tensor-
isospin, vTτ , terms of the D1ST2c and D1MT2c forces as
a function of the relative momentum of the two interacting
nucleons, and we compare them with the analogous terms
of the microscopic Argonne V18 (AV18) interaction [28]. In
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FIG. 1. (Color online) Pure tensor (a) and tensor-isospin
(b) terms of the D1ST2c and D1MT2c parametrizations used in
this work as a function of the relative momentum of the interacting
nucleon pair, compared with the analogous terms of the realistic
interaction AV18 [28].

this figure, the differences between the microscopic and our
effective interactions become evident. The AV18 interaction
has an attractive tensor-isospin term almost three times larger
than the pure tensor term, which is again attractive. Although
the tensor-isospin terms of both our effective interactions are
similar to that of AV18, the pure tensor terms are remarkably
different. Their sign is different, these terms are repulsive
instead of attractive. In addition, their size is much larger than
that of the analogous AV18 term and also, in absolute value,
of that of the tensor-isospin terms. Understanding the origin of
these differences is an interesting topic, but we do not tackle it
in this paper. We take for granted our effective interaction
and we are interested in identifying eventual observables
in charge-exchange excitations which are sensitive to the
presence of the tensor force.

The first step of our calculations consists in constructing
the s.p. basis by solving the HF equations with the bound-state
boundary conditions at the edge of the discretization box. The
technical details concerning the iterative procedure used to
solve the HF equations for a density-dependent finite-range
interaction can be found in Refs. [29,30]. When the stable
solution, corresponding to the minimum of the binding energy,
is reached, we construct the local Hartree and the nonlocal
Fock-Dirac potentials by using the s.p. wave functions lying
below the Fermi surface. By using these potentials, we solve
the HF equations also for those states above the Fermi surface.
In this way, we generate a set of discrete bound states also
in the positive energy region, which should be characterized
by the continuum. The level density in the continuum region
is strictly related to the size of the space integration box, the
larger is the box the higher is the level density.

The second step of our calculations consists in solving
the RPA secular equations by diagonalization. The explicit
expressions of the AJ and BJ matrix elements in Eqs. (8)
and (9) for Gogny interactions can be found in Refs. [31,32].
The dimensions of the matrix to diagonalize are given by the
sum of the pn and np pairs, which depends on the number of
the s.p. states composing the configuration space.

In our approach, the stability of the RPA results depends
on two parameters: the size of the integration box and the
maximum s.p. energy. We have chosen the values of these two
parameters by ensuring that the centroid energies of the electric
giant dipole resonances in the charge-conserving RPA do not
change by more than 0.5 MeV when either the box size or the
maximum s.p. energies is increased. We have done calculations
for the 48Ca, 90Zr, and 208Pb nuclei. The most demanding
calculations are those we carried out for the 208Pb nucleus.
In this nucleus, by using a box radius of 25 fm and an upper
limit of s.p. energy of 100 MeV, we diagonalized matrices of
dimensions of about 1300 × 1300.

Our HF + RPA calculations are fully self-consistent; we
have used for the evaluation of the RPA excited states the same
interaction adopted to generate the s.p. wave functions and en-
ergies, including the Coulomb and the spin-orbit channels. Of
course, the former interaction is not active in charge-exchange
excitations. These terms of the effective nucleon-nucleon
interaction are usually neglected in RPA calculations, since the
evaluation of their contribution, considered small as compared
to that of the other terms of the interaction, is computationally
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TABLE II. Binding energies per nucleon, B/A, in MeV, and neutron, rn, proton, rp , and charge, rc, rms radii, in fm, of 48Ca, 90Zr, and
208Pb nuclei obtained in HF calculations by using the various interactions adopted in our work.

D1M D1MT2c D1S D1ST2c Experiment

48Ca B/A 8.590 8.614 8.690 8.632 8.667 [33,34]
rn 3.550 3.552 3.586 3.597 –
rp 3.415 3.418 3.441 3.460 –
rc 3.525 3.528 3.548 3.557 3.451 ± 0.009 [35]

rn − rp 0.135 0.134 0.145 0.097 –
90Zr B/A 8.636 8.670 8.736 8.692 8.710 [33,34]

rn 4.231 4.230 4.269 4.277 –
rp 4.179 4.177 4.209 4.217 –
rc 4.269 4.269 4.298 4.305 4.258 ± 0.008 [35]

rn − rp 0.052 0.053 0.060 0.060 0.09 ± 0.07 [37]
0.07 ± 0.04 [38]

208Pb B/A 7.830 7.815 7.889 7.801 7.867 [33,34]
rn 5.505 5.514 5.554 5.570 5.78+0.16

−0.18 [36]
rp 5.413 5.420 5.433 5.446 –
rc 5.480 5.488 5.498 5.512 5.503± 0.002 [35]

rn − rp 0.092 0.094 0.121 0.124 0.083 < rn − rp < 0.111 [40]
0.19 ± 0.09 [41]

quite heavy. Recently, we studied the relevance of these
two terms of the interaction in charge-conserving HF + RPA
calculations [31].

