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Quantum Monte Carlo calculations of electromagnetic transitions in 8Be with meson-exchange
currents derived from chiral effective field theory
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We report quantum Monte Carlo calculations of electromagnetic transitions in 8Be. The realistic Argonne
v18 two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited
states, with energies that are in excellent agreement with experiment. A dozen M1 and eight E2 transition
matrix elements between these states are then evaluated. The E2 matrix elements are computed only in impulse
approximation, with those transitions from broad resonant states requiring special treatment. The M1 matrix
elements include two-body meson-exchange currents derived from chiral effective field theory, which typically
contribute 20%–30% of the total expectation value. Many of the transitions are between isospin-mixed states;
the calculations are performed for isospin-pure states and then combined with empirical mixing coefficients to
compare to experiment. Alternate mixings are also explored. In general, we find that transitions between states
that have the same dominant spatial symmetry are in reasonable agreement with experiments, but transitions
between different spatial symmetries are often underpredicted.
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I. INTRODUCTION

We recently reported ab initio quantum Monte Carlo
(QMC) calculations of magnetic moments and electromag-
netic (EM) transitions in A � 9 nuclei [1]. In that work, the
calculated magnetic moments and M1 transitions included
corrections arising from EM two-body meson-exchange cur-
rents (MECs) derived in two approaches: (i) a standard nuclear
physics approximation [2,3] and (ii) the chiral effective theory
(χEFT) formulation from Refs. [4–6]. Nuclear wave functions
(w.f.’s) were obtained from a Hamiltonian consisting of the
nonrelativistic nucleon kinetic energy plus the Argonne v18

(AV18) two-nucleon [7] and Illinois-7 (IL7) three-nucleon
[8] potentials. The standard nuclear physics approximation
MEC were constructed to obey current conservation with this
Hamiltonian, while the use of the χEFT MEC constitutes
a hybrid calculation. The two methods are in substantial
agreement, producing a theoretical microscopic description
of nuclear dynamics that successfully reproduces the available
experimental data, although the χEFT MEC give somewhat
better results. Two-body components in the current operators
provide significant corrections to single-nucleon impulse-
approximation (IA) calculations. For example, they contribute
up to ∼40% of the total predicted value for the 9C magnetic
moment [1].

In this work, we implement the framework described above
for 20 EM transitions in the 8Be nucleus using only the
χEFT MEC. The experimental spectrum and EM transitions
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we consider are illustrated in Fig. 1. This even-even nucleus
exhibits a strong two-α cluster structure in its ground state,
characterized by angular momentum, parity, and isospin
(Jπ ; T ) = (0+; 0), and a predominantly [44] Young diagram
spatial symmetry. The ground state lies ∼0.1 MeV above the
threshold for breakup into two α’s, while the (2+; 0) state at
∼3-MeV excitation and the (4+; 0) state at ∼11 MeV are [44]
rotational states with large (∼1.5- to 3.5-MeV) decay widths.
The next six higher states, at 16- to 19-MeV excitation, are
three isospin-mixed doublets, with the first pair of (2+; 0 + 1)
states lying below the threshold for breakup into 7Li + p and
having α + α decay widths of ∼100 keV. The isospin mixing
is due to the interplay between T = 0 states and T = 1 states,
which are the isobaric analogs of the lowest three states in 8Li
and 8B, all with the same dominant [431] spatial symmetry.
There are many additional broad excited states above these
isospin-mixed doublets that are not shown before the final state
we consider, the (0+; 2) isobaric analog of the 8He ground state
at 27-MeV excitation, with dominant [422] spatial symmetry
and a very narrow, 5-keV decay width.

A comprehensive set of QMC calculations of A = 8 nuclei
was carried out in Ref. [9] for a Hamiltonian with AV18 and the
older Urbana IX three-nucleon potential [13]. More recently,
energies, radii, and quadrupole moments of this nucleus have
been recalculated for the [44] symmetry states [10] and for
the isospin-mixed states [11], using the newer IL7 potential.
The present work complements these studies by calculating
many EM transitions between the low-lying states, which are
also illustrated in Fig. 1. The M1 matrix elements include
contributions from two-body χEFT currents, which provide
important corrections of the order of 20%–30%. The two-body
current corrections to the E2 matrix elements are expected to
be negligible because they appear at a higher order in the χEFT
expansion [6] and are not computed here.
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FIG. 1. (Color online) Experimental spectrum of 8Be: horizontal
lines denote energy levels, with blue for T = 0 states, magenta for
mixed T = 0 + 1 states, and violet for T = 2; black dash-dotted lines
indicate thresholds for breakup as indicated and shaded areas denote
the large widths of the 8Be rotational states. Vertical lines with arrows
indicate the electromagnetic transitions studied: short-dashed (blue)
for E2, long-dashed (red) for M1, and dash-dotted (magenta) for
combined E2 and M1 transitions.

QMC techniques and χEFT EM currents were presented
in Ref. [1] and references therein. We refer to that work for
more details on the calculational scheme, which is briefly
summarized in Sec. II. From there on, we focus on providing
and discussing the results. In particular, the calculated 8Be
energy spectrum is presented in Sec. III, while results for E2
and M1 transitions are given in Sec. IV. We discuss the results
in Sec. V.

II. QMC METHOD, NUCLEAR HAMILTONIAN,
AND χEFT EM CURRENTS

EM transition matrix elements are evaluated between w.f.’s
which are solutions of the Schrödinger equation,

H�(Jπ ; T ,Tz) = E�(Jπ ; T ,Tz), (1)

where �(Jπ ; T ,Tz) is a nuclear w.f. with specific spin parity
Jπ , isospin T , and charge state Tz. The nuclear Hamiltonian
used in the calculations consists of a kinetic term plus two-
and three-body interaction terms, namely, the AV18 [7] and
the IL7 [8], respectively:

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk. (2)

Nuclear w.f.’s are constructed in two steps. First, a vari-
ational Monte Carlo (VMC) calculation is implemented to
construct a trial w.f. �V (Jπ ; T ,Tz) from products of two- and
three-body correlation operators acting on an antisymmetric
single-particle state of the appropriate quantum numbers. The
correlation operators are designed to reflect the influence of
the interactions at short distances, while appropriate bound-
ary conditions are imposed at long range [12,13]. The
�V (Jπ ; T ,Tz) has embedded variational parameters that are
adjusted to minimize the expectation value

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (3)

which is evaluated by Metropolis Monte Carlo integration
[14]. Here, E0 is the exact lowest eigenvalue of H for the
specified quantum numbers. A good variational trial function
has the form

|�V 〉 = S
A∏

i<j

⎡⎣1 + Uij +
A∑

k �=i,j

ŨTNI
ijk

⎤⎦ |�J 〉, (4)

where S is a symmetrization operator. The Jastrow w.f.
�J is fully antisymmetric and includes all possible spatial
symmetry states within the p shell that can contribute to the
(Jπ ; T ,Tz) quantum numbers of the state of interest, while
Uij and ŨTNI

ijk are the noncommuting two- and three-body
correlation operators.

