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The ground-state spins and parities of the odd-A phosphorus isotopes 25−47P are studied with the relativistic
mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the
RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion
may occur for the neutron-rich isotopes 37−47P, and, consequently, the possible spin-parity values of 37−47P may
be 3

2

+
, which, except for 47P, differs from those given by the NUBASE2012 nuclear data table by Audi et al.

Calculations of the elastic magnetic electron scattering of 37−47P with the single valence proton in the 2s1/2 and
1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron
scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37−47P.
The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is
valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of
the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
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I. INTRODUCTION

Spin and parity are two of the fundamental properties
of nuclei. Spin-parity values are in most cases necessary
for studying nuclear processes and other nuclear properties.
Measuring the spin-parity values of stable and long-lived
nuclei is not a problem at present, and the spins and parities of
nearly all stable and long-lived nuclei have been determined
experimentally [1]. However, for most of the short-lived nuclei,
measurement of nuclear spins and parities is still very difficult.
The spin-parity values of the short-lived nuclei given in the
NUBASE2012 nuclear data table [1] are mostly estimated
from trends in neighboring nuclides (TNN) with the same
parities in N and Z.

In view of the shell theory, most of the nucleon spins and
orbital momenta in a nucleus pair off to produce zero contri-
bution to the whole nucleus. Thus nuclear spins and parities
are just determined by several valence nucleons [2–6]. Since
the magnetic moment of a nucleus is closely related to its spin,
we can obtain information about nuclear spins and parities by
studying the electromagnetic interaction processes involving
nuclei. One of the most widely used processes is magnetic
electron-nucleus scattering. The magnetic electron-nucleus
scattering process has its own advantage and uniqueness in
studying the nuclear structures due to its sensitivity to the
states of motion of the valence nucleons [2–11], whether they
are protons or neutrons, because both the protons and neutrons
have intrinsic magnetic moments. Thus, we expect that the
magnetic electron-nucleus scattering can provide information
on the nuclear spins and parities. As a matter of fact, as
early as 1983, such an idea was already put forward by

*zjwang@tute.edu.cn

J. Heisenberg and H. P. Blok [12]. They discussed how it
is possible to determine the spin and parity values of some
of the excited states of several stable even-even nuclei. In the
past, electron-nucleus scattering already provided a great deal
of information on the electromagnetic properties of stable and
long-lived nuclei. Nowadays, in order to use this excellent
probe to study the structures of short-lived nuclei, based on
the development of radioactive-isotope- (RI) beam technology,
some new facilities for electron scattering off short-lived nuclei
have been constructed or under construction at different lab-
oratories. The MUSES and self-confining radioactive isotope
ion target [13–16] at RIKEN in Japan has been constructed
and the “First Demonstration of Electron Scattering Using a
Novel Target Developed for Short-Lived Nuclei” with stable
nucleus 133Cs was already performed in 2009 [17,18]. The
Electron-Ion Scattering in a Storage Ring project, which was
designed to scatter electrons with an energy of 125–500 MeV
and to perform elastic, inelastic, and quasielastic electron
scattering off short-lived radioactive isotopes at the Facility
for Antiproton and Ion Research (now under construction) at
GSI in Germany [19], has also been planned. Moreover, great
progress in parity-violating electron-nucleus scattering with
high precision has also been achieved recently at the Thomas
Jefferson National Accelerator Facility in the United States
[20,21]. Therefore, it is expected that, with the development
of nuclear experimental technologies, electron scattering on
short-lived nuclei will be realized in the near future.

In parallel with the construction of the new-generation
electron-scattering facilities, theoretical studies of electron
scattering on unstable nuclei have also started [22–33]. These
studies are mainly concerned with the Coulomb electron
scattering and parity-violating electron scattering. They have
studied different possible responses of the electron-scattering
observables to the exotic structures of unstable nuclei, such as
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the halo structure, and have provided many useful references
for the possible future experimental work. Inspired by the
idea of Ref. [12], in this paper, we would like to study how
the elastic magnetic electron-scattering form factors response
to the change of spins and parities of some unstable odd-A
nuclei. For this purpose, we choose to perform theoretical
investigations on the odd-A phosphors isotopes. The odd-A
phosphorus isotopes have 15 protons and an even number of
neutrons, so, according to the shell theory, their 1s, 1p proton
shells and the 1d5/2 proton subshell should be fully occupied
by 14 protons and thus the ground-state spins and parities are
determined only by a single valence proton outside the 1d5/2

orbital. Another reason why we chose the odd-A phosphorus
isotopes is that these nuclei are in the s-d shell region, where
the order of the 2s1/2 and 1d3/2 proton energy levels is predicted
to be more likely to invert with an increasing excess of
neutrons. Moreover, the experimental data of the magnetic
form factors, the charge from factors, the root-mean-square
radius of the electric charge distribution, and the magnetic
moment of 31P are all available [2,34–37]. These experimental
data can provide very good opportunities for comparisons of
theoretical results. Therefore, the odd-A phosphorus isotopes
are ideal for theoretical calculations.