IV. RESULTS

In this section we show some results of our investigation
of charge-exchange excitations of three nuclei: 48Ca, 90Zr,
and 208Pb. We present results related to F, GT, SQ, and SD
excitations. First, we address our attention to the differences
between the results obtained with and without the tensor
force. Since the tensor effects are rather similar for the two
types of forces considered, we show in the figures only the
strength distributions obtained by using the D1M and D1MT2c
interactions. In the tables we present global results of our
calculations obtained with all the interactions considered.

As pointed out in the previous section, the first step of
our approach is the generation of the s.p. configuration space
for each nucleus considered by means of a HF calculation.
We present in Table II some results of these calculations: the
binding energies per nucleon, B/A, the neutron, rn, proton,
rp, charge rc, root-mean-square (rms) radii, and the neutron
skin, rn − rp. The charge distributions used to extract the
rc radii have been obtained by folding the pointlike proton
distributions with a dipole proton electromagnetic form factor.
The use of more refined form factors changes the radius values
by a few parts in a thousand. The experimental values of
the binding energies have been taken from Refs. [33,34] and
those of the charge radii from the compilation of Ref. [35].
The empirical value of the 208Pb neutron rms radius has
been obtained by the parity-violation electron scattering
PREX experiment [36] and those of the neutron skins from
Refs. [37,38] for 90Zr and [40,41] for 208Pb.

The agreement with the available experimental data is, in
general, very good. This is not surprising since the binding
energies and rms radii are part of the set of data used in the
fit procedure adopted to select the values of the parameters of

the D1M and D1S forces [42]. We observe that the inclusion
of the tensor forces does not modify sensitively the values of
these observables.

In Table III, for each of the three nuclei considered, we
show the s.p. energies of the last occupied neutron states
and the first empty proton states. It is evident that the HF
calculations done with D1M and D1S interactions generate
48Ca ground states which are unstable under β decay, since the
energies of the unoccupied proton 1f7/2 state are lower than
those of the analogous, occupied neutron state. This instability
of the HF ground state against the β decay is not present
in the other nuclei. The inclusion of tensor terms solves this
problem, as is shown by the s.p. energies corresponding to the
D1ST2c and D1MT2c forces given in the table. We point out
that the parameters of these interactions have been chosen to
reproduce other observables, i.e., the spin-orbit splitting of the
1f neutron states in 40Ca, 48Ca, and 56Ni; therefore this is a
genuine prediction of our model.

We start our discussion about the charge-exchange excita-
tions by considering first the IAS resonance. The validity and
the consistency of our RPA calculations can be verified by

TABLE III. Energies, in MeV, of the s.p. states near the Fermi
surfaces of 48Ca, 90Zr, and 208Pb nuclei. We present the energies of
the first proton empty state (p) and that of the last neutron occupied
state (n). The experimental (Expt.) values have been taken from the
compilation of Ref. [27].

D1M D1MT2c D1S D1ST2c Expt.

48Ca p 1f7/2 − 9.83 − 8.44 − 9.90 − 8.18 − 9.45
n 1f7/2 − 9.33 − 9.72 − 9.48 − 9.68 − 9.94

90Zr p 1g9/2 − 5.78 − 4.45 − 5.98 − 4.36 − 5.08
n 1g9/2 − 11.80 − 12.10 − 11.90 − 12.02 − 11.97

208Pb p 1h9/2 − 3.33 − 3.87 − 3.56 − 4.21 − 3.71
n 3p1/2 − 8.94 − 8.29 − 7.85 − 8.09 − 7.37
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TABLE IV. The IAS sum rule values for F excitations in 48Ca,
90Zr, and 208Pb nuclei. The RPA responses have been integrated up to
a maximum energy of 250 MeV for 48Ca, 200 MeV for 90Zr, and 150
MeV for 208Pb. The �F values in the columns labeled with the force
name are obtained as the difference between mF−

0 and mF+
0 , while the

expected values are N − Z [see Eq. (23)].

D1M D1MT2c D1S D1ST2c Expected

48Ca mF−
0 8.49 8.34 8.40 8.26

mF+
0 0.49 0.34 0.40 0.26

�F 8.00 8.00 8.00 8.00 8.00
90Zr mF−

0 10.59 10.41 10.49 10.33

mF+
0 0.60 0.41 0.49 0.33

�F 9.99 10.00 10.00 10.00 10.00
208Pb mF−

0 46.40 46.66 46.33 46.40

mF+
0 2.60 2.66 2.33 2.40

�F 43.80 44.00 44.00 44.00 44.00

observing the exhaustion of the sum rules (23), whose values
are given in Table IV. The good agreement with the expected
values indicates that our configuration spaces are large enough
to reach the numerical convergence of our calculations. As
expected, in nuclei with neutron excess, the total strength
carried by the T− excitation is much larger than that of the
T+ excitation.

