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The nucleon separation energies and shell gaps in nuclei over the whole nuclear chart are systematically studied
with eight global nuclear mass models. For unmeasured neutron-rich and superheavy regions, the uncertainty
of the predictions from these different mass models is still large. The latest version (WS4) of the Weizsicker-
Skyrme mass formula, in which the isospin dependence of model parameters is introduced into the macroscopic-
microscopic approach inspired by the Skyrme energy-density functional, is found to be the most accurate one
in the descriptions of nuclear masses, separation energies, and shell gaps. Based on the predicted shell gaps in
nuclei, the possible magic numbers in superheavy nuclei region are investigated. In addition to the shell closures
at N = 184,Z = 114, the subshell closures at around N = 178,Z = 120 could also play a role for the stability

of superheavy nuclei.
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I. INTRODUCTION

The development of global nuclear mass formulas is of
great importance for not only nuclear physics but also nuclear
astrophysics. In nuclear physics, the study of nuclear properties
of extremely neutron-rich nuclei and the shell evolution
attracted much attention in recent years. In addition, as the
necessary theoretical tools, the global nuclear mass formulas
can provide some crucial information on the synthesis of
superheavy nuclei [1-4], including the shell corrections and
neutron separation energies of superheavy nuclei, which are
required in the predictions of the survival probability of
compound nuclei with a statistical model [5], the magic
numbers around the predicted island of stability, and the Q
values in the o-decay process, etc. [6]. In nuclear astrophysics,
a realistic model of an r process, which would accurately
predict the observed elemental abundances, needs a large set of
various nuclear characteristics as the input. The essential input
is the B-decay energies, which define the rate of evolution
along the r-process path, and the neutron-separation energies,
which determine the position of the r-process path on the
nuclear chart. Although a great effort has been devoted in
recent decades to accurate measurements of masses of the
unstable nuclei, the masses of most nuclei along the r-process
path are still unknown and the model predictions for these
neutron-rich nuclei play a key role for the study of the r
process [7-10].

Available nuclear mass formulas for the predictions of
unknown masses include global and local formulas. For the
global formulas, the model parameters are usually determined
by essentially all measured masses and the masses of almost
all bound nuclei can be calculated. Some global nuclear
mass models have been successfully established with an
rms error of about several hundreds keV to one MeV with
respect to all measured nuclear masses. These models include:
(i) various macroscopic-microscopic mass models such as
the finite range droplet model (FRDM) [11], the Lublin-
Strasbourg-Drop (LSD) model [12] and the recently proposed
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Weizsacker-Skyrme (WS) formula [13-16]; (ii) various micro-
scopic mass models based on the mean-field concept such as
the nonrelativistic Hartree-Fock-Bogoliubov (HFB) approach
with the Skyrme energy-density functional [17-19] or the
Gogney forces and the relativistic mean-field (RMF) models
[20-22]; (iii) the Duflo-Zuker (DZ) mass model [23]; and
some other global mass models. The local mass formulas
are generally based on algebraic or systematic approaches.
They predict the masses of unknown nuclei from the masses
of known neighboring nuclei, such as the Garvey-Kelson
relations [24], the isobaric multiplet mass equation [25,26],
the residual proton-neutron interactions [27,28], and the image
reconstruction technique (such as the CLEAN algorithm [29]
and the radial basis function method [30,31]). The main
difficulty of the local mass formulas is that the model errors
rapidly increase for nuclei far away from the measured nuclei.
In Fig. 1, we show the nuclear landscape. The green and dark
yellow squares denote the known nuclei [32] and the predicted
ones with the very recent WS4 mass formula [16], respectively.
The masses of about 5000 nuclei are still unknown and
need the predictions (extrapolation) from the global mass
models. It is therefore a great challenge for the global mass
models to accurately describe the masses of all nuclei over the
whole nuclear chart based on the measured masses of about
2400 nuclei to determine the model parameters. To test the
reliability of the global mass formulas, as many as possible
mass-related observables should be investigated.