The theory that we use in the present research is the
combination of the relativistic mean-field model (RMF)
and the elastic magnetic electron-scattering theory in the
relativistic frame. The RMF model has been extensively used
to describe the properties of the ground and low excited states
of both stable and unstable nuclei [38–49], so we combine
this theory with the elastic magnetic electron-scattering theory
to fulfill our study. We use the RMF model, along with the
NL-SH [43], NL3 [45], and TM2 [48] parameter sets, to
investigate the energy level structures and produce the single-
nucleon wave functions. Taking the wave functions as inputs,
we can calculate the magnetic form factors with the elastic
magnetic electron-scattering theory. The results of the RMF
model and the elastic magnetic electron-scattering theory are
discussed in detail. We expect to carry out an investigation
into the effects that the neutron excess can has on the spins
and parities of these nuclei and find out if it is possible for
the elastic magnetic electron scattering to be used for probing
them. In addition, we also expect that the present study can
provide some new references for testing to what extent the
RMF model is valid for describing the unstable nuclei.

The paper is organized in the following way. Section II
is the formalism of elastic magnetic electron scattering in
the relativistic frame. Section III is the numerical results and
discussions. A summary is given in Sec. IV.

II. FORMALISM

In the relativistic frame, the single-particle wave functions
[50] can be expressed as follows:

ψnκm =
[
i [G(r)/r] �κm(r̂)
−[F (r)/r] �−κm(r̂)

]
=

[
i|nκm〉
−|nκm〉

]

=
[
i
∣∣nl 1

2jm
〉

−∣∣nl
′ 1

2jm
〉
]

. (1)

With the choice of the phase factor in Eq. (1), the upper and
lower components G(r) and F (r) are real functions. The orbital
and the total angular-momentum quantum numbers l, l

′
, and

j are uniquely determined by the angular quantum number κ
[38], where

j = |κ| − 1
2 , (2)

with

l = κ, l
′ = l − 1, (κ > 0), (3)

l = −(κ + 1), l
′ = l + 1, (κ < 0), (4)

and the functions �κm in Eq. (1) are the spinor spherical
harmonics,

�κm =
∑
mlms

〈
lml

1
2ms

∣∣l 1
2jm

〉
Ylml

χms
. (5)

In the shell model of nuclear structure, only the unpaired
valence nucleon contributes to the magnetic form factors. With
the magnetic multipole operator T̂

mag
LM (q), the elastic magnetic

form factors squared can be written as

F 2
M (q) = 4πf 2

sn(q)f 2
c.m.(q)

2Ji + 1

odd∑
L=1

∣∣〈Jf |∣∣T̂ mag
L

∣∣|Ji〉
∣∣2

, (6)

where the multipole operator is defined by [2,51,52]

T̂
mag
LM (q) =

∫
jL(qr)YM

LL(r̂) · Ĵ (r)d3r (7)

and

〈Jf Mf |T̂ mag
LM (q)|JiMi〉 = (−)Jf −Mf

(
Jf J Ji

−Mf M Mi

)

×〈Jf |∣∣T̂ mag
L (q)

∣∣|Ji〉, (8)

and the single-nucleon factor and center-of-mass (c.m.) factor
in Eq. (6) are given by fsn(q) = [1 + (q/855 MeV)2]−2 and
fc.m.(q) = exp(q2b2/4A), respectively. Here, b is the oscillator
parameter, which is commonly taken as b = A1/6fm−1; q is
the momentum transfer and YM

LL(r̂) is the vector spherical
harmonics [53].

With the formulas given by Refs. [38,54,55], Eq. (6) can be
further expressed as

F 2
M (q) = 4πf 2

sn(q)f 2
c.m.(q)

2Ji + 1

odd∑
L=1

∣∣Ru
L(q) + Rl

L(q) + Rc
L(q)

∣∣2
,

(9)

where

Ru
L(q) = −(q/2Mn)(〈nκ‖λ′

�
′M
L ‖nκ〉, (10)

Rl
L(q) = (q/2Mn)〈nκ‖λ′

�
′M
L ‖nκ〉, (11)

Rc
L(q) = 2〈nκ‖Q�M

L ‖n,κ〉. (12)

The Ru
L(q), Rl

L(q), and Rc
L(q) denote the contributions of the

upper and the lower components of the Dirac four-spinors and
the crossed term, respectively. In Eqs. (10)–(12), the Q, Mn,
and λ

′
are the electric charge, mass, and magnetic moment of
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the nucleon, respectively, and the operators �M
L and �

′M
L are given by [38,54,55]

�M
L (r) ≡ MM

LL(r) · σ , �
′M
L (r) ≡ −i

(∇×MM
LL(r)

) · σ/q, MM
LL(r) ≡ jL(qr)YM

LL(r̂).

The single-particle reduced matrix elements in Eqs. (10)–(12) can be calculated with the formulas given by Edmonds [53] and
Willey [56]. By partial integration, the reduced matrix elements can be expressed explicitly as follows:

〈nκ‖� ′M
L ‖nκ〉 = (−1)l+1

q

(
6

4π

)1/2

(2l + 1)(2j + 1)

×
⎡
⎣

⎧⎨
⎩

l l L + 1
1
2

1
2 1

j j L

⎫⎬
⎭

(
l L + 1 l
0 0 0

)
(L(2L + 3))1/2 ×

∫
drr2jL(qr)

(
d

dr
+ L + 2

r

)
g2(r)

+
⎧⎨
⎩

l l L − 1
1
2

1
2 1

j j L

⎫⎬
⎭

(
l L − 1 l
0 0 0

)
((L + 1)(2L − 1))1/2 ×

∫
drr2jL(qr)

(
d

dr
− L − 1

r

)
g2(r)

⎤
⎦ ,

(13)

