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Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound
halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases,
and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which
many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study
such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much
excitement since it provides a common framework linking many diversified methodologies across different fields,
including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field
theory.
Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral
method for solving self-consistent equations of nuclear density functional theory in three dimensions, without
symmetry restrictions.
Methods: The numerical method is based on the multi-resolution and computational harmonic analysis
techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques
include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with
a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous.
The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively,
with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel
computer memory. For smooth functions, user-defined finite precision is guaranteed.
Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver MADNESS-HFB is bench-
marked against a two-dimensional coordinate-space solver HFB-AX that is based on the B-spline technique and
a three-dimensional solver HFODD that is based on the harmonic-oscillator basis expansion. Several examples
are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the
Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei.
Conclusions: The new MADNESS-HFB framework has many attractive features when applied to nuclear and
atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear
configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present
in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
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I. INTRODUCTION

The road map for nuclear structure theory includes QCD-
derived (or inspired) nuclear interactions, ab initio calcula-
tions for light and medium nuclei, configuration-interaction
approaches for near-magic systems, and density functional
theory and its extensions for heavy, complex nuclei [1]. On the
road to a quantitative understanding of nuclear structure and
reactions, high-performance computing plays an increasingly
important role. As stated in the recent decadal survey of
nuclear physics [2], “high performance computing provides
answers to questions that neither experiment nor analytic
theory can address; hence, it becomes a third leg supporting
the field of nuclear physics.” The largest collaborations in
computational nuclear structure and reactions involve nuclear
theorists, computer scientists, and applied mathematicians to

break analytic, algorithmic, and computational barriers [1,3].
This paper offers an example of such a joint collaborative effort
in the area of nuclear density functional theory (DFT).

A key element of any DFT framework is a HFB solver that
computes self-consistent solutions of HFB (or Bogoliubov–de
Gennes) equations. Traditionally, the HFB solvers in nuclear
physics are based on the basis-expansion method, usually
employing harmonic-oscillator wave functions [4–7]. These
methods are very efficient but they require huge bases for
cases involving weakly bound systems and large deformations
[8,9]. On the other hand, solving HFB equations directly in
coordinate space can offer very precise results [10–12]. Unfor-
tunately, current HFB calculations for nonspherical geometries
are computationally challenging. There exist two-dimensional
(2D) coordinate-space HFB solvers based on B-splines which
have provided precise descriptions of weakly bound nuclei and
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large deformations [12,13]. However, the extension from 2D
to fully three-dimensional (3D) HFB calculations adds at least
three orders of computational complexities (for some recent
developments, see Refs. [14–16]).

Similar to Fourier analysis, wavelet analysis deals with the
expansion of functions in terms of basis functions. Unlike
Fourier analysis, wavelet analysis expands functions not in
terms of trigonometric functions but in terms of wavelets,
which are generated by translations and dilations of a fixed
function, called the mother wavelet. The wavelets obtained in
this way have special scaling properties. They are localized in
time and frequency, permitting more precise local connections
between their coefficients and the function being represented.
These estimates allow greater numerical stability in recon-
struction and manipulation with controlled precision and spar-
sity. For example, the JPEG2000 compression algorithms were
built by using wavelets. The decoding could be accomplished
in multiple ways and enabled scalable compression with
different resolution representations. By truncating the data
stream early, a lower-resolution image is obtained.

Multi-wavelets consist of a set of wavelets. The Alpert
multi-wavelets [17] that we use are constructed from Legendre
polynomials. They are discontinuous and singular orthonormal
functions which permit better approximation of singular and
discontinuous functions with reduced Gibbs effects. Another
feature is the availability of high vanishing moments, which
permit the sparse representation and application of smooth
functions and many singular operators in finite precision. Fam-
ilies of multi-wavelets permit high orders of approximations
with fewer levels of refinement, which is essential for efficient
scientific computing.

To this end, we have developed a 3D MADNESS-HFB

solver for HFB equations and Hartree-Fock (HF) equations,
which is a multi-resolution, adaptive spectral-approximation-
based solver, by using a multi-wavelet basis with a scalable
parallel implementation [18]. The new framework is applied
to polarized ultracold Fermi gases in elongated optical traps
as well as triaxial nuclei. In both cases, we will demonstrate
the capability of very large box calculations which is essential
for descriptions of complex geometries and topologies.