Nucleon separation energies of nuclei not only are inti-
mately related with the particle drip lines, but also provide
helpful information on the magic numbers especially the shell
closures in the superheavy region and the shell evolutions in
neutron-rich nuclei. As a measure of the discontinuity in the
two-neutron separation energy S,, at neutron magic numbers,
the shell gap is a sensitive quantity to test the theoretical models
[33]. In the WS4 framework, the accuracy of the WS formula is
further improved by taking into account the surface diffuseness
correction for unstable nuclei. The rms deviation with respect
to essentially all the available mass data falls to 298 keV,
crossing the 0.3 MeV accuracy threshold for the first time
within the mean-field framework. It is therefore interesting and

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevC.90.024320

QIUHONG MO, MIN LIU, AND NING WANG

! T T T ”
120 |} + stable nuclei 1207~ Jll'
- known nuclei (2012) 1147~ =o
— . . -
8 100 } theoretical predictions (WS4) _-:i‘
£ _=alll*
S 80f 82~ LI
C B -
o 60 ‘
-
(@)
S
o

= I 06
'y ol
" 2

20 8

40 80 120 160 200
Neutron number

FIG. 1. (Color online) Nuclear landscape. The black and green
squares denote the stable nuclei and known nuclei in AME2012
[32], respectively. The dark yellow squares denote the theoretical
predictions with the WS4 mass formula [16]. The gray solid lines
denote the known magic numbers and the dashed lines denote the
possible magic numbers in superheavy region.

necessary to test the model from the shell gaps in nuclei. In this
work, we will systematically investigate the nucleon separation
energies and shell gaps in nuclei with eight different global
mass models, including the FRDM [11], HFB17 [17], HFB27
[19], DZ28 [23], WS [13], WS* [14], WS3 [15], and WS4
[16] models. The paper is organized as follows. In Sec. II, the
Weizsacker-Skyrme (WS4) mass formula is briefly introduced
for the reader’s convenience. In Sec. 111, the results about the
two-neutron separation energies and shell gaps in nuclei will
be presented and the comparisons between different models
will be discussed. Finally, a summary is given in Sec. I'V.

1. WEIZSACKER-SKYRME MASS FORMULA

In the Weizsacker-Skyrme (WS4) mass formula [16], the
total energy of a nucleus is written as a sum of the liquid-
drop energy, the Strutinsky shell correction and the residual
correction,

E(A,Z,B) = ELD(A’Z)H (1 +bkﬁkz)
k=2

+AE(A,Z,B) 4 Ares. (1)

The liquid-drop energy of a spherical nucleus Ejp(A,Z) is
described by a modified Bethe-Weizsacker mass formula,

Eip(A,Z) = a,A + a,A*? + Ec + aymI*Af,
+ apaic A28, + Ay, 2

with the isospin asymmetry I = (N — Z)/A.
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denote the Coulomb energy term and the symmetry energy
coefficient of finite nuclei, respectively.

fi =14+ ukeA'? ©))

is a correction factor to the symmetry energy considering
the surface diffuseness effect of unstable nuclei. Here, ¢ =
(I — Iy)> — I* with Iy = 0.4A/(A + 200) being the isospin
asymmetry of the nuclei along the g-stability line described
by Green’s formula. The ap,; term empirically describes the
odd-even staggering effect. In WS4, the /2 term in the isospin
dependence of §,,, is further introduced for a better description
of the masses of even-A nuclei:

(2—|I|—I*1 : N and Z even

|I| — I? : N and Z odd
5 — 1—11| :Neven, Zodd, and N > Z
"1 — |1 :Nodd, Zeven, and N < Z
1 :Neven, Zodd, and N < Z
1 :Nodd, Zeven, and N > Z

(6)

Ay in Eq. (2) denotes the Wigner correction term for heavy
nuclei [15]. The dependence of the macroscopic energy on
the nuclear deformations in the WS formula is given by an
analytical expression Erp [ [(1 + by ,3,3) for nuclei with small
deformations. The curvatures of the parabolas by are written

as,
k k2
by = (z)glw + (5) QA5 (7

Here, the mass dependence of the curvature is obtained from

the Skyrme energy-density functional in which the influence

of nuclear surface diffuseness and symmetry energy on the

deformation energies of nuclei is self-consistently involved.
The microscopic shell correction is expressed as