The second step improves on �V by eliminating excited-
state contamination. This is accomplished by the Green’s
function Monte Carlo (GFMC) algorithm [15], which prop-
agates the Schrödinger equation in imaginary time (τ ). The
propagated w.f., �(τ ) = e−(H−E0)τ�V , for large values of τ
converges to the exact w.f. with eigenvalue E0. In practice,
a simplified version H ′ of the Hamiltonian H is used in the
operator, which includes the isoscalar part of the kinetic en-
ergy, a charge-independent eight-operator projection of AV18
called AV8′, a strength-adjusted version of the three-nucleon
potential IL7′ (adjusted so that 〈H ′〉 ∼ 〈H 〉), and an isoscalar
Coulomb term that integrates to the total charge of the given nu-
cleus [16]. The difference between H and H ′ is calculated us-
ing perturbation theory. More details can be found in Refs. [9]
and [13].

Matrix elements of the operators of interest are evaluated
in terms of a “mixed” expectation value between �V and
�(τ ):

〈O(τ )〉M = 〈�(τ )|O|�V 〉
〈�(τ )|�V 〉 , (5)

where the operator O acts on the trial function �V . The desired
expectation values, of course, have �(τ ) on both sides; by
writing �(τ ) = �V + δ�(τ ) and neglecting terms of order
[δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (6)

where 〈O〉V is the variational expectation value.
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For off-diagonal matrix elements relevant to this work the
generalized mixed estimate is given by the expression

〈�f (τ )|O|�i(τ )〉√
〈�f (τ )|�f (τ )〉

√
〈�i(τ )|�i(τ )〉

≈ 〈O(τ )〉Mi
+ 〈O(τ )〉Mf

− 〈O〉V , (7)

where

〈O(τ )〉Mf
= 〈�f (τ )|O∣∣�i

V

〉
〈�f (τ )

∣∣�f
V

〉
√√√√〈

�
f
V |�f

V

〉〈
�i

V |�i
V

〉 (8)

and 〈O(τ )〉Mi
is defined similarly. For more details see

Eqs. (19)–(24) and the accompanying discussions in Ref. [17].
Sources of systematic error in the GFMC evaluation of
operator expectation values (other than H ′) include the use
of mixed estimates and the constrained path algorithm for
controlling the Fermion sign problem in the propagation of
�(τ ). These are discussed in Ref. [9]; the convergence of the
current calculations is addressed at the beginning of Sec. III.

Nuclear EM currents are expressed as an expansion in
many-body operators. The current we use contains up to
two-body effects and is written as

j(q) =
∑

i

ji(q) +
∑
i<j

jij (q), (9)

where q is the momentum associated with the external EM
field. In what follows, we use the notation

ki = p′
i − pi , Ki = (p′

i + pi)/2,

k = (k1 − k2) /2, K = K1 + K2, (10)

where pi (p′
i) is the initial (final) momentum of nucleon i, and

q = k1 + k2 by momentum conservation.
There are two one-body operators resulting from retaining

the first two terms in the (pi/mN )2 expansion of the covariant
single-nucleon EM current. Of course, the leading-order (LO)
term in this expansion corresponds to the nonrelativistic IA
operator consisting of the convection and spin-magnetization
single-nucleon currents,

jIA
i = e

2mN

[2eN,iKi + iμN,iσ i×q], (11)

for nucleon i, and where

eN,i = (1 + τiz)/2 , κN,i = (κS + κV τiz)/2 ,

μN,i = eN,i + κN,i . (12)

Here κS = −0.12 and κV = 3.706 are the isoscalar (IS)
and isovector (IV) combinations of the anomalous magnetic
moments of the proton and neutron, and e is the electric charge.

Two-body EM currents are constructed from a χEFT which
retains both pions and nucleons as explicit degrees of freedom.
The resulting operators are expressed as an expansion in
nucleon and pion momenta, generically designated Q. The LO
contribution in Eq. (11) is of order e Q−2 and contributions up
to next-to-next-to-next-to-leading order (N3LO) or e Q1 are
retained in the expansion. These contributions were first cal-
culated by Park et al. in Ref. [18] using covariant perturbation
theory. More recently, Kölling and collaborators [19], as well

as some of the present authors [4–6,20], derived them using
two different implementations of time-ordered perturbation
theory. In this work, we use the operators developed in Refs.
[4–6] and [20], where details on the derivation and a complete
listing of the formal expressions may be found.

The two-body χEFT EM currents consist of long- and
intermediate-range components described in terms of one-pion
exchange (OPE) and two-pion exchange (TPE) contributions,
respectively, as well as contact currents encoding short-
range dynamics. In particular, OPE seagull and pion-in-flight
currents appear at next-to-leading order (NLO) (e Q−1) in the
Q expansion, while TPE currents occur at N3LO. The LO and
next-to-next-to-leading order (N2LO) (e Q0) contributions are
given by the single-nucleon operators described above, i.e.,
the IA operator and its relativistic correction, respectively.

At N3LO, the current operators involve a number of
unknown low-energy constants (LECs) which are fixed to
experimental data. The LECs multiplying four-nucleon contact
operators are of two kinds, namely, minimal and nonminimal.
The former also enter the χEFT nucleon-nucleon potential at
order Q2 and are therefore fixed by reproducing the np and
pp elastic scattering data, along with the deuteron binding
energy. For these, we take the values resulting from the fitting
procedure implemented in Refs. [21] and [22]. Nonminimal
LECs (there are two of them, one multiplying an isoscalar
operator and the other an isovector operator) need to be fixed
to EM observables.

At N3LO, there is also an additional current of one-pion
range which involves three LECs. One of these multiplies an
isoscalar structure, while the remaining two multiply isovector
structures. As first observed in Ref. [18], the isovector
component of this current has the same operator structure as
that associated with a 	-resonance transition current involving
an OPE. In this type of two-body contribution, the external
photon couples with a nucleon to excite a 	-resonance state.
The latter decays, emitting a pion which is then reabsorbed
by a second nucleon. Given this theoretical insight, one
can impose the condition that the two isovector LECs are
in fact given by the couplings of the 	-resonance current.
This mechanism is referred to as 	-resonance saturation and
has been utilized in various studies of EM observables of
light nuclei (see, for example, [1,6], and [23–26]). Once the
	-saturation mechanism is invoked to fix two of the unknown
LECs, the remaining three LECs are fit to the deuteron and the
trinucleon magnetic moments.