The IAS resonances in the 48Ca and 90Zr nuclei are
dominated by the neutron-proton transitions between the
analog 1f7/2 states in 48Ca, and 1g9/2 states in 90Zr. In RPA
calculations the IAS excitation presents a well-isolated large
peak which carries more than the 90% of the total strength.
Also in 208Pb the IAS strength distribution shows a single
sharp peak; however, the situation is more complicated since
there are various particle-hole (p-h) excitations contributing
to the main excitation. The energies of the IAS peak, ωF−

max,
for each nucleus and interaction considered are compared
in Table V with the experimental values extracted from
Refs. [38,39,43–49].

Only the RPA calculations can provide a realistic descrip-
tion of these IAS excitations. The excitation energies in a
pure independent particle model (IPM) can be obtained as
the difference between the energies of the neutron and proton
analog s.p. states. For 48Ca and 90Zr, these energies are those
shown in Table III. In the case of 208Pb, we considered the
n̄(3p1/2) and p(3p1/2) s.p. states. The IPM values obtained
are shown for the three nuclei in Table V (in italics). We
observe indeed that the IAS energies obtained in the IPM are
extremely small with respect to those of the RPA, and they are
even negative for 48Ca in the D1M and D1S cases, as we have
pointed out above. This indicates that interactions and RPA
correlations play an important role in the description of these
excitations, even though they are not collective states; indeed
their strength is concentrated in a single resonance largely
dominated by the IPM p-h transition.

In 48Ca and 90Zr the inclusion of the tensor force increases
the values of peak energy ωF−

max in the correct direction to
improve the description of the experimental value by about

TABLE V. Main peak, ωα−
max, and centroid, ωα−

cen, energies, in MeV,
for the F, GT, and SD responses. In the case of the F transitions, also
the IPM values of the peak energies are shown (in italics). In the last
column (Expt.) we show the available experimental data.

D1M D1MT2c D1S D1ST2c Expt.

48Ca ωF−
max 5.67 6.26 5.66 6.25 7.17 [44]

− 0.50 1.28 − 0.52 1.50 (IPM)

ωGT−
max 11.64 9.90 12.38 10.17 10.5 [44]

ωGT−
cen 9.87 10.35 10.28 10.26 –

ωSD−
cen 21.61 22.48 20.81 20.83 –

90Zr ωF−
max 10.88 11.32 10.79 11.19 12.0 ± 0.2 [43]

6.02 7.65 5.92 7.66 (IPM)

ωGT−
max 17.36 15.64 17.93 15.80 15.6 ± 0.3 [45,47]

ωGT−
cen 15.68 15.80 15.84 15.90 16.54 [47]

ωSD−
cen 24.98 24.47 25.56 24.90 30.74 [38]

208Pb ωF−
max 17.23 17.21 17.02 16.97 18.83 ± 0.02 [46]

11.35 11.32 10.77 10.74 (IPM)

ωGT−
max 20.99 18.89 21.12 18.56 19.2 ± 0.2 [46]

ωGT−
cen 19.64 18.74 19.02 19.61 –

ωSD−
cen 25.08 25.04 25.40 25.01 28.37 [48,49]

0.5 and 0.4 MeV, respectively. The effect of the tensor
force is smaller and of opposite sign in the 208Pb nucleus.
Though the quality of the description of the experimental
peak energies is not satisfactory, it is, however, similar to
that obtained by self-consistent calculations carried out with
Skyrme interactions [50].

The role of the tensor force is more relevant in the GT
excitations. We give in Table V the energies of the main peaks,
ωGT−

max , and the centroid energies ωGT−
cen , of this type of excitation

for the three nuclei and for all the interactions considered.
In the left panels of Fig. 2 we present the �GT−

1+ (ω) strength
distributions obtained with the D1M (red solid curves) and
D1MT2c (blue dashed curves) interactions. In the figure, our
discrete results have been folded with a Lorentz function of
1 MeV width. The arrows indicate the experimental values
of the main peak energies [44–47]. The consistency and
convergence of our calculations can be verified by observing
the sum rule values given in Table VI. The results shown in
this table indicate that the T− transitions carry the major part
of the total sum rule.