This paper is organized as follows: Section II briefly
introduces the multi-resolution mathematics, low-separation-
rank approximation, and parallel runtime environment. The
iterative algorithm applied in MADNESS-HFB is presented in
Sec. III. In Sec. IV, we benchmark MADNESS-HFB solutions
for cold fermions and nuclei. Finally, conclusions are given in
Sec. V.

II. MADNESS-HFB FRAMEWORK

Our implementation of MADNESS-HFB uses the
Multi-resolution Adaptive Numerical Environment for
Scientific Simulations (MADNESS) framework [18].
MADNESS is based on computational harmonic analysis and
nonlinear approximations and uses Alpert’s multi-wavelet
basis [17,19,20] to represent functions. Fast parallel code
development and scalable performance have been possible
due to the ease of programming based on object-oriented
abstractions for interprocessor communications,
multi-threading, and mathematical operations.

A. Mathematics of MADNESS

The mathematics implemented in the MADNESS software
are based on multi-resolution analysis (MRA) [19,20], nonlin-
ear approximations, and pseudospectral techniques. There are
two types of techniques used in MADNESS to approximate
functions and operators. The first is the use of multi-resolution
analysis based on Alpert’s multi-wavelets [17]. The second
technique is the use of the low-separation-rank approximations
of Green’s functions based on Gaussian functions [21,22].
In the following, we follow the notation and derivations of
Ref. [20].

1. Multi-resolution analysis with wavelets

The application of MRA separates the behavior of functions
and operators at different length scales in a systematic
expansion. A consequence of the separation of scales is that
each operator and wave function has a naturally independent
adaptive refinement structure, reflected in terms of significant
expansion coefficients of desired precision. The thresholding
and truncation of expansion coefficients below a user-defined
error provides adaptive blocks of nontrivial coefficients for a
pseudospectral expansion. The union of the domains of the
multi-wavelets with nonzero coefficients provide an adaptive
dyadic spatial localization of the relevant contributions for
the corresponding refinement levels. In one dimension (1D),
the nonzero sets define an adaptive dyadic refinement and
correspondingly in 3D a pruned octtree-type refinement.

The MRA representation used in MADNESS is analogous
to that used in an adaptive hp-SEM (spectral element method),
which employs elements of variable size h and piecewise-
polynomial approximations of degree p. By suitably refining
the mesh through h refinements (dividing the volume ele-
ments into smaller pieces) and p refinements (increasing the
polynomial degree in the expansion within the elements), one
can reach exponential convergence [23]. In MADNESS, for
each function or operator, the union of the domains of the
multi-wavelet basis functions with nonzero coefficients, after
thresholding, defines an adaptive and hierarchical h structure
and the associated multi-wavelets form the set of the piecewise
polynomials up to order p. Thus, there are multiple h − p
refinement structures that are used simultaneously.

The basis of scaling functions in 1D is constructed in terms
of the normalized Legendre polynomials rescaled to the unit
interval (0,1) and zero elsewhere. For each level n (defining the
volume refinement), the rescaled and translated basis function
is given by

φn
il(x) = 2n/2φi(2

nx − l), (1)

where φi(x) = √
2i + 1Pi(2x − 1), with Pi(x) being the

Legendre polynomial on (−1,1), and is 0 elsewhere for
l = 0, . . . ,2n − 1. The basis functions (1) at level n have
domain of width 2−n.

Let Vn = {φn
il(x),i = 0, . . . ,k − 1} be the span of the sub-

space at level n. Let W0 = {ψi(x)} denote an orthonormal basis
which spans the difference subspace V1 − V0. These functions
are called multi-wavelets. As with the scaling functions, let
ψn

il(x) and Wn denote the rescaled and shifted multi-wavelets
and the corresponding subspace spanned by these functions at
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level n. The definition of scaling functions and multi-wavelets
defines an ascending sequence of subspaces

V0 ⊂ V1 ⊂ V2 · · · ⊂ Vn (2)

and

Vn = V0 ⊕ W0 ⊕ · · · ⊕ Wn−1, (3)

where ⊕ denotes the orthogonal sum. The dimension of Vi

is greater than the dimension of the subspace Vi−1; thus, the
basis functions of Vi−1 and Wi−1 can be written exactly in
terms of the basis functions of Vi . These hierarchical linear
algebraic relations between the bases defines the two-scale
refinement structure between the coefficients at level i − 1
and i and fundamentally defines the adaptive structure with a
given threshold truncation.