〈nκ‖� ′M
L ‖nκ〉 = (−1)l

′ +1

q

(
6

4π

)1/2

(2l
′ + 1)(2j + 1) ×

⎡
⎣

⎧⎨
⎩

l
′

l
′

L + 1
1
2

1
2 1

j j L

⎫⎬
⎭

(
l
′

L + 1 l
′

0 0 0

)
(L(2L + 3))1/2

×
∫

drr2jL(qr)

(
d

dr
+ L + 2

r

)
f 2(r) +

⎧⎨
⎩

l
′

l
′

L − 1
1
2

1
2 1

j j L

⎫⎬
⎭

(
l
′

L − 1 l
′

0 0 0

)
((L + 1)(2L − 1))1/2

×
∫

drr2jL(qr)

(
d

dr
− L − 1

r

)
f 2(r)

]
, (14)

and

〈nκ‖�M
L ‖nκ〉 = (−1)l

′
(

6

4π

)1/2

(2L + 1)(2j + 1)((2l + 1)(2l
′ + 1))1/2

⎧⎨
⎩

l
′

l L
1
2

1
2 1

j j L

⎫⎬
⎭

(
l
′

L l
0 0 0

) ∫
drr2jL(qr)g(r)f (r),

(15)

where g(r) = G(r)/r, f (r) = F (r)/r .
To calculate the magnetic form factors, we also need a

reliable nuclear structure model to produce the single-nucleon
wave functions. We use the RMF model to generate the wave
functions g(r) = G(r)/r and f (r) = F (r)/r . Since the details
of the RMF model can be found in many articles, such as
Refs. [38–49], we will not repeat them here.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. The results of the relativistic mean-field model

In this section, we present the results of the odd-A 25−47P
calculated by using the RMF model with the NL-SH, TM2,
and NL3 force parameters.

In Table I, we list the binding energies per nucleon E/A
(MeV) and the root-mean-square (rms) charge radii Rrms (fm)
of 25−47P, as well as the results given by the NUBASE2012
nuclear data table [1]. Detailed examination on the results
in Table I shows that for each isotope the discrepancies of
E/A and Rrms among the theoretical results and between the
theoretical and experimental results are all very small. For
the binding energies per nucleon, the discrepancies among
the results given by the three sets of parameters are less than
0.18 MeV (<2.19%), and those between the theoretical results

and the experimental ones are less than 0.16 MeV (<2.33%).
For the root-mean-square charge radii, the differences among
the results given by the three sets of parameters are less
than 0.079 fm (<2.38%). For 31P, whose charge radius
experimental data are available (3.191(5) fm [35], 3.19(3) fm
[36], and 3.187 fm [36]), the discrepancies of Rrms between the
theoretical results and the experimental ones are less than 0.047
fm (<1.47%). These results, from one aspect, show that the
RMF model is reliable in describing the phosphorus isotopes.

To know how to implement the calculation of the magnetic
form factors, we need to make a detailed analysis on the
structure of the s-d proton shell for the considered nuclei. In
Table II, we present the 1d5/2, 2s1/2, and 1d3/2 single-proton
energy levels ε(1d5/2) (MeV), ε(2s1/2) (MeV), and ε(1d3/2)
(MeV) and the proton occupation probabilities of the 1d5/2

orbital p(1d5/2). In Fig. 1, we also present the variations of the
1d3/2-1d5/2 spin-orbit splitting gap 
ε = ε(1d3/2) − ε(1d5/2)
[Fig. 1(b)], along with the occupation probabilities of the 1d5/2

orbital [Fig. 1(a)], with respect to the neutron number.
It can be seen from Table II that for 25−35P the three

parameter sets all predict that the 2s1/2 energy levels are lower
than the 1d3/2 levels. While for 37P and 39P, the predictions
appear to differ. The NL3 predicts that the 2s1/2 levels are
lower than the 1d3/2 ones, whereas NL-SH and TM2 predict
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TABLE I. The theoretical results of the binding energies per
nucleon and the root-mean-square charge radii of 25−47P, as well as
the binding energies per nucleon given in the NUBASE2012 nuclear
data table.

NL-SH TM2 NL3 NUBASE2012

E/A Rrms E/A Rrms E/A Rrms E/A

25P 6.832 3.296 6.971 3.375 6.852 3.312 6.812#
27P 7.559 3.204 7.719 3.274 7.563 3.215 7.663
29P 8.151 3.153 8.320 3.219 8.141 3.160 8.251
31P 8.325 3.166 8.442 3.234 8.353 3.170 8.481
33P 8.417 3.190 8.488 3.259 8.442 3.199 8.514
35P 8.461 3.214 8.494 3.285 8.475 3.227 8.446
37P 8.283 3.223 8.333 3.300 8.292 3.242 8.268
39P 8.083 3.242 8.146 3.315 8.081 3.257 8.099
41P 7.900 3.259 7.969 3.332 7.886 3.273 7.907
43P 7.695 3.276 7.782 3.349 7.691 3.289 7.690
45P 7.473 3.291 7.538 3.365 7.478 3.304 7.470#
47P 7.237 3.306 7.293 3.380 7.269 3.317 7.200#

that the 2s1/2 levels are higher than the 1d3/2 ones. This shows
that 2s1/2 and 1d3/2 level inversion in 37P and 39P may exist.
For 41−47P, the predictions of the three sets of parameters again
agree with one another, but they all show that the 2s1/2 and
1d3/2 level inversion may occur to 41−47P. The predictions of
the three parameter sets for 25−47P are not exactly the same;
nevertheless, they still have two important features in common.
One is that the general trends of the 2s1/2 and 1d3/2 levels are
similar. The other is that they all predict that the 2s1/2 and 1d3/2

proton level inversion may exist in the neutron-rich phosphorus
isotopes. The second feature reveals that the neutron excess
can have significant influence on the states of motion of the
protons near the Fermi surface.