From Fig. 2 we observe that all the GT strength distributions
present essentially two peaks. The smaller ones lie well below
the experimental energy of the main peaks. The largest peaks
obtained with the D1M interaction occur at energies close
to, but slightly above, these experimental values. The use of
the D1MT2c force, which includes the tensor terms, changes
the position of these peaks, even though it does not modify
sensitively the values of the centroid energies, as is shown
in Table V. The tensor terms reduce the energy of the large
peaks by 2–3 MeV and remarkably improve the agreement
with the experimental data. These effects of the tensor force
are similar to those found with Skyrme interactions [15].
As seen in Fig. 2(b), our RPA results describe reasonably
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FIG. 2. (Color online) Energy distributions of the �GT−
1+ (ω) (left panels) and �

SQ−
1+ (ω) (right panels) strengths, as given by Eq. (12). The

red solid curves have been obtained with the D1M interaction while the blue dashed curves with the D1MT2c force. The arrows indicate the
experimental energies of the main peaks [44–49]. The black squares show the 48Ca, 90Zr, and 208Pb experimental data, taken, respectively, from
Refs. [39,47,49].

TABLE VI. Sum rule for GT excitations in 48Ca, 90Zr, and
208Pb nuclei. The �GT values in the columns labeled with the
force name are obtained as the difference between mGT−

0 and
mGT+

0 , while the expected values are 3(N − Z) [see Eq. (24)]. The
values of the maximum excitation energies used to integrate the
RPA responses are the same as those indicated in the caption of
Table IV.

D1M D1MT2c D1S D1ST2c Expected

48Ca mGT−
0 24.74 24.64 24.57 24.47

mGT+
0 0.74 0.71 0.57 0.64

�GT 24.00 23.93 24.00 23.83 24.00
90Zr mGT−

0 31.10 30.92 30.92 30.72

mGT+
0 1.12 0.99 0.92 0.82

�GT 29.98 29.93 30.00 29.90 30.00
208Pb mGT−

0 137.33 135.97 136.91 134.92

mGT+
0 5.38 5.26 4.96 4.90

�GT 131.95 130.71 131.95 130.02 132.00

well the positions of the peaks but they miss completely
the description of the experimental energy distribution of the
strengths. This is not a specific problem of our implementation
of the HF + RPA approach but rather an intrinsic limit of the
RPA, which, by considering 1p-1h excitations only, does not
include the spreading width. The experimental data for 90Zr
may contain the contribution of the excitation induced by the
isovector spin monopole operator [51,52]. The discussion in
Ref. [45] indicates that the presence of this type of excitation
is negligible in the data measured in the experiment at forward
scattering angle, and for this reason we did not consider it. It
is however a topic worth further investigation [18,19].

Using Skyrme interactions, Bai et al. [12] showed that
about 10% of the GT strength is moved above 30 MeV when
the tensor terms are included in the RPA calculation. We
have analyzed the strength distributions of our GT results and
have found a similar effect though the shift of the strength is
only 5%.

To make another comparison with the results of Ref. [12]
we have calculated the �

SQ−
1+ (ω) strength distributions obtained
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FIG. 3. (Color online) Energy distributions of the �SD−
Jπ (ω) and �SD−(ω) strengths for 48Ca (left panels), 90Zr (central panels), and 208Pb (right

panels) nuclei. The red solid curves have been obtained with the D1M interaction while the blue dashed curves with the D1MT2c force. The
squares indicate the experimental data of Ref. [38], for 90Zr, and of Refs. [48,49], for 208Pb.

with the SQ operator. In the right panels of Fig. 2 we show the
results obtained with the D1M (red solid curves) and D1MT2c
(blue dashed curves) forces. The basic effect of the tensor force
is to move the strengths toward higher energies. The sizes of
these shifts are much smaller than those found in Refs. [12,53]
for the Skyrme interaction.

In Fig. 3 we show the �SD−
Jπ (ω) strength distributions for

48Ca (left panels), 90Zr (central panels), and 208Pb (right
panels) nuclei. The results obtained with the D1M (red solid
curves) and the D1MT2c (blue dashed curves) interactions
are shown. These excitations imply the superposition of the
responses of three different multipoles, the 0− [Figs. 3(a), 3(e),
and 3(i)], 1− [Figs. 3(b), 3(f), and 3(j)], and 2− [Figs. 3(c), 3(g),
and 3(k)]. Our calculations produce discrete results for
each multipole considered even above the nucleon emission
threshold. Since the experimental strengths of Refs. [38,48,49]
are above this threshold, a comparison with them requires the

sum of the three responses. Because of the large numbers of
peaks in this excitation region we fold our discrete results with
a Lorentz function of 2 MeV width. This procedure produces
smooth continuous strength distributions, which we sum for
each value of the excitation energy, as indicated in Eq. (17), to
obtain the total strength �SD−(ω) [Figs. 3(d), 3(h), and 3(l)].

The consistency of our calculations can be verified by
observing the results shown in Table VII, i.e., the values of
the positive and negative zeroth energy moments (18) and of
the SD sum rules. These last values must be compared with
those shown in Table II, which have been obtained by using the
expression (25). We observe a maximal deviation of about 5%.
In the case of the 90Zr nucleus we show the experimental values
of Ref. [38], and we observe the general good agreement of our
calculations within the range of the experimental uncertainties.