A smooth function f (x) in the subspace Vn can be
approximated in terms of scaling functions as

f (x) =
2n−1∑
l=0

k−1∑
j=0

sn
jlφ

n
jl(x). (4)

Represented in the multi-wavelet basis, f (x) is

f (x) =
k−1∑
j=0

sjφj (x) +
k−1∑
j=0

n−1∑
m=1

2m−1∑
l=0

dm
jlψ

m
jl (x), (5)

with sn
jl = ∫ 2−n(l+1)

2−nl
f (x)φn

jldx and dm
jl = ∫ 2−m(l+1)

2−ml
f (x)ψm

jldx.
In the discussion above, we described the representations

based on multi-wavelets in 1D. In 3D applications, we use
tensor products of 1D multi-wavelets as well as scaling
functions in nonstandard form. Figure 1 illustrates the multi-
resolution structure of sample wave functions.

For smooth functions, the computational methodologies are
guaranteed to approximate the solutions to the desired user
precision ε, with respect to the relative norm, with the correct
number of digits specified by the error. The estimate is based
on truncating the difference coefficients in the multi-wavelet
expansion,

||dn
l ||2 =

√∑
j

|dn
jl|2 � εmin(1,2−nL), (6)

where L is the minimum of the width of the computational
domain.

2. Multi-resolution

For the one-body Schrödinger equation,

(−� + V )ψ = Eψ, (7)

the usual diagonalization approach is also derived and used.
In this case, given a basis ψi , a Hamiltonian matrix is formed:

Hi,j = 〈ψi | − � + V |ψj 〉, Si,j = 〈ψi |ψj 〉, (8)

to form a generalized eigenproblem Hψ = Sψ.
A generalized eigensolver computes the eigenvalues and the

eigenvectors. The eigenvectors are coefficients with respect to
the multi-wavelets basis, and they are converted back to the
spectral representation for further computation. The Laplacian

FIG. 1. (Color online) Pedagogical illustration of adaptive rep-
resentations in MADNESS-HFB. (a) The modulus squared of the
single-neutron wave function corresponding to the single-particle
energy of −5.214 MeV obtained in MADNESS-HF calculations for
110Mo (see Sec. IV B for details), and (b) the corresponding spectral
refinement structure. (c) The modulus squared of the single-proton
wave function corresponding to the energy eigenvalue −12.272 MeV
in 110Mo and its adaptive spectral structure in panel (d). Notice that
the refinement structure for the proton wave function is similar to
a truncated octtree-type of refinement but the structure for neutron
wave function is more complicated, especially at the finer level [see
insets in panels (b) and (d)].

�, the potential V , and the wave functions ψi are all in
MRA form. The derivatives of multi-wavelets are expanded
in terms of multi wavelets, and the coefficients are tabulated.
By linearity, the derivatives of a function can be computed
by matrix-vector products, or tensor-tensor products in higher
dimensions, by using only the multi-wavelet coefficients.

This procedure permits computation of “self-consistent”
solutions of DFT equations.

3. Low-separation-rank approximation of Green’s functions

Recall that the (one-body) Schrödinger equation (7) can be
rewritten as a Lippmann-Schwinger equation as

(� + E)ψ = V ψ. (9)

There are several advantages of using the integral form (9)
over the differential form (7). Namely, the integral form
provides higher accuracy because high-frequency noise is at-
tenuated instead of amplified, builds correct asymptotics, good
condition number, and is potentially more computationally
efficient. In most bases the Green’s function representation
is often dense, and the use of multi-resolution analysis and
multi-wavelets provides fast algorithms with sparse structure
in finite floating arithmetic with guaranteed precision. If no
controlled truncations of the multi-wavelet coefficients are
performed, the representation of the Green’s function and its
application will be dense.
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The formal solution of Eq. (9) can be written as

ψ(r) =
∫ ∞

−∞
G(r − r ′)V ψ(r ′)dr ′ = (G � V ψ), (10)

where the Green’s function G(r) is the Helmholtz kernel
and the symbol � represents convolution. If the eigenvalue is
bound (E < 0), the Green’s function is the Yukawa potential
exp(−kr)/r where k = √−E. In general, one works with
G = (� + E + iε)−1 with ε → +0 and specifies how to
integrate around the poles.