The values of the LECs are not unique, in that they
depend on the particular momentum cutoff used to regularize
the configuration-space singularities of the EM operators. In
momentum space, these operators have a power-law behavior
for large momenta, k, which is regularized by a momentum
cutoff of the form C(k) = exp(−k4/
4). For a list of the
numerical values of the LECs for 
 = 600 MeV, which is
the cutoff utilized in these calculations, we refer to Ref. [1].

The N2LO relativistic correction to the one-body IA
operator involves two derivatives acting on the nucleon field.
In the GFMC calculation we do not explicitly evaluate this
p2

i term but, instead, approximate it with its average value,
that is, p2

i ∼ 〈p2
i 〉, as determined from the expectation value

of the kinetic energy operator in 8Be, from which we obtain
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〈p2
i 〉 = 1.375 fm−2. This term is a small fraction of the total

MEC (see, e.g., Table IV below) so the approximation has little
practical effect.

To be consistent with the nomenclature utilized in Ref. [1],
we denote by MEC components in the EM currents beyond
the IA one-body operator at LO. However, we stress that the
N2LO contribution is a one-body operator, which does not
involve meson-exchange mechanisms.

III. 8BE ENERGY SPECTRUM

The experimental [27] and calculated GFMC energies for
the 8Be spectrum are listed in Table I, along with the GFMC
point proton radii. The calculations were done by propagating
up to some τmax, with an evaluation of observables after every
40 propagation steps, i.e., at intervals of τ = 0.02 MeV−1,
and averaging in the interval τ = [(0.1 MeV−1)–τmax]; τmax is
typically 0.3 to 0.4 MeV−1.

The calculation of the spectrum is rather involved [9], with
two main challenges to face. The first originates from the
resonant nature of the first two excited states [shaded (gray)
states in Fig. 1], and the ensuing difficulty of extracting a
stable resonance energy from the calculated energies, which
are evolving to the energy of two separated α’s. This issue was
addressed in Ref. [9] and more recently, however succinctly, in
Ref. [10]. The last reference reported an updated measurement
of the E2 transition between the first two excited states of 8Be
measured via the α + α radiative capture with an uncertainty
of ∼10% (as opposed to the estimated ∼30% error of previous
measurements [28]). To accompany the experimental result, a
GFMC calculation was performed for the E2 transition matrix
element between the two rotational states and between the
(2+; 0) state and the ground state. We reprise this calculation
in more detail below.

The second nontrivial issue is encountered when dealing
with the spectrum of the isospin-mixed states at 16–19 MeV
(magenta states in Fig. 1). These excited states have been
extensively discussed in Ref. [11]. We compute unmixed

TABLE I. GFMC ground-state energy and excitations (in MeV)
for the AV18 + IL7 Hamiltonian compared to experiment [27] for
the 8Be spectrum. Empirical energies are obtained by unfolding
the isospin-mixed experimental energies using inferred mixing
coefficients (see text for explanation). Also listed are the GFMC
point proton (=neutron) radii (in fm). Theoretical or experimental
errors �1 in the last digit are given in parentheses.

J π ; T GFMC Empirical Experimental rp

0+ −56.3(1) −56.50 2.40
2+ +3.2(2) +3.03(1) 2.45(1)
4+ +11.2(3) +11.35(15) 2.48(2)
2+

2 ; 0 +16.8(2) +16.746(3) +16.626(3) 2.28
2+; 1 +16.8(2) +16.802(3) +16.922(3) 2.33
1+; 1 +17.5(2) +17.66(1) +17.640(1) 2.39
1+; 0 +18.0(2) +18.13(1) +18.150(4) 2.36
3+; 1 +19.4(2) +19.10(3) +19.07(3) 2.31
3+; 0 +19.9(2) +19.21(2) +19.235(10) 2.35
0+; 2 +27.7(2) +27.494(2) 2.58

T = 0 or T = 1 states, but experimental values are, of course,
for the mixed states. The isospin-mixing coefficients can be
extracted from experimental decay widths [29]. For the 2+
multiplet this is unambiguous, but for the 1+ and 3+ multiplets
theoretical decay widths based on shell-model calculations
have been used. This is discussed further below. In Table I
we use the mixing parameters to unfold the “empirical” pure-
isospin energies for comparison with our calculations, while in
subsequent tables we fold the computed EM matrix elements
to generate mixed matrix elements to compare to the data.

We studied the convergence of the GFMC calculations with
respect to variations in the number of unconstrained steps
(nu = 20 and 50) followed after the path constraint is relaxed,
and found that energies, magnetic moments, and rms radii
converge at nu = 20, which is used for the final results reported
here. Most of the calculations we present are obtained by
averaging two calculations, each using 50 000 walkers. For the
physically narrow, nonresonant states, the energy expectation
value is seen to stabilize at τ ∼ 0.1 MeV−1.

For the physically wide, resonant states, the binding energy,
magnitude of the quadrupole moment, and point proton radius
all increase monotonically as τ increases. We interpret this as
an indication that the system is dissolving into two separated
α’s. In Fig. 2, we show the GFMC propagation points for
the energy expectation values of the first three states of
8Be. In particular, the ground-state energy is obtained with
nu = 20 and 20 000 walkers, while the resonant state energies
are obtained using nu = 20 and averaging two calculations
with 50 000 walkers each. From the figure, we see that the
ground-state initial VMC energy expectation value at τ = 0
quickly drops and reaches stability around τ = 0.1 MeV−1

(this point is indicated in the figure by an open star). The
energies of the two resonant states, instead, keep falling with
time: the (2+; 0) state decreases 0.25 MeV over the interval
τ = [0.1,0.3] MeV−1, while the (4+; 0) state falls by 1 MeV.
With this declining energy there is a corresponding increase in
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-56

-52

-48

-44
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-36
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FIG. 2. (Color online) GFMC propagation in imaginary time τ

of the energy expectation values of the first three states in the 8Be
spectrum. Lower black circles represent GFMC propagation points
for the ground state; middle (blue) circles, the (2+; 0) rotational state
at ∼3-MeV excitation; and upper (red) circles, the (4+; 0) state at
∼11-MeV excitation. Solid lines represent a linear fit to the GFMC
points in the indicated time interval and dashed lines show a one-
standard-deviation Monte Carlo statistical error for the fit.
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FIG. 3. (Color online) GFMC propagation in imaginary time τ

of the point proton radius expectation values of the first three states
in the 8Be spectrum; notation is the same as for Fig. 2.

the point proton radius expectation values, as shown in Fig. 3
and in the magnitude of the (negative) electric quadrupole
moment.