There are common characteristics related to the results
shown in Fig. 3. In all the cases considered, the strength of the
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TABLE VII. Sum rule values, in fm2, for SD excitations in 48Ca,
90Zr, and 208Pb nuclei. The �SD values in the columns labeled with the
force name are obtained as the difference between mSD−

0 and mSD+
0 .

The expected �SD values have been calculated by using Eq. (25).
The experimental data (Expt.) for 90Zr are taken from Ref. [38]. The
values of the maximum excitation energies used to integrate the RPA
responses are the same as those indicated in the caption of Table IV.

D1M D1MT2c D1S D1ST2c Expt.

48Ca mSD−
0 137.60 141.52 140.08 145.68 –

mSD+
0 51.96 53.64 51.81 56.39 –

�SD 85.64 87.88 88.27 89.29 –

expected �SD 85.68 85.67 88.27 88.89 –
90Zr mSD−

0 276.42 279.53 281.51 285.41 271 ± 14

mSD+
0 135.37 136.42 136.50 135.41 124 ± 11

�SD 141.05 143.11 145.01 150.00 147 ± 13

expected �SD 140.74 140.91 145.09 145.61 –
208Pb mSD−

0 1176.40 1188.38 1210.90 1204.92 –

mSD+
0 170.45 150.75 165.46 148.45 –

�SD 1005.95 1037.63 1045.44 1056.47 –

expected �SD 1013.98 1018.47 1050.14 1057.90 –

0− excitations is smaller than those of the 1− and 2− modes,
which are of similar size. Furthermore, the main peaks of the
0− responses are located at higher energies than the peaks of
the 1− and 2− modes, which almost overlap.

Also in these charge-exchange excitations the 0− state is
extremely sensitive to the tensor force, as has been observed for
the charge-conserving case [54,55]. As seen in Figs. 3(a), 3(e),
and 3(i), at higher energies the tensor force shifts the strength
of this excitation mode. The inclusion of the tensor term is
even worsening the agreement with the experimental strength
distribution disentangled in the data of Refs. [48,49] for
208Pb [see Fig. 3(i)].

At variance with the large effects on the 0− excitations,
the tensor term does not remarkably modify the strength
distributions of the other two SD resonances. Since the
strengths of these resonances are larger than those of the 0−
excitations, the total response is scarcely affected by the
presence of the tensor force [see Figs. 3(d), 3(h), and 3(l)].
The size of these effects can be estimated by the small changes
in the centroid energies shown in Table V. The general trend
of these results is analogous to that of the results of Ref. [14],
even though the size of the effects is smaller.

In the second part of the section we analyze in more detail
the role of the tensor force, which affects our model in two
ways: at HF level, where it modifies the s.p. wave functions
and energies which are input of the RPA, and directly at
RPA level. In order to disentangle these two effects, we have
carried out HF and RPA calculations by switching on and
off the tensor terms of the interaction. We label as [0,0] the
results obtained without the tensor force in both HF and RPA
calculations. These do not correspond to the results obtained
with the D1M and D1S forces previously presented, since the
values of the spin-orbit terms of the D1MT2c and D1ST2c
interactions are used. We label as [1,0] the results obtained

by using the tensor force in HF calculations only and as [1,1]
those where the tensor force has been used in both HF and RPA
calculations. These last results are those previously shown. In
addition, since our tensor interaction contains two terms [see
Eq. (28)], we have investigated separately their relevance in
the RPA calculations. We have labeled our results [1,t] or [1,ti]
if only the pure tensor or the tensor-isospin terms, respectively,
are included in the RPA calculations. In these two cases, the
complete tensor interaction is considered in the HF calculation.

We conducted this study in all the three nuclei considered up
to now, and with both the D1MT2c and D1ST2c interactions.
However, since we observed rather similar effects, we present
in Figs. 4 and 5 only the results obtained in 90Zr with the
D1MT2c interaction. In Fig. 4, we show the T− strength
distributions obtained for the F [Fig. 4(a)] and GT [Fig. 4(b)]
transitions. The results of Fig. 4(a) indicate that the IAS
is sensitive to the changes of s.p. states and energies due
to the presence of the tensor force in HF calculations.
These modifications move the resonance peak toward higher
energies. This is compensated by a shift in the opposite
direction when the tensor force is included in the RPA
calculation.

An analogous, but much smaller, sensitivity to the effect
of the tensor channel is found in the largest peak of the GT
response [see Fig. 4(b)]. Instead, the presence of the tensor
force noticeably affects the smaller peak. Its inclusion in HF
calculations generates a remarkable shift of the peak to higher
energies. The use of the tensor force in the RPA calculations
produces a smaller shift in the same direction.