In addition to the 2s1/2 and 1d3/2 proton level inversion,
the neutron excess may also have influence on the proton
occupation probability of the 1d5/2 orbital, since the 1d3/2-
1d5/2 spin-orbit splitting gap will get narrowed with the
increase of the neutron number and the 1d5/2 proton orbital

FIG. 1. The proton occupation probabilities of the 1d5/2 orbital (a)
and the 1d3/2-1d5/2 spin-orbit splitting gaps (b) calculated with
NL-SH, TM2, and NL3 parameters.

is near the Fermi surface for the P isotopes. The results of
1d5/2 and 1d3/2 in Table II and the variations of the splitting
gap in Fig. 1(b) indicate that for 25−47P the splitting gap
indeed gradually narrows with an increasing neutron number.
However, as the results show that for the very neutron rich
isotopes, such as 47P, the spin-orbit splitting gap is around
6.6 MeV, which is about 2 times larger than the pairing gaps
of 25−47P, which are around 1.63–2.24 MeV according to

TABLE II. The 1d5/2, 2s1/2, and 1d3/2 single-proton energy levels and the occupation probabilities of the 1d5/2 orbital of 25−47P calculated
with the NL-SH, TM2, and NL3 parameters.

NL-SH TM2 NL3

ε(1d5/2) ε(2s1/2) ε(1d3/2) p(1d5/2) ε(1d5/2) ε(2s1/2) ε(1d3/2) p(1d5/2) ε(1d5/2) ε(2s1/2) ε(1d3/2) p(1d5/2)

25P −4.441 −0.231 Unbound 0.9547 −4.761 −0.018 Unbound 0.9610 −4.256 −0.995 Unbound 0.9408
27P −7.588 −1.725 Unbound 0.9728 −7.956 −1.359 Unbound 0.9774 −7.391 −2.539 Unbound 0.9641
29P −10.601 −3.392 −2.054 0.9752 −11.041 −2.878 −1.543 0.9806 −10.444 −4.209 −1.978 0.9703
31P −12.922 −5.728 −4.602 0.9761 −13.301 −5.182 −4.101 0.9812 −12.619 −6.859 −4.261 0.9705
33P −15.201 −7.895 −7.272 0.9767 −15.584 −7.346 −6.841 0.9816 −14.809 −8.996 −6.928 0.9709
35P −17.392 −9.997 −9.794 0.9772 −17.763 −9.441 −9.409 0.9818 −16.955 −10.793 −9.533 0.9721
37P −19.565 −11.826 −12.192 0.9782 −19.856 −11.196 −11.755 0.9825 −18.955 −12.474 −11.756 0.9741
39P −21.677 −13.553 −14.543 0.9788 −21.957 −12.865 −14.118 0.9829 −20.924 −14.085 −13.948 0.9757
41P −23.716 −15.216 −16.834 0.9790 −23.958 −14.468 −16.390 0.9829 −22.788 −15.633 −16.037 0.9765
43P −25.687 −16.828 −19.055 0.9788 −25.619 −15.930 −18.270 0.9829 −24.338 −17.074 −17.750 0.9770
45P −25.961 −17.763 −19.257 0.9798 −26.453 −17.095 −19.162 0.9834 −25.342 −18.362 −18.783 0.9775
47P −26.675 −18.800 −19.976 0.9804 −27.097 −18.127 −19.818 0.9839 −26.260 −19.493 −19.583 0.9780
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 = 11.2/
√

A MeV, so the pair scattering of the protons from
the 1d5/2 orbital to the 1d3/2 orbital is not strong for these
nuclei. Likewise, for the same reason, the pair scattering from
the 1d5/2 orbital to 2s1/2 orbital is also not strong. Therefore,
the proton occupation probability of the 1d5/2 orbital should
be nearly unaffected by the change of the spin-orbit splitting
gap. Figure 1(a) is the variation of the proton occupation
probabilities of 1d5/2 with respect to the neutron number.
It shows that with the increase of the neutron number the
proton occupation probability of the 1d5/2 orbital has a very
slow increase from 0.94 to 0.98. Therefore, it would be a
good approximation to assume that the 1d5/2 proton orbital
maintains fully occupied when calculating the magnetic form
factors of 25−47P.