For bound states, a low-separation-rank (LSR) expansion
[21,22] of the Yukawa potential is used:

e−kr

r
=

∑
l

σle
−τl r

2 + O(ε). (11)

The LSR approximation represents the Green’s function in
terms of a Gaussian expansion. Such a form reduces the
application of 3D convolutions to an set of uncoupled 1D
convolutions with the number of terms scaling logarithmically
with respect to the relative precision ε. Since the convolution
operator is linear, tables of precomputed transformation matri-
ces with respect to the multi-wavelets enable fast applications
of convolutions [24].

The technique described above to solve the Schrödinger
equation can be directly applied to a HF problem, and—after
a minor generalization—to HFB equations.

B. MADNESS parallel runtime environment

A novel parallel execution runtime environment has been
implemented in the MADNESS software library. MADNESS
uses one Message Passing Interface process to communicate
between nodes, and POSIX threads within a node to exploit
shared memory parallelism with a global addressable view of
memory space in software. The MADNESS runtime is based
on a parallel task-based computing model with a graph-based
scheduler and a task queue on each node to enable distributed
multi-threaded computation. A microparser is used to decouple
tasks as much as possible but also to detect data dependencies
so the most independent and out-of-order tasks can execute
simultaneously, ensuring correct and minimal number of
synchronization and thread termination.

Although the dedicated use of a core for internode commu-
nication and a core for handling thread scheduling may be a
big sacrifice of computational resources, for supercomputers
with large numbers of cores per node, we are able to obtain
more than 50% of peak core performance for the remaining
cores. Most scientific and engineering codes obtain only about
10% of the peak processor performance.

The flexibility of MADNESS-HFB in its design and program-
ming style permits the solution of multiphysics problems with
complex geometric structures and boundary conditions in large
volumes in the coordinate-space formulation—limited only by
the size of aggregate computer memory. Nuclear fission, exotic
topologies in super- and hyperheavy nuclei, neutron star crusts,
and cold atoms in elongated traps are some examples which
can take advantage of these features.

III. MADNESS-HFB STRATEGY

The general HFB equation for a two-component (e.g., spin-
up ↑ and spin-down ↓) system of fermions can be written as
[25–28] [

h↑ − λ↑ �
�∗ −h↓ + λ↓

] [
ui

vi

]
= Ei

[
ui

vi

]
, (12)

where h↑ and h↓ are the Hartree-Fock Hamiltonians for
the spin-up and spin-down components, respectively. The
corresponding chemical potentials are denoted as λ↑ and λ↓,
and the pairing potential is �.

There are two standard approaches to solve the HFB
equation (12). In the basis-expansion method, eigenvectors
(ui,vi) are expressed in terms of a single-particle basis and the
self-consistent procedure applies the HFB Hamiltonian matrix
diagonalization. The HFB solvers HFBTHO [4] (using the cylin-
drical transformed deformed harmonic-oscillator basis) and
HFODD [7] (using the Cartesian deformed harmonic-oscillator
basis), employed in this work to benchmark MADNESS-HFB

belong to this class. A second way is to solve the HFB
equations in the coordinate space by finite-difference or
finite-element methods [12,13,29] or in momentum space by
using fast Fourier transforms [30]. The strategy applied in
MADNESS-HFB, described in Sec. II, combines features from
these two approaches. The original method was developed
in the context of HF and DFT problems in computational
chemistry [22,31].