These last results can be understood in terms of the
so-called Otsuka effect [56] present in HF calculations with the
tensor force. This effect is mainly responsible for the global
tensor effect we have observed in the GT responses. In HF
calculations the tensor force between an occupied neutron state
with angular momentum j = l + 1/2 increases the energy of
the proton j = l + 1/2 s.p. state and lowers that of the proton
j = l − 1/2 states. This effect decreases the energy difference
between spin-orbit partners. An analogous effect of different
sign occurs with the neutron j = l − 1/2 states. In nuclei
where all the s.p. spin-orbit partner states are occupied the
two effects compensate. This is not the case for 90Zr, where
the last occupied neutron state is the n̄(1g9/2). The inclusion
of the tensor term in the HF calculation increases the s.p.
energy of the proton p(1g9/2) state by 1.3 MeV and reduces
that of the proton p(1g7/2) state by 1.7 MeV. The low-lying
peak observed in Figs. 2(b) and 4(b) is dominated by the
n̄(1g9/2)–p(1g9/2) p-h transition, while the n̄(1g9/2)–p(1g7/2)
is the main configuration in the other peak. Therefore the
energy of the first peak is increased, while that of the second
one is reduced, and the energy difference between the two GT
peaks decreases. No additional modifications of the situation
occur, since the tensor force, in this case, has a very small effect
on the RPA calculations. An analogous trend is observed in
48Ca, where the states involved are the proton p(1f7/2) and
p(1f5/2) s.p. states interacting with the neutron n̄(1f7/2). This
effect explains also the upward shift of the IAS response [see
Fig. 4(a)], when the tensor force is included.

In the right panels of Fig. 4 we show the �SD−
Jπ (ω) responses

for each multipole considered and in Fig. 4(c) the total �SD−(ω)
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FIG. 4. (Color online) Energy distributions of the T− responses of 90Zr calculated with the D1MT2c interaction. We show in panels (a)–(c)
the strengths �F−

0+ (ω), �GT−
1+ (ω), and �SD−(ω), respectively. The SD strengths for the 0−, 1−, and 2− multipoles are shown in the right panels.

The red solid lines labeled [0,0] indicate the results obtained without tensor terms in both HF and RPA calculations, those labeled [1,0] (black
dotted curves) indicate the results obtained by considering the tensor force only in the HF calculations, and, finally, those identified with [1,1]
(blue dashed) have been obtained by considering the tensor force in both HF and RPA calculations. The arrows indicate the experimental
energies of the main peaks for the SD [43] and GT [45,47] excitations. Experimental data (black solid squares) are from Ref. [47] for GT
strength and from Ref. [38] for SD strength.

strength. The effects of the tensor force are rather small in both
HF and RPA calculations for 1− and 2− responses. Since these
are the dominant strengths, also the total response is practically
unaffected by the inclusion of the tensor term. The situation
for the 0− state is different. While there are no effects when
the tensor is included in HF calculations, the RPA responses
show a large energy shift.

As we have already pointed out, we obtain similar results for
the other two nuclei and for the D1ST2c interaction. This can
be seen in Table VIII, where we summarize the shifts between
the centroid energies obtained for different calculations by
showing the values of

sα−([a,b][c,d]) = ωα−
cent[a,b] − ωα−

cent[c,d]. (31)

The letters indicated in the brackets are 0, 1, t, or ti according
to the use of the tensor interaction in HF and RPA calculations
(see above). The shifts sSD−

Jπ ([a,b][c,d]) calculated for the
individual multipolarities in the case of the SD transitions
can be defined in an analogous way.

Returning to the situation described above, we see that
the centroid energy in the case of the multipolarity 0− in
the T− SD transition is shifted by 7.30 MeV in 90Zr, as
indicated by the [1,1][1,0] column for D1MT2c interaction
in Table VIII. In 48Ca and 208Pb, sSD−

0− ([1,1][1,0]) is 8.21
and 9.04 MeV, respectively. These values are much larger
than those found for the other multipolarities and for the total
SD transition. As is shown in the table, we find a similar
trend in all the nuclei considered and for both D1MT2c and
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FIG. 5. (Color online) The same as in Fig. 4. In this case, all the calculations have been carried out by including tensor force in the HF
calculations. The [1,0] black dotted and [1,1] blue dashed lines are the same as those of Fig. 4 and have been included here to facilitate the
comparison with the other results. The [1,t] red dashed-dotted curves have been obtained by including only the pure tensor force in RPA
calculations, while those obtained by including only the tensor-isospin force are named [1,ti] (green solid curves).

D1ST2c interactions. This is a genuine effect of the tensor
force.

For the 90Zr and the D1MT2c force, we show in Fig. 5 the
comparison between the results obtained with and without the
two tensor terms in the RPA calculations. The corresponding
shifts of the centroid energies are presented in Table VIII.
These calculations have been carried out by including the full
tensor force in the HF calculation.