It is known that a particle prefers to move in a lower energy
state, so the inversion of the 2s1/2 and 1d3/2 energy levels
will change the proton occupancy of the two states in 37−47P
and, consequently, may lead to the change of the spin-parity
values of these nuclei. Based on the results in Table II and the
nuclear shell theory, we can obtain the ground-state spin-parity
values of 25−47P predicted by the RMF model with the three
sets of parameters. The results, along with those given by
NUBASE2012 (the rightmost column), are listed in Table III.
It would be very interesting to make a detailed comparison
among the results given in the table. It can be found from
the table that for the isotopes 25−35P, among which the spin-
parity values of 27−35P are determined, the results given by the
three sets of parameters not only agree with one another but
also agree with those given by NUBASE2012. For the other
isotopes, whose spin-parity values are unknown at present,
the predicted results are mostly not agree with those given by
NUBASE2012. For 37P and 39P, the spins and parities predicted
by the NL3 parameters are 1

2
+

, which agrees with those given
by NUBASE2012, whereas the results of both nuclei predicted
by NL-SH and TM2 are 3

2
+

, otherwise 1
2

+
. For 41−45P, the three

TABLE III. The spin-parity values of 25−47P predicted by the RMF
model and those given by NUBASE2012. The symbol # in the table
indicates that the values are estimated from trends in neighboring
nuclides with the same Z and N parities.

NL-SH TM2 NL3 NUBASE2012

25P 1
2

+ 1
2

+ 1
2

+ 1
2

+
#

27P 1
2

+ 1
2

+ 1
2

+ 1
2

+

29P 1
2

+ 1
2

+ 1
2

+ 1
2

+

31P 1
2

+ 1
2

+ 1
2

+ 1
2

+

33P 1
2

+ 1
2

+ 1
2

+ 1
2

+

35P 1
2

+ 1
2

+ 1
2

+ 1
2

+

37P 3
2

+ 3
2

+ 1
2

+ 1
2

+
#

39P 3
2

+ 3
2

+ 1
2

+ 1
2

+
#

41P 3
2

+ 3
2

+ 3
2

+ 1
2

+
#

43P 3
2

+ 3
2

+ 3
2

+ 1
2

+
#

45P 3
2

+ 3
2

+ 3
2

+ 1
2

+
#

47P 3
2

+ 3
2

+ 3
2

+ 3
2

+
#

parameter sets all give 3
2

+
, and they do not agree with the values

given by NUBASE2012. For 47P, the three parameter sets and
NUBASE2012 all give the same result, 3

2
+

.
We can draw some important information from the above

comparisons. First, the result that the spin-parity values ob-
tained with the three sets of parameters and from experiments
for all those isotopes (27−35P) whose spin-parity values have
been determined by experiments all agree with one another
shows that, to a great extent, the RMF model is stable and
reliable for calculating the properties of the considered nuclei.
Then the difference between the results given by NL-SH
and TM2 and those given by NL3 for 37P and 39P reveal
that there also exist some uncertainties in predicting nuclear
properties with the RMF model. This difference may indicate
that different sets of parameters dwell at places with different
distances to the reality; one set may be better than the others.
Usually, it is very difficult to determine which parameter set
or sets is better just based on the specific values given by the
RMF model, since, in most cases, for a specific nucleus the
single-nucleon energy levels, the total binding energies or the
binding energies per nucleon, and the charge radii calculated
with different sets of parameters do not have substantial
discrepancies. However, this difference is substantial and may
provide another reference to help us determine which set or
sets of parameters is better. Moreover, the agreement of the
predicted spin-parity values of 47P with one another and with
that given by NUBASE2012 seems to strongly suggest that it
is very likely that there exists 2s1/2 and 1d3/2 level inversion
in 47P. Finally, it can be found naturally from the comparison
that, in theory, the odd-A phosphorus isotopes are really a
group of very good candidate nuclei for investigating the 2s1/2

and 1d3/2 level inversion and for studying the validity of the
RMF model, along with its various sets of parameters, for
unstable nuclei. The rich and diversified results of the odd-A
phosphorus isotopes given by the RMF model with the three
parameter sets, and the agreement and disagreement among
the theoretical results and those given by NUBASE2012,
can offer good opportunities for us to make comparisons
with the results from experiments and other theories. These
discussions suggest that if we can find an experimental method
to determine the states of motion of the single valence proton
in 37−47P, we can not only know the spins and parities of these
nuclei but also learn more about the long-debated nuclear level
inversion and the validity of the RMF nuclear structure theory.

B. The results of the elastic magnetic electron-scattering theory

The discussions of the previous section show that the single
valence proton in 37−47P may move in the 1d3/2 orbital or
the 2s1/2 orbital due to the possible 2s1/2 and 1d3/2 proton
level inversion. Does the level inversion in 37−47P really
exist? Which of the two states does the single valence proton
really move in? The answers to both problems concern not
only the existence of the 2s1/2 and 1d3/2 level inversion and
the spin-parity values of 37−47P but also the validity of the
RMF model for unstable nuclei. Elastic magnetic electron
scattering is an excellent tool for investigating the states
of motion of the valence nucleons in nuclei, especially the
states of motion of a single valence nucleon outside a closed
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shell or a fully occupied subshell in an odd-A nucleus. The
odd-A isotopes 25−47P are such nuclei, with a single valence
proton moving outside the 1d5/2 orbital. In this section, we
present investigations of 25−47P with the elastic magnetic
electron-scattering theory in the relativistic frame. We examine
the responses of the magnetic form factors to the two states
of motion of the single valence proton in these nuclei and
explore if elastic magnetic electron scattering is feasible for
investigating the 2s1/2 and 1d3/2 proton level inversion and
determining the spins and parities of 37−47P experimentally.