To illustrate the self-consistent procedure, let us consider
a case of an unpolarized system (h↑ = h↓) with constant
effective mass 1/α. The mean-field Hamiltonian is

h(r) = −α∇2

2
+ U (r), (13)

where U (r) is the HF potential. As discussed in Sec. II A 3, it
is convenient to rewrite the HFB equation (12) in a Lippmann-
Schwinger form. To this end, in each step of HFB iteration,
we introduce the Green’s functions G+ and G−:

Gn
± = 1

α∇2

2 + (
Es ± En

i

) , (14)

where En
i is the ith HFB eigenvalue in the nth iteration step,

and Es is the energy displacement that shifts the positive-
energy HFB eigenvalues so that the associated Green’s
function is properly defined.

To solve the self-consistent HFB eigenproblem, the HFB
wave functions can be updated as follows:

un+1
i = (

Gn
+ �

[
(U − λ)un

i + �vn
i + Esu

n
i

])
, (15a)

vn+1
i = (

Gn
− �

[
(U − λ) vn

i − �un
i + Esv

n
i

] )
. (15b)

Following this strategy, in the following section, we use
MADNESS-HFB to solve HFB problems with advanced local
energy density functionals for cold fermions and nuclei.

IV. BENCHMARK PROBLEMS

In this section, the MADNESS-HFB framework is bench-
marked by solving HFB equations for a trapped unitary
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Fermi gas and HF-BCS equations for a triaxial nucleus. The
MADNESS-HFB solutions for atoms and nuclei are compared
with results of 2D HFB-AX and 3D HFODD calculations,
respectively.

A. HFB solver for unitary Fermi gas

The unitary limit of a Fermi gas is characterized by an
infinite s-wave scattering length. Of particular interest are
superfluid phases in spin-imbalanced systems, such as the
Fulde-Ferrell-Larkin-Ovchinnikov [32,33] phase that exhibits
oscillating pairing gaps. The ultracold fermions at the unitary
limit can be described by the superfluid density functional
SLDA [34] and its asymmetric extension ASLDA for spin-
polarized systems [25].

The single-particle Hamiltonian of the ASLDA for asym-
metric systems can be written as [25]

hσ = − �
2

2m
∇ · [∇ασ (r)] + Uσ (r) + Vext (r) , (16)

where σ = (↑,↓) denotes the spin-up and spin-down compo-
nents. The local polarization is denoted as x(r) = ρ↓(r)/ρ↑(r)
with x(r) ≤ 1, where ρ↑(r) and ρ↓(r) are densities of spin-up
and spin-down atoms, respectively. The total polarization
of the system is P = (N↑ − N↓)/N . The quantity ασ (x(r))
is the local effective mass. The SLDA formalism can be
obtained from ASLDA by assuming x(r) = 1, resulting in
identical effective masses and Hartree potentials for spin-up
and spin-down species.

The cold atoms are trapped in an external potential

Vext(x,y,z) = V0

{
1 − exp

[
−ω2(x2 + y2 + z2/η2)

2V0

]}
,

(17)

where the trap aspect ratio η denotes the elongation of the
optical trap potential. The equations are normalized so that
� = m = ω = 1 (trap units). All other details pertaining to
our SLDA and ASLDA calculations closely follow Ref. [28].

We first consider an SLDA case of ten particles in a
spherical trap with V0 = 10 and the quasiparticle energy
cutoff Ecut = 6. The calculations were performed in a 3D
box (−L,L)3 with L = 60 With this box and cutoff, the
self-consistent HFB solution involves 296 one-quasiparticle
eigenfunctions. In the present SLDA and ASLDA benchmark
calculations, we adopt wavelet order of p = 8 with a requested
truncation precision of ε = 10−5 (see Eq. (6)).

The MADNESS-HFB results were benchmarked by using
the 2D HFB solver HFB-AX. In the HFB-AX calculation, the
maximum mesh size is 0.3, the order of B-splines is k = 12,
and the box size is Rmax = Zmax = 14. The eigenvalues and
occupation numbers of some of the lowest and highest states
from the two codes are compared in Table I. The agreement is
excellent, also for the total energy and chemical potential.