Quantities associated with the resonant states have been
calculated assuming that, also for these states, τ ∼ 0.1 MeV−1

is the point at which spurious contamination in the nuclear
w.f.’s has been eliminated by the GFMC propagation. Thus,
we make a linear fit to the GFMC values in the interval
τ = [0.1,0.3] MeV−1 and extrapolate to τ = 0.1 MeV−1 for
the reported values. The choice of τ = 0.1 MeV−1 is somewhat
arbitrary. To account for this uncertainty we increase the
GFMC statistical error by a systematic error that is obtained
by studying the sensitivity of the results with respect to
fitting procedures implemented in two different intervals,
namely, τ = [0.08,0.3] MeV−1 and τ = [0.12,0.3] MeV−1,
while keeping the same extrapolating point. The total error is
represented in the figures by dashed lines.

For the six states at 16- to 19-MeV excitation, the GFMC
calculations are done for pure isospin states of either T = 0 or
T = 1. The w.f.’s of the isospin-mixed states are written as

�a
J = αJ �J,T =0 + βJ �J,T =1,

�b
J = βJ �J,T =0 − αJ �J,T =1, (13)

where the mixing angles satisfy α2
J + β2

J = 1. As one can see
from Fig. 1 and Table I, experimentally there are two Jπ = 2+
isospin-mixed states, at 16.626- and 16.922-MeV excitation
energies; two Jπ = 1+ states, at 17.64 and 18.15 MeV;
and two Jπ = 3+ states, at 19.07 and 19.235 MeV. The
mixing angles are inferred from the experimental values of
the decay widths. We follow the analysis carried out by Barker
in Ref. [29] and update the experimental widths with more
recent values to obtain the following mixing coefficients [11]:

α2 = 0.7705(15), β2 = 0.6375(19),

α1 = 0.21(3), β1 = 0.98(1), (14)

α3 = 0.41(10), β3 = 0.91(5).

Mixing coefficients for the 2+ states are well known because
for these states there is only one decay channel energetically
open, that is, the 2α emission channel, for which the experi-
mental widths are known with ∼0.5% accuracy. For the other

isospin-mixed states, multiple decay channels are available,
which makes the extraction of the mixing coefficients less
direct. In addition, theoretical values of M1 matrix elements
must be used; the values above were obtained using the
traditional shell model without two-body current contributions
to the matrix elements [11,29]. Revised mixing parameters for
the 1+ pair, computed using the M1 matrix elements developed
here, are discussed in Sec. V.

The eigenenergies of the isospin-mixed states listed in Table
I are given by

Ea,b = H00 + H11

2
±

√(
H00 − H11

2

)2

+ (H01)2, (15)

where H00 is the diagonal energy expectation in the pure T = 0
state, H11 is the expectation value in the T = 1 state, and H01 is
the off-diagonal isospin-mixing matrix element that connects
T = 0 and T = 1. The inferred H00 and H11 are the empirical
values listed in Table I.

Finally, the narrow (0+; 2) state at 27-MeV excitation,
which has a dominant [422] spatial symmetry, is a straightfor-
ward GFMC calculation. There could, in principle, be isospin
mixing with the third (0+

3 ; 0) state in the p-shell construction
of 8Be, which also has [422] symmetry, via the EM and charge-
dependent parts of the AV18. No such state has been identified
experimentally. The first VMC calculation places this state
0.7(1) MeV higher in excitation, with a 125-keV isospin-
mixing matrix element, which predicts α0 = 0.19(4) and β0 =
0.98(1). This small amount of mixing may still have a moderate
effect on the width of the physical state, as discussed below.

The overall agreement between experiment and the cal-
culated GFMC spectrum for AV18 + IL7 listed in Table I is
excellent. Only the 3+ isospin-mixed doublet is a little too
high in excitation and a little too spread out compared to the
measured values.

IV. ELECTROMAGNETIC TRANSITIONS IN 8BE

We present our results in terms of reduced matrix elements
(using Edmonds’ convention) of the E2 and M1 operators, the
associated B(E2) and B(M1), and the resulting widths. For a
transition of multipolarity λ (X designates E or M),

B(Xλ) = 〈�Jf
||Xλ||�Ji

〉2/(2Ji + 1) (16)

is in units of eλ fm2λ for electric transitions and (μN )2λ for
magnetic transitions. The widths are given by

Xλ = 8π (λ + 1)

λ[(2λ + 1)!!]2
α�c

(
	E

�c

)2λ+1

B(Xλ), (17)

where 	E is the difference in MeV between the experimental
initial- and final-state energies, Ei and Ef ; α is the fine-
structure constant; and �c is in units of MeV fm.

The calculations of EM matrix elements have been de-
scribed in detail in Refs. [2] and [17]. Our present results for
E2 transitions in 8Be are listed in Table II, where the initial
and final (Jπ ; T ) states and the dominant associated spatial
symmetries are shown in the first column and the reduced
matrix elements between states of pure isospin are given in the
second column. The experimental energies for the physical
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TABLE II. Calculated reduced E2 matrix elements and corresponding decay widths compared to experiment [10,27]. From left to right, the
columns show (1) the initial and final (J π ; T ) states and the dominant associated spatial symmetries, (2) the GFMC matrix elements between
states of pure isospin, (3) the experimental energies, and (4) the isospin-mixed theoretical and (5) experimental widths. For the width values
we use the notation [−x] = 10−x .

(J π
i ; Ti) → (J π

f ; Tf ), E2 E2 (eV)

[s.s.]i →[s.s.]f (e fm2) Ei (MeV) → Ef (MeV) IA Expt.

(2+; 0) → (0+; 0) 10.0(2) 3.03 → 0. 4.12(16)[-3] –
(4+; 0) → (2+; 0) 15.6(4) 11.35 → 3.03 0.87(5) 0.67(7)
[44] → [44]
(2+

2 ; 0) → (0+; 0) 0.55(11) 16.626 → 0. 1.6(1.0)[–2] 7.0(2.5)[–2]
(2+; 1) → (0+; 0) –0.23(2) 16.922 → 0. 6.2(2.0)[–2] 8.4(1.4)[–2]
[431] → [44]
(2+

2 ; 0) → (2+; 0) 0.26(7) 16.626 → 3.03 3.6(2.2)[–3] –
(2+; 1) → (2+; 0) 0.03(2) 16.922 → 3.03 1.7(1.4)[–3] –
[431] → [44]
(1+; 1) → (2+; 0) 1.93(6) 17.64 → 3.03 0.63(5) 0.12(5)
(1+; 0) → (2+; 0) –0.03(5) 18.15 → 3.03 4.0(1.1)[–2] –
[431] → [44]

states are given in the third column, and the corresponding
theoretical and experimental widths are listed in the fourth
and fifth columns. We use the IA operator

E2 = e
∑

k

1

2

[
r2
k Y2(r̂k)