Before the calculation of the form factors of 25−47P, we
need to further test the reliability of the single-nucleon wave
functions given by the RMF model. To this end, we choose
to calculate the form factors of odd-A 31P and 29Si and
compare the results with the experimental data. In theoretical
calculations of magnetic electron-nucleus scattering, it is very
common that the many-body effects, such as those of the
meson exchange and back flow currents in the relativistic
mean field, are considered by introducing the spectroscopy
factors αL to the scattering multipoles. In practice, the first
spectroscopy factor α1 is usually chosen to be the ratio of the
experimental nuclear magnetic moment to the single-nucleon
value μexp/μsn, because of the lack of experimental data in the
very low momentum transfer region, where M1 dominates the
magnetic scattering. For 31P, there is only the M1 multipole,
so we take the factor α1 = 1.131/2.793, where 1.131 μN

is the experimental value [37] of the magnetic moment of
31P. Likewise, for 29Si, there is only one valence neutron in
the 2s1/2 orbital, so we take the spectroscopy factor α1 =
−0.55529/(−1.913), where −0.55529 μN is the experimental
value [37] of the magnetic moment of 29Si. The results of
both nuclei are presented in Fig. 2. These results are obtained
directly from the single-nucleon wave functions generated by
the RMF model. Except the spectroscopy factor α1, no other
corrections or adjustments are made. The figure shows that
there exist some slight discrepancies between the theoretical
form factors and the experimental ones for both nuclei. The
discrepancies appear around the second maximum for 31P
and some slightly larger discrepancies occur on both sides
of the minimum for 29Si. In addition, the form factors given
by different parameter sets also show some slight deviations.
Even so, the theoretical form factors for both nuclei agree
well on a large part with the experimental data [2,34]. This
shows that the wave functions generated by the RMF model
are, to a great extent, reliable. This, on the other hand, also
confirms the rationality of introducing the first spectroscopy
factor by choosing α1 = μexp/μsn. More examples for testing
the reliability of the RMF model can also be found in Ref. [57].
Based on these results, we assume that the single-nucleon wave
functions produced by the RMF model are reliable. Under
this assumption, we can only consider the single-nucleon
contributions to the magnetic scattering in the following
calculations. We make such an assumption for two reasons.
One is that our purpose is to see if the elastic magnetic electron
scattering is sensitive to the states of motion of the single
valence nucleon and how it responses to the changes of the
states of motion of the valence nucleon. The other is that we do
not have enough experimental data to fit for the spectroscopy
factors of 25−47P.

FIG. 2. Comparisons of the theoretical magnetic form factors of
31P and 29Si with the experimental data [2,34].

For clearness, we divide the isotopes 25−47P into two groups
according to the results in Tables II and III in the following
calculations. For the parameter sets NL-SH and TM2, the first
group includes 25−35P, and the second group consists of 37−47P.
For the parameter set NL3, the first group includes 25−39P;
the second group, 41−47P. For the two first groups, since the
RMF model predictions for the spin-parity values of 27−35P
all agree with the experimental results and indicate no level
inversion of the 2s1/2 and 1d3/2 states, we assume that the
single valence proton in these nuclei moves in the 2s1/2 orbital.
Taking the wave functions generated by the RMF model as
input, we can calculate the elastic magnetic form factors of
25−39P. The numerical results are presented in Fig. 3. The figure
shows that the trends of variation of the form factors given by
the three sets of force parameters are very similar, but there
appears to be a noticeable isotopic shift for each parameter set.
Within the most easily measured momentum transfer region
q = 0.5–3.0 fm−1, the greatest form factor shifts between the
isotopes occur around the first minimum near q = 1.0 fm−1.
These shifts, which tend to become nonsignificant with the
increase of the neutron number, reveal the changes of the wave
functions of the single valence proton under the influence of
an increasing neutron number. This result shows that the appro-
priate momentum transfer region to measure the isotopic shifts
of the magnetic form factors of 25−37P is around q = 1.0 fm−1.

For the second group, since the RMF model calculations
show that there may exist 2s1/2 and 1d3/2 level inversion, we
calculate the magnetic form factors in two cases. In one case,
we assume that the valence proton moves in the 2s1/2 orbital;
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FIG. 3. The magnetic form factors of 25−35P calculated with the
NL-SH and TM2 parameter sets and those of 25−39P calculated with
NL3 parameter set. In the figure, π2s1/2 denotes that the valence
proton is in the 2s1/2 orbital.

in another, the valence proton occupies the 1d3/2 orbital. The
results are presented in Fig. 4. In the figure, π2s1/2 and π1d3/2

denote that the valence proton is in the 2s1/2 and 1d3/2 orbitals,
respectively. The curves in the figure show three features. First,
for either case the trends of variation of the magnetic form fac-
tors are very similar. This again shows that the RMF model is
stable. Second, unlike the form factors shown in Fig. 3, for the
very neutron rich isotopes 37−47P, the increase of the neutron
number only makes a small difference to the form factors in
the momentum transfer region near q = 1.0 fm−1, and only
very slight shifts of the form factors appear in the momentum
transfer region q = 0.5–3.0 fm−1. Third, the form factors of
37−47P in the two cases show significant differences, especially
in the region q = 0–2.0 fm−1. Both the shapes and the trends of
variation of the form factors differ remarkably with each other.
The third feature is of great significance. It implies that the
two different states of motion of the valence proton can have
significantly different influences on the magnetic form factors
or on the magnetic moment distributions of these nuclei. This
significant difference indicates that the state of motion of
the single valence proton in 37−47P can probably be probed
experimentally with elastic magnetic electron scattering.