Next we consider the functional ASLDA, which was
developed to describe polarized Fermi systems. Because of
nonzero spin polarization, the corresponding HFB solutions
break time-reversal symmetry. In the first test, we performed
MADNESS-HFB and HFB-AX simulations for 10 particles with
a total polarization of P = 0.1 in a spherical trap. As seen in

TABLE I. Benchmark comparison of MADNESS-HFB and HFB-AX

results for 10 particles in the spherical trap without polarization.
Displayed are one-quasiparticle energies Ei , occupations v2

i , chem-
ical potential λ, and total energy Et . Each one-quasiparticle state is
labeled by means of orbital quantum number � and parity π = (−1)�.
Note that every solution is (2� + 1)-folded degenerate with respect to
the magnetic quantum number. The numbers in parentheses denote
powers of 10. The energy is expressed in trap units (� = m = ω = 1).

MADNESS-HFB HFB-AX

i � Ei v2
i Ei v2

i

1 0 0.90394 0.23240 0.90395 0.23240
2 2 1.06340 0.17779 1.06342 0.17779
3 1 1.12686 0.47471 1.12688 0.47469
4 3 1.92205 2.2491(−2) 1.92206 2.2491(−2)
5 1 2.00891 0.28448 2.00894 0.28449
6 0 2.54095 0.30390 2.54096 0.30393
7 2 2.69803 3.3837(−2) 2.69804 3.3838(−2)
8 0 2.82496 0.60883 2.82500 0.60884
9 4 2.91835 3.8699(−3) 2.91836 3.8698(−3)
10 1 3.44774 2.3162(−2) 3.44775 2.3165(−2)
21 7 5.54071 3.1957(−5) 5.54072 3.1954(−5)
22 2 5.58728 3.6548(−3) 5.58728 3.6550(−3)
23 4 5.75254 1.8024(−3) 5.75255 1.8024(−3)

Et = 18.5641 Et = 18.5639
λ = 2.24917 λ = 2.24916

Fig. 2, the density distributions for the spin-up and spin-down
components agree very well between MADNESS-HFB and HFB-
AX. Some of the eigenvalues are compared in Table II. Note
that the calculation conditions adopted in Tables I and II are
the same. It can been seen that the agreement is good up to
the fourth digit since the calculations of local polarization
x(r) = ρ↓(r)/ρ↑(r) may lose accuracy in both approaches
when both the spin-up and spin-down densities are very small.
In this case, required precision ALSDA should be significantly
greater than that requested in SLDA calculations.

z-axis (trap units)

de
ns

ity
 (t

ra
p 

un
its

) ASLDA
N=10, P=0.1

FIG. 2. (Color online) Comparison between density distributions
ρ↓(r) and ρ↑(r) obtained in ASLDA with MADNESS-HFB and HFB-AX

for 10 particles in a spherical trap with polarization P = 0.1.
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TABLE II. Similar to Table I but for a polarized system in ASLDA.

MADNESS-HFB HFB-AX

i Ei v2
i Ei v2

i

1 −0.1333 0.2090 −0.1330 0.2091
2 0.0463 0.1493 0.0468 0.1494
3 0.0786 0.4684 0.0787 0.4682
4 0.8837 0.1740(−1) 0.8838 0.1742(−1)
5 1.0157 0.2749 1.0161 0.2750
6 1.5425 0.2931 1.5425 0.2927
7 1.6944 0.3221(−1) 1.6943 0.3225(−1)
8 1.8346 0.6160 1.8348 0.6161
23 4.6417 0.0155(−1) 4.6416 0.0156(−1)
24 4.8158 0.1689(−5) 4.8157 0.1692(−5)

Et = 19.0436 Et = 19.0443
(λ↑ + λ↓)/2 = 2.1684 (λ↑ + λ↓)/2 = 2.1683
N↑ − N↓ = 1.0034 N↑ − N↓ = 1.00338

To demonstrate the capability of MADNESS-HFB for accurate
simulation of large systems, we carried out SLDA simulations
for 100 particles with polarization P = 0.2 in an elongated
trap with η = 16. The choice of SLDA was motivated by
the above-mentioned loss accuracy of ASLDA caused by a
numerical error on x(r) at low densities (large distances). The
simulation box is (−L,L)3 with L = 120. This computation
involves about 2000 eigenstates and 5000 cores on the
Titan supercomputer, and takes about four hours to reach
convergence. The total and polarization densities for the
MADNESS-HFB and HFB-AX simulations are shown in Fig. 3.
The 3D pairing potential is displayed in Fig. 4. The oscillations
of the pairing field in a spin-polarized system, characteristic of
the Larkin-Ovchinnikov phase, are clearly seen (see Ref. [28]
for more discussion).