]
(1 + τkz) (18)

without any MEC corrections.
In previous calculations [1,17,30] of nuclei in the A = 6–10

range, we have found that E2 matrix elements of narrow
states are generally quite stable under GFMC propagation and
seldom vary much from the initial VMC estimate. However,
matrix elements from wide states, e.g., for the 6Li (2+; 0) →
(0+; 0) decay, show a significant evolution as a function of
τ . This is also true for the first two transitions in 8Be from
the broad rotational 2+ and 4+ states. The matrix element
grows monotonically as the GFMC solution evolves in τ
toward a separated α + α configuration, as illustrated in Fig. 4.
This growth is slow for the lower (2+; 0) → (0+; 0) transition

0 0.1 0.2 0.38

10

12

14

16

18

τ (MeV-1)

〈E
2〉

 (e
 fm

2 )

(2+ → 0+)

(4+ → 2+)

FIG. 4. (Color online) GFMC propagation in imaginary time τ

of the reduced E2 matrix elements among the first three states in
the 8Be spectrum; upper (red) circles represent the (4+; 0) → (2+; 0)
transition; lower (blue) circles, the (2+; 0) → (0+; 0) transition; and
open stars, the extrapolated values.

but much more pronounced for the upper (4+; 0) → (2+; 0)
transition. Consequently, we make an extrapolation back to
τ = 0.1 ± 0.02 MeV−1 to obtain our best estimate for the
matrix element, just as we did for the energy and point proton
radius discussed above in conjunction with Figs. 2 and 3. Our
error estimate combines both the Monte Carlo statistical error
and the uncertainty in the extrapolation point. The numerical
results for these two matrix elements and corresponding decay
widths E2 are reported at the top of Table II. The transitions,
which are between states of the same dominant [44] spatial
symmetry, are very large and consistent with a rotor picture
for 8Be.

We have also calculated an additional six E2 transitions
from the isospin-mixed 2+ and 1+ doublets with dominant
[431] spatial symmetry to the T = 0 ground state or first 2+
state. We denote the isospin-pure matrix elements E2Tf Ti

=
〈�Jf ,Tf

||E2||�Ji,Ti
〉 and then use the definitions given in

Eq. (13) to combine them via〈
�Jf ,0

∣∣|E2|∣∣�a
Ji

〉 = αJi
E200 + βJi

E201,〈
�Jf ,0

∣∣|E2|∣∣�b
Ji

〉 = βJi
E200 − αJi

E201 (19)

to evaluate the widths of the physical transitions for compari-
son to experiment. Because the E2 operator largely preserves
spatial symmetry, these transitions are much weaker than the
ones within the α-α rotational band. This makes accurate
calculations of these transitions significantly more difficult.

As an example, we can compare the two E2 transitions
from the first and second 2+ states to the 0+ ground state.
As discussed in Refs. [31] and [32], the 0+ state has
five contributing LS-coupled symmetry components, 1S[44],
3P [431], 5D[422], 1S[422], and 3P [4211], with the first
component having an amplitude in the present VMC starting
w.f. of 0.996. The 2+ states are linear combinations of eight
components: 1D[44], 3P [431], 3D[431], 3F [431], 5S[422],
5D[422], 1D[422], and 3P [4211]. The first 2+ state also has
an amplitude of 0.996 from the 1D[44] component, while the
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second 2+ state is dominated by the 3P [431] component with
an amplitude of 0.902. Consequently, 99% of the large E2
transition from the first excited state to the ground state is
due to the matrix element between the 1D[44] and the 1S[44]
components. However, for the much smaller E2 transition
from the second 2+ state, this pair of components contributes
1.65 times the final result, canceled by the matrix element
between the two 3P [431] components, which gives −1.44
times the final result. The remaining 38 smaller terms, among
which there is much additional cancellation, give 80% of the
total.

Changes in these small components, which may have little
effect on the energy of a given state and hence are not highly
constrained by the GFMC propagation, can have a significant
effect on the E2 matrix element. These small components
may also be rather sensitive to the three-body potential in the
Hamiltonian, as noted in an earlier study of E2 transitions
in A = 10 nuclei [30]. This is also true for many of the M1
transitions discussed below, when the initial and final states
have different dominant spatial symmetries.

An additional complication arises for transitions from
the second 2+ state because the GFMC propagation is not
guaranteed to preserve the orthogonality of the w.f. relative
to the first 2+ state. In practice, GFMC propagation starting
from orthogonal VMC w.f.’s preserves the orthogonality to
a high degree [31]; in this case the amplitude 〈�2+

2 (τ )|�2+
V 〉

increases from 0.0010(7) for τ = 0 to 0.040(6) averaged over
0.1 � τ � 0.3. This small admixture leaves the energy and
point proton radius of the second 2+ state as stable functions
of τ , as expected for a narrow state. However, for the E2 matrix
element from the 2+

2 state to states of dominant [44] symmetry,
there are the large cancellations discussed above and a small
admixture of the the 2+ state with its large E2 matrix element
to states of dominant [44] symmetry can substantially affect
the overlap. For this reason we have applied a correction by
orthogonalizing the �2+

2 (τ ) to �2+
V ,

�2+′
2 (τ ) = �2+

2 (τ ) − 〈
�2+

2 (τ )
∣∣�2+

V

〉
�2+

(τ ) . (20)

This reduces the mixed estimates 〈�2+
2 (τ )|E2|�2+

V 〉 by 50%
and 〈�2+

2 (τ )|E2|�0+
V 〉 by 20%. This correction is also made for

corresponding M1 transitions discussed below but is relatively
much less important.

For the M1 transitions the IA matrix element is evaluated
using the M1 operator induced by the one-body current given
in Eq. (11), namely,

μIA =
A∑

i=1

(eN,i Li + μN,i σ i), (21)

while the one-body current at N2LO generates the additional
M1 operator terms [4]

μN2LO = − e

8 m3
N

A∑
i=1

[{
p2

i , eN,i Li + μN,i σ i

}
+ eN,i pi×(σ i×pi)

]
, (22)

where pi = −i∇i and Li are the linear momentum and angular
momentum operators of particle i, and {. . . , . . . } denotes the
anticommutator.

The matrix element associated with the contribution of
two-body currents is

〈
Jπ

f ,Mf

∣∣μMEC
z

∣∣Jπ
i ,Mi

〉
= −i lim

q→0

2 mN

q

〈
Jπ

f ,Mf

∣∣jMEC
y (q x̂)

∣∣Jπ
i ,Mi

〉
, (23)

where the spin-quantization axis and momentum transfer q are,
respectively, along the ẑ and x̂ axes, and Mf = Mi . The various
contributions are evaluated for two small values of q < 0.02
fm−1 and then extrapolated linearly to the limit q = 0. The
error due to extrapolation is much smaller than the statistical
error in the Monte Carlo sampling.