AE =ci fyEq + |1 |Ey,. (¥

Here, ¢, is a scale factor. f; denotes the corresponding
correction due to the surface diffuseness,

fa =1+ «kge. 9)

Eq and Ej denote the shell energy of a nucleus and of
its mirror nucleus obtained with the traditional Strutinsky
procedure by setting the smoothing parameter y = 1.2hwy
and the order p = 6 of the Gauss-Hermite polynomials. The
|I] term in AE is to take into account the mirror effect [14]
from the isospin symmetry.

The optimal values of the 18 independent model parameters
listed in Table I are obtained based on the 2353 (N and Z > 8)
measured nuclear masses M.y, in AME2012 and searching
for the minimal rms deviation with respect to the masses

or =LY M) — MP12. The rms deviation with respect to
essentially all the available mass data falls to 298 keV with the
WS4 formula, the best value ever found within the mean-field
framework. In Table II, we also list the main difference in the
four versions of the WS series models. Based on the WS model,
the mirror effect is further considered in the version WS*. The

residual correction term A, [15] and the surface diffuseness
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TABLE I. Model parameters of the mass formula WS4.

Parameter Value Parameter Value
a, MeV) —15.5181 g1 0.01046
a, (MeV) 17.4090 2 —0.5069
a. (MeV) 0.7092 Vo (MeV) —45.8564
Cym(MeV) 30.1594 ro (fm) 1.3804
K 1.5189 ay (fm) 0.7642
& 1.2230 Ao 26.4796
apair(MeV) —5.8166 c 0.6309
cw (MeV) 0.8705 ¢ MeVh 1.3371
K 0.1536 Kq 5.0086

correction ¢ terms are further involved in the version WS3 and
WS4, respectively.

III. RESULTS AND DISCUSSIONS

In this section, we first systematically investigate the two-
neutron separation energies of nuclei. Then, the shell gaps
including the proton and neutron shell gaps will be studied
with the eight global mass models.

A. Two-neutron separation energies

Based on the binding energies B(N,Z) of nuclei with
neutron number N and charge number Z, one can obtain the
corresponding two-neutron separation energy,

Son(N,Z,) = B(N,Z) — B(N —2,2). (10)

The rms deviations with respect to the 2123 measured S,
from the FRDM, HFB27, DZ28, and WS4 models are 0.493,
0.425, 0.336, and 0.276 MeV, respectively. To see the global
behavior of S,,, we show in Fig. 2 the surface of two-neutron
separation energy obtained from these four mass models. The
red and dark cyan curves denote the experimental data based on
the measured masses in AME2012 and the model predictions,
respectively. The dot-dashed lines indicate the known neutron
magic numbers. Each curve denotes the corresponding S», of
anisotopic chain. One sees that: (i) The two-neutron separation
energies of nuclei generally decrease with neutron numbers;
(i1) the sudden decrease in the S, at the magic numbers is
evident, which reflects the existence of well-known magic
numbers; and (iii) at the region N =~ 200, the fluctuations of
Son are large for FRDM and HFB27.

TABLE II. Comparison of the correction terms adopted in the
WS series models. “+” and “—” denote with and without the
corresponding terms being taken into account, respectively. Here,
the deformations of nuclei involved in the calculations are also listed
for comparison.

Version  Deformations |1|E}, term Apsterm e terms
WS B2. Bs - - -
WS B2, Ba Bs + - -
WS3 B2, Bs, Bs + + -
WS4 B2 Bs» Bo + + +
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FIG. 2. (Color online) Two-neutron separation energy S, as a
function of neutron number N. The red and dark cyan curves denote
the experimental data and the model predictions, respectively. The
dot-dashed lines denote the known neutron magic numbers.