In general, the sensitivity to the pure tensor term is much
larger than that to the tensor-isospin one. This can be deduced
from the fact that the results of the [1,0] (black dotted curves)
and [1,ti] (green solid curves) calculations are rather close
in all the cases, while the consideration of the pure tensor
term in the RPA calculations ([1,t] red dashed-dotted curves)
produces results very similar to the complete [1,1] calculations
(blue dashed curves). As a consequence, the main effect of the

tensor interaction is essentially due to the presence of the pure
tensor term. An analogous effect is observed in the F excitation.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented results of charge-exchange
responses calculated within the HF + RPA framework with
finite-range interactions. These are parameter-free calcula-
tions, since no part of the interactions has been modified.
Even though we have considered only doubly magic nuclei,
however, these interactions can be used also to describe
pairing effects in open-shell nuclei [57]. Our approach is fully
self-consistent since all the terms of the interaction used in
the HF calculations have been considered in the RPA, even
the spin-orbit term, which is usually neglected in the latter
calculations.
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TABLE VIII. Energy differences, in MeV, between centroid energies calculated in different manners, as defined by Eq. (31), for all the
nuclei, interactions, and transitions considered in our work.

D1MT2c D1ST2c

[1,0][0,0] [1,t][1,0] [1,ti][1,0] [1,1][1,0] [1,0][0,0] [1,t][1,0] [1,ti][1,0] [1,1][1,0]

48Ca sF− 1.96 −1.07 −0.28 −1.37 2.12 −1.17 −0.33 −1.52

sGT− 0.97 0.49 0.12 0.51 1.00 0.51 0.11 0.52

sSD− 0.62 0.20 0.05 1.15 0.61 0.21 0.04 1.12

sSD−
0− 0.35 8.03 1.01 8.21 0.27 8.18 0.75 8.01

sSD−
1− 0.56 −1.56 −0.38 −2.17 0.54 −1.54 −0.38 −2.21

sSD−
2− 0.72 1.19 0.29 1.35 0.74 1.21 0.23 1.34

90Zr sF− 1.79 −1.01 −0.26 −1.29 1.91 −1.09 −0.30 −1.42

sGT− 0.87 0.44 0.08 0.50 0.88 0.46 0.13 0.48

sSD− 0.43 0.07 0.00 0.88 0.15 0.11 0.01 0.73

sSD−
0− 0.22 5.85 1.06 7.30 0.15 7.00 0.92 7.23

sSD−
1− 0.42 −1.54 −0.38 −2.10 0.39 −1.49 −0.34 −2.16

sSD−
2− 0.48 0.87 0.09 0.95 0.47 0.89 0.10 0.84

208Pb sF− 0.04 −0.03 0.00 −0.03 0.06 −0.03 −0.01 −0.04

sGT− 0.19 0.41 0.09 0.36 0.06 0.40 0.09 0.33

sSD− 0.20 0.43 0.06 0.71 0.38 0.43 0.04 0.78

sSD−
0− 0.32 7.99 1.56 9.04 0.24 8.14 1.49 7.23

sSD−
1− 0.23 −1.86 −0.48 −2.42 0.18 −1.81 −0.47 −2.40

sSD−
2− 0.14 0.80 0.10 0.92 0.11 0.82 0.08 0.97

We have used two well-tested parametrizations of the
Gogny interaction and the D1S and D1M forces. We have
also considered two other interactions containing tensor terms.
These last interactions have been constructed by adding to the
original D1M and D1S forces a tensor term and a tensor-isospin
term. The parameters defining the tensor force have been
chosen following the procedure indicated in Ref. [22], which
implies only a change in the strength of the spin-orbit force.
We have investigated the role of the tensor force by comparing
the results obtained with the original Gogny forces and those
with the new interactions.

We first remark that the HF calculations done with the
original Gogny forces generate a 48Ca ground state unstable
for β decay. The interactions with a tensor force stabilize the
situation.

Our study of the IAS excitations shows that the IPM is
unable to predict reasonable excitation energies, while the
RPA results describe them much better. These excitations are
characterized by a single peak, which is not very sensitive
to the presence of the tensor force. This small effect is
due to a cancellation of two sizable effects which work in
opposite directions. The inclusion of the tensor force in HF
calculations changes the s.p. energies and, consequently, we
obtain peak positions which are 2 or 3 MeV larger. When the
tensor force is included in our RPA calculations we obtain an
opposite effect, which essentially compensates for the previous
shift.

We observe remarkable effects of the tensor force on the
GT responses that help in improving the description of the
experimental data. Our GT responses are characterized by

two main peaks generated by the transitions of the excess
neutrons from their last occupied s.p. level, with orbital angular
momentum l, to the empty proton levels with the same orbital
angular momentum. In this case, the major effect of the tensor
force is the reduction of the energy difference between the
proton s.p. levels in HF calculations. This implies a reduction
of the difference between the energies of the two GT peaks,
since the tensor force does not produce relevant effects in the
RPA level.