B. Skyrme HF + BCS solver for nuclei

Most of the currently envisioned applications of MADNESS-
HFB pertain to the nuclear many-body problem. To this end, the
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FIG. 3. (Color online) Comparison between density distributions
ρ↑ + ρ↓ and ρ↑ − ρ↓ obtained in SLDA with MADNESS-HFB and HFB-
AX for 100 particles with P = 0.2 in an elongated trap with η = 16.

FIG. 4. (Color online) The pairing potential of 100 particles with
P = 0.2 in an elongated trap with η = 16 computed with SLDA.

adaptive multi-resolution Skyrme-HFB solver has also been
developed. The MADNESS-HFB approach for nuclei is similar
to the SLDA for cold atoms but much more involved due to
the continuum discretization, because the atomic nucleus is an
open system and associated boxes are large [35]. Therefore, as
an initial step, we carry out Skyrme HF and Skyrme HF + BCS
calculations and benchmark them with HFODD.

For both HF and HF + BCS calculations, we consider the
neutron-rich nucleus 110Mo which is triaxially deformed in
its ground state in some models [36]. We use SkM∗ [37]
Skyrme parametrization, and take �

2/(2m) = 20.73 MeV fm2

for benchmarking purposes.
In pairing calculations for 110Mo, due to the small neutron

separation energy, the positive-energy HF levels are important
because they participate in pairing. This creates a problem
when trying to compare BCS or HFB results based on
solvers that use a coordinate-space framework and a harmonic-
oscillator expansion because the continuum representation
is different in both approaches. Indeed, coordinate-space
solvers MADNESS-HF or MADNESS-HF+BCS, when applied to
large boxes, produce a very dense unbound single-neutron
spectrum [11,35,38]. On the other hand, the single-neutron
spectrum of oscillator-based HFODD is fairly sparse. Therefore,
to minimize the difference between these two codes for a
meaningful benchmarking, we switch off neutron pairing
and retain only bound 70 single-proton orbits in the BCS
phase space. We adopt a mixed density-dependent delta
interaction [39]. The proton pairing strength is chosen to be
−500 MeV to obtain a paired solution. Our MADNESS-HF

and MADNESS-HF+BCS calculations are performed in a large
3D box (−L,L)3 with L = 50 fm. The wavelet order is
p = 9 with requested truncation precision ε = 10−7. HFODD

calculations are performed with 1140 and 1540 spherical
harmonic oscillator states, corresponding to 17 and 19 shells,
respectively. The oscillator constant is 0.497 589 0 fm−1. In
MADNESS, the Coulomb potential can be obtained very
effectively by using the separated form of the Poisson kernel
[22].

Since MADNESS calculations are numerically extensive,
it is desirable to warm start the runs with wave functions
(or densities) from the converged HFODD solution. We have
implemented such an interface between HFODD and MADNESS-
HFB.

Table III compares MADNESS-HF and HFODD results for the
triaxial ground-state configuration in 110Mo.
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TABLE III. Comparison between results of MADNESS-HF and
HFODD for the triaxial ground state of 110Mo: total binding energy Et ,
kinetic energy Ekin, Coulomb energy Ec, and spin-orbit energy ESO

(all in MeV), mass r.m.s. radius Rrms (in fm), and mass quadrupole
moments Q20 and Q22 (in fm2). The “0th iter” column shows
MADNESS-HF warm-start numbers at the beginning of the iteration
process with wave functions and densities imported from converged
HFODD results using 1140 basis states.