To see the two-neutron separation energies of nuclei at
superheavy region more clearly, the comparison of the S,, from
eight different mass models is shown in Fig. 3. From the figure,
one finds that the fluctuations in S,, are relatively large from
the microscopic HFB calculations. The dashed lines indicate
the positions of N = 126, 162, and 184. The sudden decrease
of Sy, calculated with the macroscopic-microscopic models
including the FRDM and the WS series models indicates
that N = 162 could be a possible neutron magic number
[3,6,34]. For the FRDM, the evident peaks in S, for the
isotopes 87 < Z < 101 can be observed at N = 132. To check
the behavior of Sy, at N = 132, the Sy, of Ra isotopes are
presented in Fig. 4. The experimental data do not indicate
the appearance of an evident subshell at N = 132 in the
Ra isotopes, which implies that the single-particle potential
adopted in the FRDM should be refined. Comparing with the
FRDM, the two-neutron separation energies in Ra isotopes
can be much better reproduced with the WS4 formula, which
is probably due to the isospin dependence of the potential
parameters being taken into account in the WS4 formula. In
addition to the isospin-dependence of model parameters, some
advantages of the WS4 over the other considered models may
come from the fact that it was adjusted to more recent and more
neutron-rich experimental data. Comparing with the results of
HFB17, the latest HFB27 model gives better results for the Ra
isotopes through readjusting the model parameters based on
more measured masses.

B. Shell gaps in nuclei

In this work, the empirical shell gaps in nuclei are defined
as the sum of the neutron and proton shell gaps based on the
difference of the binding energies,

A(N,Z) = A,(N,Z)+ Ap(N,2), an
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FIG. 3. (Color online) Two-neutron separation energy S,, from different nuclear mass models. The calculated results for the isotopes with
Z =120, 110, 100, 90, 80, 70, and 60 are indicated by the thick curves. The value of o (in MeV) denotes the corresponding rms deviations

with respect to the 2123 measured Sa,.

with

Ay(N,Z)=B(N+2,Z)+ B(N —2,Z)—2B(N,Z) (12)
and

A,(N,Z)=B(N,Z+2)+ B(N,Z—-2)—-2B(N,Z). (13)

In Table I1I, we list the rms deviations of different mass models
with respect to the measured masses, nucleon separation
energies, and shell gaps. The line o (M) refers to all the
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FIG. 4. (Color online) S,, of Raisotopes as a function of neutron
number. The black squares denote the experimental data and the
curves denote the predictions from five different models.

2353 measured masses (N > 8, Z > 8) in AME2012, the
line o(S,) to all the 2199 neutron separation energies S,,
the line o(S,,) to all the 2123 measured S,, the line o(S,)
to the proton separation energies, the line o(S;,) to the
two-proton separation energies, and the last line o (A) to the
1689 measured shell gaps. For these mass models, the rms
deviations with respect to the measured masses are about
600 keV to 300 keV. For the descriptions of the neutron and
proton separation energies S, and S,, the rms errors of the
microscopic Skyrme HFB models are relatively larger than
those of the other models listed. In addition, we note that the
rms deviation with respect to the proton separation energies is
larger than that to the neutron separation energies, especially
for the WS series models, which implies that some physics
related to the protons in nuclei could be still missing in these
mass models.

TABLE III. Rms deviations between data and predictions from
eight global mass models (in keV).

Rms N, FRDM HFB17 HFB27 DZ28 WS WS* WS3 WS4

o(M) 2353 654 576 512 394 525 439 334 298
o(S,) 2199 376 500 425 296 331 316 273 258
0 (Sy,) 2123 493 478 425 336 371 330 294 276
o(S,) 2150 395 502 434 304 352 333 296 274
0(8yp) 2032 502 524 449 366 431 392 354 322
o(A) 1689 1053 1204 998 789 851 816 762 725
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FIG. 5. (Color online) Contour plot of shell gaps in nuclei scaled by A'/? from the experimental data and model predictions. The dashed
lines indicate the possible magic numbers N = 162,184 and Z = 114,120. The dot-dashed line indicates the positions of nuclei with N = Z.