Based on the above results, it can be concluded theoretically
that elastic magnetic electron scattering might be a feasible

FIG. 4. The same as Fig. 3 but for the isotopes 37−47P. In the
figure, π2s1/2 and π1d3/2 denote that the single valence proton is in
the 2s1/2 and 1d3/2 orbitals, respectively.

way for experimental study of the spins and parities of 37−47P.
With the development and application of the new-generation
electron-nucleus collider at Riken and GSI, it is expected that
the magnetic form factors of the short-lived nuclei can be
measured in the future. Then the present theoretical results
can be used as references for determining the possible s-d
level inversion and the spins and parities and for testing to
what extent the RMF model, along with its various sets of
force parameters, is valid for the unstable nuclei.

Thus far, we have arrived at the main conclusion of the
present research. However, there are still some important
related aspects that should be further discussed. According to
Eq. (9), the form factors are connected with the single-nucleon
wave functions and the momentum transfer through three
reduced matrix elements, Ru

L(q), Rl
L(q), and Rc

L(q), which
are the contributions of the upper and lower components
of the Dirac four-spinors and the crossed term, respectively.
Therefore, the first aspect that we would like to further discuss
is how these matrix elements contribute to the form factors and
how they change with the neutron number and the momentum
transfer. In Fig. 5, we plot the Ru

L(q), Rl
L(q), and Rc

L(q) of
the 2s1/2 state wave functions of 25,29,33,37,41,45P with the
NL-SH parameters being adopted. Figure 6 is the same as
Fig. 5, but for the 1d3/2 states of 37,41,45P. Figures 6(a)–6(c)
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FIG. 5. The contributions of the upper components Ru
L(q) (solid lines), the lower components Rl

L(q) (dashed lines), and the crossed term
Rc

L(q) (dotted lines) of the 2s1/2 wave function.

FIG. 6. The same as Fig. 5, but for the 1d3/2 states of 37,41,45P. The upper [(a)−(c)] and lower [(d)−(f)] panels are the results corresponding
to multipoles L = 1 and L = 3, respectively.
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and 6(d)–6(f) are the results corresponding, respectively, to
multipoles L = 1 and L = 3. It can be noted from both figures
that, within the momentum transfer region q = 0–3.0 fm−1, the
contributions of the upper components Ru

L(q) and the crossed
term Rc

L(q) are of the same order of magnitude, whereas the
contribution of the lower components Rl

L(q) are much smaller
(nearly two orders smaller), so the contribution of the lower
components alone to the form factors is very small.

Indeed, the lower components alone contribute very little
to the form factors; however, the importance of the lower
components in elastic magnetic electron-nucleus scattering
can not at all be underestimated. The importance of the lower
components is embodied in the contribution of the crossed
term, which bears the difference between the relativistic
nuclear structure models and nonrelativistic nuclear structure
models. In addition, Figs. 5 and 6 also show that the amplitudes
of contribution of the upper components of the 2s1/2 and 1d3/2

wave functions show only some slight differences, whereas
the amplitudes of contribution of the crossed term of the
two states show remarkable deviations. For the 2s1/2 state,
the amplitude of the contribution of the crossed term is
smaller than that of the upper components, but, in contrast,
the amplitude of the contribution of the crossed term is larger
than that of the upper components for 1d3/2. More than that,
Figs. 6(a)–6(c) show that the amplitude of the crossed term
of 1d3/2 with multipole L =1 is about 2 times larger than
that of the upper components. To know why there exist such
deviations, let us make a comparison of the contributions of
the lower components of the two states. We take 39,43P as
instances. Figure 7 is the plot of the absolute values of the
contributions Rl

L(q) of the lower components of the 2s1/2

and 1d3/2 single-nucleon wave functions of 39,43P. The figure
shows that the contributions of the lower components of
1d3/2 (dashed and dotted lines) are approximately one order
larger than that of the 2s1/2 state (solid lines) within the
momentum transfer regions q = 0.0–1.25 fm−1 for L = 1 and
q = 0.5–2.25 fm−1 for L = 3, respectively. This implies that,
compared with the 2s1/2 state, the lower components of the
1d3/2 state may undergo an enhancement [58,59], and, as a
result, the enhancement has led to the remarkable deviations
between Ru

L(q) and Rc
L(q) shown in Fig. 6 and Fig. 5. This

reveals that the lower components play a significant role in
elastic magnetic electron-nucleus scattering. The enhancement
of the lower components of the Dirac four-spinors was first
found and studied by J. A. Caballero et al. [58,59] when the
authors were investigating the role of the lower components
in the response functions of the (e,e′p) processes. Their study
shows that the lower components play an important role in
quasielastic electron scattering [58,59]. The results of our
calculation and discussion of elastic magnetic electron-nucleus
scattering based on the RMF model agree with and support the
conclusion given by these authors.