The results obtained for the SD excitation indicate that only
the 0− multipole is very sensitive to the presence of the tensor
force, and this happens essentially in the RPA calculation,
contrary to what we have observed for the GT resonances. In
208Pb it has been possible to disentangle the experimental SD
strength attributed to the 0− excitation, and we found that the
inclusion of the tensor term is even worsening the agreement
with the experimental data. We observe that the tensor effects
on the SD multipole decrease with increasing value of the
angular momentum. This behavior is similar to that found in
Ref. [14].

Our investigation indicates that the tensor effects we have
identified are mainly due to the pure tensor term of the
interaction, while the role of the tensor-isospin term is smaller.

The results found in the present investigation give a
reasonable description of the experimental excitation energies
but fail in describing the width of the resonances. This is
a problem related to the intrinsic limit of the RPA, which
considers only 1p-1h excitations, and it is present also in the
description of charge-conserving excitations. The inclusion of
two-particle–two-hole excitations [58,59] or particle-vibration
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coupling [50] improves the agreement with the experimental
strength distributions.

We have studied the validity of our model by comparing our
results with the experimental data and with the results of other
self-consistent approaches. We conclude that the accuracy of
modern data needs the use of an effective nucleon-nucleon
interaction which contains tensor terms. A better tuning of
these terms of the effective interaction is required to apply
our model in experimentally unknown regions of the nuclear
chart.
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APPENDIX: TRANSITION MATRIX ELEMENTS

The s.p. transition operators defined in Eq. (11) can be
expressed as the product of a term depending only on the
radial coordinate of the ith particle, another term depending
on the angular coordinates and the spin of this particle, and a
third, isospin-dependent term τ±(i) = 2t±(i):

ηα±
Jπ ,M (i) = �α(ri)Bα

J,M (i) t±(i). (A1)

According to Eqs. (11) and (13)–(16) we have

�F(ri) = 1, (A2)

�GT(ri) = 1, (A3)

�SQ(ri) = r2
i , (A4)

�SD(ri) = ri (A5)

and

BF
0,0(i) = 1, (A6)

BGT
1,M (i) =

√
4π [Y0(i) ⊗ σ (i)]1

M, (A7)

BSQ
1,M (i) = [Y2(i) ⊗ σ (i)]1

M, (A8)

BSD
J,M (i) = [Y1(i) ⊗ σ (i)]JM. (A9)

Then, the reduced s.p. matrix elements of Eq. (12) can be
written as

〈a‖ηα±
Jπ ‖b〉 = 1

2

∫
dri r

2
i R∗

a (ri) Rb(ri) �α(ri)

×
〈
la

1

2
ja

∥∥∥∥Bα
J (i)

∥∥∥∥lb
1

2
jb

〉 〈
1

2
ta

∣∣∣∣τ±

∣∣∣∣1

2
tb

〉
, (A10)

where Ra(r) and Rb(r) indicate the radial part of the s.p. wave
functions, la and lb are the orbital angular momenta of the s.p.
states, and ta and tb are the third components of their isospin.
In the above equation we have dropped the dependence on M
since we have already applied the Wigner-Eckart theorem.

For the F operator, we have〈
la

1
2ja

∥∥BF
0 (i)

∥∥lb
1
2jb

〉 = ĵa δla,lb δja,jb
, (A11)

where we have used the symbol ĵa = √
2ja + 1. For the other

operators, in case of natural parity excitations, implying L =
J , we can write〈

la
1

2
ja

∥∥∥∥[YL(i) ⊗ σ (i)]J
∥∥∥∥lb

1

2
jb

〉

= (−1)la ξ (la + lb + J )
ĵa ĵb Ĵ√

4π

(
ja jb J

1/2 1/2 −1

)
.

(A12)

For unnatural parity excitations, with L = J + s with s = ±1,
we write〈
la

1

2
ja

∥∥∥∥[YL(i) ⊗ σ (i)]J
∥∥∥∥lb

1

2
jb

〉

= (−1)la+lb+jb+ 1
2 ξ (la + lb + J + 1)

ĵa ĵb√
4π

× χa + χb + sJ + δ(s,1)√
J + δ(s,1)

(
ja jb J

1/2 −1/2 0

)
, (A13)

where ξ (n) = 1 or 0 if n is even or odd, respectively, and
χa = (la − ja)(2ja + 1).

Finally, the isospin matrix element of Eq. (A10) is given by〈
1
2 ta

∣∣τ+
∣∣ 1

2 tb
〉 = δa,n δb,p, (A14)〈

1
2 ta

∣∣τ−
∣∣ 1

2 tb
〉 = δa,p δb,n. (A15)
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