In Table III, we report the results for the M1 transition
matrix elements as well as the decay widths M1 between
the low-lying excited states. The first column specifies the
initial and final states of pure isospin. The second column,
labeled “IA,” shows the IA results obtained with the transition
operator of Eq. (21), while the third column, labeled “Total”
lists results obtained with the complete EM current operator,
Eqs. (21)–(23). The percentage of the total matrix element
given by the MEC contributions is shown in the fourth column.
The fifth column reports the energies of the physical states,
while the last three columns compare the corresponding widths
with the experimental data from Ref. [27].

As observed in Ref. [1], IA matrix elements are found to
have larger statistical fluctuations than MEC matrix elements.
We separately compute IA and MEC matrix elements and then
sum the resulting values to obtain the total numbers.

It is worthwhile noting that M1 transitions involving the
resonant states do not monotonically change as τ increases, a
behavior unlike the quadrupole moments, point proton radii,
and energies of these states. This stability is understood by
observing that the (2+;0) and (4+;0) rotational states in 8Be are
∼99% pure 1D2[44] and 1G4[44] states, so they are quantized
with L = 2 and L = 4, respectively. The orbital contribution
to the magnetic moment is just L/2 μN because only protons
contribute; i.e., it is equal to 1.00 μN in the (2+;0) state and
2.00 μN in the (4+;0) state. Because it is quantized, the
magnetic moment should not vary as the nucleus starts to
break up in the GFMC propagation, unlike the point proton
radius, where r grows as τ increases. Due to this stability, we
can safely propagate M1 matrix elements involving resonant
states to larger values of τ and average the GFMC result in
larger τ intervals.

As for the E2 transitions above, the M1 matrix elements
are evaluated between states with a well-defined isospin,
T = 0 or 1. We denote these matrix elements M1Tf Ti

=
〈�Jf ,Tf

||μ||�Ji,Ti
〉, with Tf and Ti equal to 0 or 1. For

transitions involving isospin mixing in the initial or final state,
we use expressions similar to Eq. (19) to generate the physical
transition rates. For transitions in which both the initial and
the final states are isospin mixed, using the definitions given
in Eq. (13), we obtain the following expressions for the
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TABLE III. Calculated reduced M1 matrix elements and corresponding decay widths compared to experiment [27]. From left to right, the
columns show (1) the initial and final (J π ; T ) states and the dominant associated spatial symmetries, (2) the GFMC matrix elements between
states of pure isospin in IA and (3) in total after adding MEC, (4) the percentage z of the total given by the MEC, (5) the experimental energies,
(6) the isospin-mixed theoretical decay widths in IA and (7) in total, and (8) the experimental values. In the width values we use the notation
[−x] = 10−x . Results followed by a superscript asterisk or dagger are extra VMC calculations discussed in the text.

(Ji ; Ti) → (Jf ; Tf ), M1 (μN ) M1 (eV)

[s.s.]i →[s.s.]f IA Total z Ei (MeV) → Ef (MeV) IA Total Expt.

(2+
2 ; 0) → (2+; 0) 0.014(6) 0.013(6) 16.626 → 3.03 0.23(3) 0.51(6)

(2+; 1) → (2+; 0) 0.297(12) 0.447(18) 33% 16.922 → 3.03 0.30(4) 0.70(7)

[431] → [44] 16.626 + 16.922 → 3.03 0.53(5) 1.21(9) 2.80(18)
(1+; 1) → (0+; 0) 0.551(7) 0.767(9) 28% 17.64 → 0.00 6.2(2) 12.0(3) 15.0(1.8)
(1+; 1) → (2+; 0) 0.398(6) 0.567(11) 30% 17.64 → 3.03 1.9(1) 3.8(2) 6.7(1.3)
(1+; 0) → (0+; 0) 0.012(1) 0.014(1) 18.15 → 0.00 0.25(1) 0.50(2) 1.9(0.4)
(1+; 0) → (2+; 0) 0.018(3) 0.021(3) 18.15 → 3.03 0.06(1) 0.13(2) 4.3(1.2)

[431] → [44]
(1+; 1) → (2+

2 ; 0) 2.287(10) 2.910(13) 21% 17.64 → 16.626 1.92(2)[–2] 2.97(3)[–2] 3.2(3)[–2]
(1+; 1) → (2+; 1) 0.139(2) 0.176(3) 21% 17.64 → 16.922 1.22(3)[–3] 2.20(5)[–3] 1.3(3)[–3]
(1+; 0) → (2+

2 ; 0) 0.167(3) 0.189(3) 12% 18.15 → 16.626 2.52(3)[–2] 2.87(3)[–2] 7.7(1.9)[–2]
(1+; 0) → (2+; 1) 2.596(11) 2.887(13) 10% 18.15 → 16.922 3.26(3)[–2] 4.18(3)[–2] 6.2(7)[–2]

[431] → [431]
(3+; 1) → (2+; 0) 0.386(13) 0.622(22) 38% 19.070 → 3.03 0.87(6) 2.3(2) 10.5
(3+; 0) → (2+; 0) 0.015(1)∗ 0.030(1)∗ 19.235 → 3.03 0.15(2) 0.37(4) –

[431] → [44]
(0+; 2) → (1+; 1) 0.793(7) 1.095(8) 28% 27.49 → 17.64 6.7(1) 12.7(2) 21.9(3.9)
(0+

3 ; 0) → (1+; 1) 0.553(3)† 0.689(3)† 21% 8.3(3)† 15.5(5)†

(0+
3 ; 0) → (1+; 0) 0.073(1)† 0.082(1)† 11% 27.49 → 18.15 0.28(1)† 0.54(1)† –

[422] → [431]

isospin-mixed M1 transition matrix elements:〈
�a

Jf

∣∣|M1|∣∣�a
Ji

〉 = αJf
αJi

M100 + αJf
βJi

M101

+ βJf
αJi

M110 + βJf
βJi

M111,〈
�b

Jf

∣∣|M1|∣∣�a
Ji

〉 = βJf
αJi

M100 + βJf
βJi

M101

− αJf
αJi

M110 − αJf
βJi

M111,〈
�a

Jf

∣∣|M1|∣∣�b
Ji

〉 = αJf
βJi

M100 − αJf
αJi

M101

+ βJf
βJi

M110 − βJf
αJi

M111,〈
�b

Jf

∣∣|M1|∣∣�b
Ji

〉 = βJf
βJi

M100 − βJf
αJi

M101

− αJf
βJi

M110 + αJf
αJi

M111. (24)

The isospin-mixed M1 matrix elements are used to eval-
uate the widths as given in Eq. (17) for comparison to
experiment. The IA and total values are reported in the
sixth and seventh columns in Table III, and the exper-
imental widths (where available) are listed in the last
column.

Three extra transitions that were calculated only in the
VMC are followed by a superscript asterisk or dagger in
Table III; they may affect the physical decay widths through
isospin mixing. The (3+; 0) → (2+; 0) transition, followed by
a superscript asterisk, is tiny and its isospin mixing has little
effect on the transition from the physical 19.07-MeV state.