HFODD HFODD MADNESS-HF MADNESS-HF

(1140) (1540) (0th iter) (converged)

Et −921.803 −921.932 −921.808 −922.119
Ekin 1998.074 1998.316 1998.075 1998.846
Ec 251.116 251.128 251.116 251.138
ESO −69.290 −69.273 −69.290 −69.276
Rrms 4.6696 4.6697 4.6696 4.6697
Q20 914.12 913.58 914.12 913.69
|Q22| 367.93 368.48 367.93 368.88

The MADNESS-HF results labeled “0th iter” are warm-
start initialization numbers, with densities imported from
HFODD(1140). As expected, “0th iter” and HFODD (1140) val-
ues are extremely close. A very small difference ≈5 eV on the
total energy can be attributed to the potential (Skyrme) energy.
In particular, the density-dependent term (∼ργ+2) produces
the largest difference. The excellent agreement between these
two calculations indicates that the interface between the two
solvers has been implemented correctly, and that the individual
Skyrme EDF terms have been coded properly in MADNESS-HF.
By increasing the basis size in HFODD to 1540 states, the total
binding energy decreases by ∼130 keV. However, it is still
∼190 keV above the MADNESS-HF result. This difference can
be traced back to asymptotic behavior of nucleonic densities
obtained in the two solvers. Figure 5 displays the neutron
density profiles along the x-, y-, and z-axes (moving from
the origin) computed in HFODD (1140), HFODD (1540), and
MADNESS-HF. When displayed on a linear scale, one can hardly
see a difference between HFODD and MADNESS-HF predictions.
However, when inspecting the density in a logarithmic scale,
one can see a characteristic damping at large distances (10–12
fm) in HFODD due to the finite size of oscillator basis. We
recall that the MADNESS-HF calculations were carried out in a
box extending to 50 fm. It is worth noting that, in a 2D (axial)
case, similar conclusions have been reached when comparing
coordinate-space and HO-basis HFB solvers [12,40].

Finally, Table IV displays HF + BCS results. Again, the
agreement between MADNESS-HFB and HFODD is excellent,
with the total binding energy in MADNESS-HFB being ∼150 keV
below that of HFODD (1540).

V. SUMMARY

In this paper, we introduce nuclear DFT framework based
on the adaptive multi-resolution 3D HFB solver MADNESS-
HFB. The numerical method employs harmonic analysis
techniques with a multi-wavelet basis; user-defined finite
precision is guaranteed. The solver applies state of the art
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(
n)

x, y, z (fm)

n 
(fm

-3
)

HFODD(1140)
HFODD(1540)
MADNESS

y

x

z
110Mo

FIG. 5. (Color online) Neutron density distribution for 110Mo in
MADNESS-HF (solid line), HFODD (1140) (dotted line), and HFODD

(1540) (dashed line) along the x-, y-, and z-axes, moving from the
origin. The inset (in a logarithmic scale) illustrates the tail behavior
of density.

in parallel programming techniques that can take advantage of
high-performance supercomputers.

Applications have been presented for polarized ultracold
atoms in very elongated traps and for triaxial neutron-rich nu-
clei. The solver has been benchmarked against other advanced
HFB solvers: a 2D coordinate-space solver HFB-AX based on
the B-spline technique and a 3D solver HFODD employing
the harmonic-oscillator basis expansion. The advantage of
MADNESS-HFB is its ability to treat large and complex systems
without restriction on symmetries. Examples of future nuclear
structure applications include weakly bound nuclei with large
spatial extensions, heavy-ion fusion, nuclear fission, complex
topologies in super- and hyperheavy nuclei [41–43], and pasta
phases in the inner crust of neutron stars [44–47]. Future
atomic applications of MADNESS-HFB include the description
of a large number of fermions (∼105) in highly elongated
optical traps (η ∼ 50) [48].

TABLE IV. Similar to Table III, except that we include BCS
pairing for protons. See text for details.

HFODD HFODD MADNESS-HF MADNESS-HF

(1140) (1540) (0th iter) (converged)

Et −922.419 −922.549 −922.425 −922.707
Epair −4.981 −4.988 −4.981 −4.781
λp −12.688 −12.692 −12.688 −12.697
Ekin 1998.055 1998.285 1998.055 1998.607
Ec 251.239 251.252 251.239 251.250
ESO −67.251 −67.228 −67.251 −67.220
Rrms 4.6610 4.6611 4.6610 4.6615
Q20 859.64 858.74 859.64 860.91
|Q22| 355.92 356.58 355.92 357.91
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