To explore the global trend of the shell gaps in nuclei, we
show in Fig. 5 the contour plot of A(N,Z)A'/? for nuclei over
the whole nuclear chart. Here, the shell gap is multiplied by
a factor A'/2 in order to show the change of A(N,Z) with
the same scale for both light and heavy nuclei. From the
figure, one can see that the values of AA!/? are significantly
larger for nuclei with well-known magic numbers than those
of open-shell nuclei due to the shell effects. In addition, for
nuclei along the N = Z line, the values of AA!/? are also
large due to the Wigner effect. For superheavy nuclei, the
values of the shell gaps in nuclei with N = 184 are relatively
larger than those of their neighboring nuclei from all these
different mass models. In addition to the evident shell gaps in
nuclei with known magic numbers, the subshell closures can
also be observed from the experimental date in Fig. 5(e). The
shell gaps in nuclei with subshell closure such as some nuclei
with Z = 40, 70, 76 and those with N = 108, 152, 162 are
also evident from the macroscopic-microscopic calculations.

16

The shell gap could be an effective probe to investigate the
fine structure of nuclei caused by the residual shell effects,
since the smooth macroscopic part in the nuclear binding
energy is removed through the mass difference. For the Skyrme
HFB calculations, the large fluctuations in the two-neutron
separation energies (see Fig. 3) result in some difficulties to
make a clear distinction between the subshell closures and
fluctuations. The rms deviations (in MeV) with respect to the
measured shell gaps A(N,Z) are also presented in the figure
for the seven different mass models. The value of o (A) varies
from 1.204 MeV of HFB17 to 0.725 MeV of WS4. The rms
deviation o (A) is generally larger than the corresponding value
of o(S,,) by a factor of two for a certain mass model, which
is due to that the shell gap is defined as A = A, + A, and the
model errors from both S,, and S, affect the results.

In Fig. 6, we compare the different mass models for the
descriptions of the shell gaps in nuclei with magic number
N = 82 and 126. The black squares denote the experimental

N A O ©

T

T M T

FIG. 6. (Color online) Shell gaps for nuclei with N = 82 and 126. The black squares denote the experimental data, and the curves denote

the predictions from different models.
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FIG. 7. (Color online) The same as Fig. 6, but for nuclei with N = 152. The dashed lines indicate the positions of Z = 100 and Z = 108.

data. The peak in the experimental data at Z = 64 as subshell
closure can be reasonably well reproduced only by the WS
series models. For the extremely neutron-rich nuclei around
1227y, the deviations of the shell gaps from these different
models are very large. The shell gaps in nuclei around Z =
88, N = 126 from the HFB17 calculations are systematically
larger than the experimental data by about 2 MeV.

To further check these global mass models for the de-
scription of subshell closure, we show the predictions of the
shell gaps in nuclei with N = 152 from the eight models
in Fig. 7. The calculated cranked Nilsson levels [35] and
the single-particle levels near the Fermi surface from the
Woods-Saxon potential [36] and those determined from the
experimental information suggest that there exist a proton gap
at Z = 100 and a neutron gap at N = 152. From Fig. 7(a),
one sees that the uncertainties of the predicted shell gaps
are quite large for the nuclei with N = 152 from the four
different models (FRDM, HFB17, HFB27, and DZ28) and
the peak in the experimental data at Z = 100 can not be
distinctly reproduced, whereas the results from the WS series
models in Fig. 7(b) are generally consistent with each other
except the result of the WS model in which the mirror
effect is not taken into account, and the subshell closure at
Z =100 can be evidently observed. In addition, the shell
closure at Z = 108 can also be observed with the WS series
models.