The corresponding transition from the 19.235-MeV state is
predicted to be much smaller and has not been reported exper-
imentally. Perhaps more interesting and important, although
speculative, is the isospin mixing of the proposed (0+

3 ; 0) state,
discussed at the end of Sec. III, into the physical 27.49-MeV
state, as listed in the second- and next-to-last rows in Table III
followed by a superscript dagger. The row above these lists
the results assuming that the physical state is pure T = 2,
and even with MEC contributions, the theoretical width is
noticeably underpredicted. The first row with daggers shows
that mixing in the (0+

3 ; 0) state, using α0 = 0.19(4), increases
the decay width by 20%, bringing it closer to experiment. The
final line shows the corresponding decay to the 18.15-MeV
state as much smaller and thus unlikely to be observed. A
fourth possible transition in this group, (0+; 2) → (1+; 0), has
	T = 2 and vanishes in IA and also for the MEC considered
in this paper.

The M1 transitions listed in Table III can be sorted into
four categories, characterized by having large, medium, small,
and tiny matrix elements. The two largest matrix elements
are between states of the same spatial symmetry that change
isospin: (1+; 1) → (2+

2 ; 0) and (1+; 0) → (2+; 1). All four
states involved have predominant [431] spatial symmetry,
so there is maximum overlap between the w.f.’s. Further,
because 	T = 1, the spin-magnetization terms of the protons
and neutrons add constructively. This feature is illustrated
in Figs. 5(a) and 5(b), where we plot the IA contributions
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FIG. 5. (Color online) One-body (IA) M1 transition density (in μN per fm3) for selected M1 transitions (see text for explanation).

to the magnetic transition density from Eq. (21), evaluated
with the starting VMC w.f.’s. In the figure, upward-pointing
(red) triangles show the proton spin contribution, downward-
pointing (blue) triangles show the neutron spin contribution,
(green) diamonds are the proton orbital term, and black
circles represent the total transition density. In both these
transitions, the spin contributions are large and the proton
orbital piece is very small, resulting in a total matrix element
of ∼3.0 μN .

There are also two transitions between states of the same
spatial symmetry where isospin is conserved, i.e., 	T = 0,
which results in small matrix elements: (1+; 1) → (2+; 1)
and (1+; 0) → (2+

2 ; 0). These are illustrated in Figs. 5(d)
and 5(e). The magnitudes of the proton spin and neutron
spin contributions are very similar to the 	T = 1 case, but
they have opposite signs and cancel against each other, and
there is a more substantial proton orbital term, which further
reduces the total, leading to matrix elements of ∼0.2 μN . The
values of the VMC densities integrated over d3r are listed in
Table IV for the transitions shown in Figs. 5(a) and 5(d).

Next, there are five matrix elements which are between
states of different spatial symmetry and are 	T = 1 transi-
tions, such as the (1+; 1) → (0+; 0) transition illustrated in
the Fig. 5(c). These transitions have proton and neutron spin
contributions that add coherently but are small because of the
small overlap of the initial and final w.f.’s. However, they have
larger proton orbital pieces, which also add coherently and
dominate the total, leading to medium-size matrix elements,
in the range 0.5–1.0 μN .

Finally, there are three matrix elements between states of
different spatial symmetries that have 	T = 0, and these
are tiny. An example is the (1+; 0) → (2+; 0) transition in
Fig. 5(f). In these cases the proton and neutron spin terms

are small in magnitude and of opposite sign, and the proton
orbital piece is also very small, resulting in matrix elements
<0.03 μN .

The net contribution of MEC EM currents (where MEC =
Total − IA) is best appreciated by looking at matrix elements
between states with well-defined isospins, as listed in the
second to fourth columns in Table III. The quantity z in the
fourth column is the percentage contribution of the MEC to
the total; it is not given if the MEC is less than the statistical
error of the total. MEC contributions to 	T = 0 transitions are
generally smaller than 	T = 1 transitions. This is due to the
fact that the major MEC correction, given by the OPE seagull
and pion-in-flight terms at NLO, is purely isovector and cannot
contribute to 	T = 0 transitions. Therefore, only higher order
terms, i.e., terms at N2LO and N3LO, contribute to these
matrix elements, for which we find z ∼ 10%. Transitions
induced by the isovector component of the M1 operator, that
is, transitions in which Ti �= Tf , are instead characterized by
a z factor spanning the interval ∼20%–40%. In general, the
NLO currents of one-pion range provide ∼60%–70% of the
total MEC correction. In Table III, we see that the contribution
given by the MEC currents (with only one exception) improves
the IA values, bringing the theory into better agreement with
the experimental data.

It is also interesting to examine the transition magnetic
densities due to MEC. As examples, we discuss the same six
transitions whose IA densities are given in Fig. 5. The associ-
ated two-body magnetic densities obtained from MEC terms
are shown in Fig. 6, again as calculated with the starting VMC
w.f.’s. For Figs. 6(a)–6(c), which are isovector transitions, the
(red) circles labeled NLO-OPE show the density due to the
long-ranged OPE currents, while corrections associated with
TPE currents at N3LO are represented by the (cyan) squares
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FIG. 6. (Color online) Two-body (IA) M1 transition density (in μN per fm3) for selected M1 transitions (see text for explanation).

labeled N3LO-TPE. Contact current contributions, of both
minimal and nonminimal nature, are represented by the (green)
four-pointed stars labeled N3LO-CT, while the contribution
due to the current in the one-pion range, which has been
saturated by the 	 resonance, is represented by the (magenta)
triangles labeled N3LO-	. In the figure, we also show, with
(blue) five-pointed stars labeled N2LO-RC, the one-body
relativistic correction given in Eq. (22). The black diamonds
represent the sum of the various contributions. The tail of the
magnetic distribution is dominated by the long-range OPE
contribution, followed by the N3LO-	 one; at intermediate
to short range, TPE contributions become important. The

TABLE IV. Individual IA and MEC contributions to one isovector
and one isoscalar M1 transition matrix elements (in μN ) calculated
in the VMC, corresponding to Figs. 5(a) and 5(d) and 6(a) and 6(d).

(Ji,Ti) → (Jf ,Tf ) (1+; 1) → (2+
2 ; 0) (1+; 1) → (2+; 1)

IA
pL 0.031(1) −0.224(1)
pS 1.442(7) 1.267(7)
nS 0.988(5) −0.867(5)
IA total 2.461(13) 0.176(3)
NLO OPE 0.457(1)
N2LO RC −0.059(1) −0.001
N3LO
TPE 0.090(1)
CT −0.038(1) 0.040(1)
	 0.160(1)
ρπγ −0.008
MEC total 0.610(2) 0.031(1)

integrated values of the individual MEC contributions to the
(1+; 1) → (2+

2 ; 0) isovector transition [Fig. 6(a)] are listed in
Table IV.

Two-body magnetic densities for the isoscalar transitions
are shown in Figs. 6(d)–6(f). The isoscalar component of the
M1 operator has a rather different structure in comparison
with that of its isovector component; it has no contributions
at NLO, therefore isoscalar transitions are suppressed with
respect to isovector ones. The first correction beyond the IA
picture enters at N2LO and is given by the one-body relativistic
correction of Eq. (22), shown by the (blue) five-pointed stars
labeled N2LO-RC. There are two isoscalar contributions at
N3LO. The first is associated with the tree-level current of
one-pion range represented by the (cyan) squares labeled
N3LO-ρπγ . This isoscalar tree-level current can, in principle,
be saturated by the ρπγ transition current [20], however,
we fix its associated LEC so as to reproduce the magnetic
moments of the deuteron and the isoscalar combination of
the trinucleon magnetic moments, as explained in Sec. II.
The second is the contact current at N3LO, shown by the
(green) four-pointed stars labeled N3LO-CT, and these, in
fact, dominate the total isoscalar two-body MEC contribution
shown by the black diamonds. The integrated values for
the (1+; 1) → (2+; 1) transition [Fig. 6(d)] are also listed
in Table IV.

V. DISCUSSION

The spatial symmetry-conserving M1 transitions are be-
tween the isospin-mixed 2+ and 1+ doublets, so comparison
with experimental widths requires both the matrix elements
between isospin-pure states and the αJ and βJ parameters of
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TABLE V. Effect of alternate isospin-mixing coefficient α1 on
M1; the notation [−x] = 10−x .

M1 (eV)

Ei → Ef (MeV) α1 = 0.21 α1 = 0.31 Expt.

17.64 → 0.00 12.0(3) 11.4(3) 15.0(1.8)
17.64 → 3.03 3.8(2) 3.6(2) 6.7(1.3)
18.15 → 0.00 0.50(2) 1.16(4) 1.9(0.4)
18.15 → 3.03 0.13(2) 0.32(3) 4.3(1.2)

[431] → [44]
17.64 → 16.626 2.97(3)[–2] 3.28(3)[–2] 3.2(3)[–2]
17.64 → 16.922 2.20(5)[–3] 1.39(4)[–2] 1.3(3)[–3]
18.15 → 16.626 2.87(3)[–2] 1.84(2)[–2] 7.7(1.9)[–2]
18.15 → 16.922 4.18(3)[–2] 4.59(3)[–2] 6.2(7)[–2]
[431] → [431]

Eqs. (13) and (14) as input. We consider α2 and β2 to be
well determined by the α measurements for the 2+ doublet.
However, α1 and β1 were first estimated by Barker [29] by
looking at the ratio of the M1’s for the 1+ doublet and
comparing it to shell-model calculations. Instead, we could
use our more sophisticated calculations to determine the best
isospin-mixing parameters.

If we minimize χ2 with respect to experiment for the four
spatial symmetry-conserving transitions, i.e., those given in
the third group in Table III, we find α1 = 0.31(4), compared
to the “experimental” value of 0.21(3) used previously in
Table III and discussed in Ref. [11]. The predicted widths for
these two isospin-mixing parameters are compared in Table V,
along with the four other symmetry-changing transitions from
the 1+ doublet to the ground or first excited state; the χ2

comparison with experiment for these cases is also improved.
However, this alternate value for α1 implies a significantly
larger isospin-mixing matrix element, H01 = −150(18) keV,
compared to the theoretical value for this Hamiltonian of
−94(1) keV calculated in Ref. [11], which was in good
agreement with the earlier empirical value of −103(14) keV.

The results of our QMC calculations are in fair agreement
with experiment when the transitions are between states
of the same spatial symmetry. However, when the spatial
symmetry of the initial and final states is different, we
generally underpredict the reported experimental widths. The
E2 calculations in Table II give large matrix elements for
the [44] → [44] transitions and show reasonable agreement
with the recently remeasured (4+; 0) → (2+; 0) width. The
calculations underpredict the [44] → [431] transitions from
the isospin-mixed 2+ doublet to the ground state, although
here both theory and experiment have large error bars. The
predicted transitions to the first 2+ are smaller and, perhaps
not surprisingly, unobserved to date. For the E2 transition
from the first 1+ at 17.64 MeV, we significantly overpredict
the width, due to the surprisingly large 	T = 1 matrix element
between 1D[44] and 1P [431] symmetry components. The
unobserved transition from the 1+ state at 18.15 MeV is tiny,
due to a vanishing 	T = 0 matrix element. The larger value

of α1 discussed above would reduce the discrepancy with
experiment slightly.

The QMC results for M1 matrix elements are similar, in that
the four symmetry-conserving [431] → [431] transitions are
in fair agreement with experiment, once MEC contributions are
included. The agreement can be improved further by searching
for better isospin-mixing parameters, αJ and βJ , as discussed
above. Seven of the eight symmetry-changing M1 transitions
are underpredicted by amounts ranging from only 25% to
factors of 2–5. The worst matrix element is the same (1+; 0) →
(2+; 0) transition that also vanishes in E2, leading to a decay
width for the 18.15-MeV state which is 15–30 times too
small.

Even though many of the experimental widths considered
in this work have large errors, the serious discrepancies
between some of the experimental and the calculated values
highlight the challenge for theory to accurately predict tran-
sition amplitudes between states with dominant admixtures
of different spatial symmetry or between states consisting
of linear combinations of components of different spatial
symmetry and occurring with similar probabilities.

Another possible source of difficulty is that we treat all
the states in 8Be as particle stable, without a continuum
component. We believe this is a good approximation for the
physically narrow states, but it is more questionable for wide
states like the first (2+; 0) and (4+; 0). As noted in Ref. [10], it
would be better to treat the latter states as true α-α scattering
states, analogous to the neutron-α scattering description of 5He
[33]. (This could also be important for the eventual evaluation
of weak decays of 8Li and 8B, which both go to the 8Be (2+; 0)
state.) This will have to be addressed in future work.

To our knowledge, Refs. [1] and [2] and the present work
are the only ab initio calculations of EM transitions in A > 4
nuclei that include MEC contributions. We find that the
calculated M1 matrix elements have significant contributions,
typically at the 20%–30% level, from two-body EM current
operators, especially from those of one-pion range. The sizable
MEC corrections are found to almost always improve the IA
results for M1 transitions. This corroborates the importance
of many-body effects in nuclear systems and indicates that
an understanding of low-energy EM transitions requires
contributions from MECs in combination with a complete
treatment of nuclear dynamics based on Hamiltonians that
include two- and three-nucleon forces.
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