The same as Fig. 7, we show in Fig. 8 the predictions of
the shell gaps in nuclei with N = 184 from the eight nuclear
mass models. From Fig. 8(a), one sees that the uncertainties of
the predicted shell gaps are also quite large for the superheavy
nuclei with N = 184 from the four different models, whereas
the results from the WS series models in Fig. 8(b) are highly
consistent with each other due to the similar theoretical
framework adopted. According to the calculations of the WS
series models, the subshell closures at Z = 92 and 120 can
also be observed in addition to the two evident magic numbers
Z =82 and 114. We also note that the subshell closure at
Z =92 can also be evidently observed from the relativistic
mean field calculations [21] and the measured relatively large
shell gap in nuclei around U (N = 142, Z = 92)inFig. 5(e).

To investigate the possible magic numbers in superheavy
nuclei, the shell corrections are simultaneously studied in
addition to the shell gaps. In Fig. 9, the shell gaps and shell
corrections of nuclei from the WS4 calculations are compared.
The dashed lines indicate the possible magic numbers. For
the known doubly magic nucleus 2°®Pb and the deformed
doubly magic nucleus ?’°Hs (N = 162, Z = 108) [3,6,34],
both the shell gaps and the shell corrections (in absolute
value) are significantly larger than the corresponding values
of their neighboring nuclei. For the superheavy nucleus >**Fl
(N = 184,Z = 114), however, the result from the shell gap is
not well consistent with that from the shell correction. Due to

] v ] ] v ] v ] v ] v ] v ]
e rrOM N=184 —ws ]
—o—HFB17 ——WS
HFB27 B ——WS3 |4
—+— D228 82 —
i 92 114 h
120 ]
% hasasa| |
N !
A - (b) ]
" (] (] (] " (] " (] " (] " (] " (]
80 88 96 104 112 120 80 88 96 104 112 120
Z Z

FIG. 8. (Color online) The same as Fig. 7, but for superheavy nuclei with N = 184.
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FIG. 9. (Color online) (a) Shell gaps of superheavy nuclei with the WS4 formula. (b) Corresponding shell corrections for nuclei in (a) with
the same mass formula. The dashed lines indicate the positions of N = 152, 162, 184, and Z = 114, 120.

the influence of the subshell closuresat N = 178 and Z = 120,
the shell correction of nucleus 220120 with a value of 6.2 MeV
is larger than that of 2°Fl by one MeV.

IV. SUMMARY

Based on eight different global nuclear mass models with
accuracy at the level of 600 keV to 300 keV, the two-
neutron separation energies and shell gaps in nuclei have been
systematically investigated. We find that:

(i) The sudden decrease in the two-neutron separation
energies Sy, at the known magic numbers is evident
according to the predictions of all the eight mass
models.

(ii)) The fluctuations in S, are relatively large from
the microscopic Skyrme HFB calculations, and the
fluctuations at the region N & 200 from the FRDM
are also large.

(iii) The nuclei with subshell closure can be well identified
in addition to the known magic nuclei based on the
extracted shell gaps from the data and the predictions
from the macroscopic-microscopic mass models.

(iv) The observed subshell closure at Z = 64 and Z =
100 from the experimental data can be reasonably
well reproduced only by the WS series models, and
the experimental data do not indicate the appearance
of an evident subshell at N = 132 in the Ra isotopes.

(v) The rms deviation with respect to the proton separa-
tion energies is larger than that to the corresponding
neutron separation energies, especially for the WS
series models, which might imply that some physics
related to the protons in nuclei could be still missing
in these global mass models.

(vi) All eight models predict that N = 184 is a neutron
magic number from S,, and the shell gaps. According
to the calculations of the WS series models for super-
heavy nuclei with N = 184, the subshell closures at
Z =92 and 120 can also be observed in addition to
the two evident magic numbers Z = 82 and 114.

(vii) The shell closures in 2**Pb and the deformed doubly
magic nucleus >’°Hs can be unambiguously observed
from both the shell gaps and the shell corrections,
whereas for the nucleus 2*Fl with possible shell
closure according to the large value of the shell gap,
the corresponding shell correction is smaller than that
of its neighboring nucleus 2°°120 by one MeV due
to the influence of subshell closures at N = 178 and
Z = 120 according to the predictions of the WS4
formula.
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