The second interesting aspect is about the isotopic shifts
of the form factors shown in Fig. 3. Why do the form
factors shift with an increasing neutron number? The above
discussion shows that the single-nucleon form factors are al-
most completely determined by the contributions of the upper
components and the crossed term. Figure 5 shows that for the
fixed 2s1/2 orbital, the contributions of the upper components

FIG. 7. The contributions of the lower components Rl
L(q) of the

2s1/2 and 1d3/2 single-nucleon wave functions of 39,43P.

and the crossed term have the same sign within the momentum
transfer region q = 0–3.0 fm−1, and both gradually increase
with a decaying speed with the increase of neutron number. The
figure also shows that the second peak of both contributions
appears to increase more rapidly than the first peak. It is
these changes of the two contributions that have led to the
isotopic shifts shown in Fig. 3. To consider the problem
more deeply in view of the mean-field model, the funda-
mental reasons for the isotopic shifts, as well as for the changes
of the contributions of the upper components and the crossed
term, should be the change of the mean field caused by the
increase of the neutron number. However, since the nucleons,
the mesons, and the photons are coupled together, the field
corresponding to each kind of meson and photon will change
with the increase of the neutron number. Therefore, the shifts
should be the combined effect of the changes of the σ , ω, ρ, and
Coulomb fields. Nevertheless, we expect that, among the four
potential fields, there may be one or two directly related with
the change of neutron number, whose change plays the most
important role. Detailed analysis of the four field potentials
shows that the sum of the potentials of the attractive σ field,
the repulsive ω field, and the Coulomb field only shows a
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FIG. 8. The variations of the potentials Vσ + Vω + Vc (a), Vσ + Vω + Vc + Vρ (b), and Vρ (c) with the increase of neutron number, where
Vσ , Vω, Vc, and Vρ denote the potentials of the σ , ω, Coulomb, and ρ fields, respectively.

very slight change with the increase of the neutron number.
Figure 8(a) shows that both the depth and width of the potential
well vary within only a very small range for an increase of
20 neutrons. The range of variation of the depth is less than
6 MeV and that of the width is within 1 fm. However, after the
potential of the ρ field is taken into account, the total potential
shows a significant variation [see Fig. 8(b)]. The depth of the
total potential well varies within a range as large as 25 MeV,
and the variation range of the width is also nearly doubled. In
addition, the crossings of the potential curves at the bottoms
of the potential wells shown in Fig. 8(a) also disappeared in
Fig. 8(b). This indicates that the change of the ρ field plays
the most significant role in producing the isotopic shifts. This
conclusion is just what was expected, since the source of the
ρ field is nothing but the difference between the neutron and
proton densities. For comparison, the variation of the ρ field
potential is also plotted in Fig. 8(c). It is seen that the changes
of Vρ turn from very “violent” to very “mild” as the neutron
number increases from N = 10 to N = 30. This also explains
why the isotopic shifts become nonsignificant for the very
neutron-rich phosphorus isotopes.

The third aspect that we would like to discuss is about
the changes of the form factors obtained with the three force
parameter sets (NL-SH, TM2, and NL3) for a fixed nucleon
orbital of the same isotope. Figures 2– 4 all show that the form
factors from the three parameter sets for the fixed 2s1/2 or
1d3/2 orbital have some noticeable changes. According to the
RMF nuclear structure theory, the changes of the form factors
should result from the variations of the mean field generated
with the three parameter sets. To find which of the four nuclear
field potentials (the σ , ω, ρ, and Coulomb fields) are mainly
responsible for these changes, we need to make a detailed
comparison between the results generated with the NL-SH,
TM2, and NL3 parameters for each field potential. Here we
exemplify it with the results of 31P. In Fig. 9(a), we plot the
results of the σ and ω field potentials (for the convenience of
comparison, −Vσ is plotted in the figure). Figures 9(b) and

9(c) are the results of the ρ and Coulomb fields, respectively.
The figures show that the results from the three parameter sets
for each field potential all, to some extent, have deviations
from each other. For instance, the deviation of the results of
Vσ between NL-SH and NL3 at r = 0.0 fm is about 58.0 MeV
and that between NL-SH and TM2 around r = 2.0 fm is about
40.0 MeV; for Vρ and Vc, the largest deviations among the three
results, which occur at the center, are at most 1.0 and 0.5 MeV,
respectively. In addition, noticeable deviations between the
results of Vρ and between those of Vc shown in Figs. 9(b)
and 9(c) occur approximately between r = 0.0 fm and r =
3.0 fm, while those of Vσ and Vω shown in Fig. 9(a) appear
within a much larger spatial region, from r = 0.0 fm to at
least r = 8.0 fm on the same scale as those of Vρ and Vc.
Therefore, one can see that the absolute deviations between
the results of Vσ and between those of Vω are much larger
than those of Vρ and Vc. In Fig. 9(d), we present the results of
Vσ + Vω, which accounts for the main part of the total mean-
field potential. In Figs. 9(e) and 9(f), the results of Vσ + Vω +
Vρ and Vσ + Vω + Vρ + Vc are also given for comparison.
Figure 9(d) shows that the deviations between the results of
Vσ and between those of Vω are largely canceled after the
results of Vσ and Vω from the same parameter sets are added
up; only a small proportion of the deviations can pass down
to the resultants. Even so, the deviations between the three
resultants in Fig. 9(d) are still much larger than those between
the results of Vρ shown in Fig. 9(b) and those between the
results of Vc shown in Fig. 9(c). The evolution of the resultant
potentials from Fig. 9(d) through Figs. 9(e) to 9(f) shows that
the changes of the field potentials Vρ and Vc with NL-SH, NL3,
and TM2 do not make much difference to the total mean-field
potential; the changes of the total potential with NL-SH, NL3,
and TM2 are mainly inherited from the variations of Vσ and
Vω. Therefore, it can be concluded that it is the variations
of Vσ and Vω obtained with different parameter sets whose
combined effect are mainly responsible for the changes of the
total potential and thus responsible for the changes of the form
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FIG. 9. The variations of the field potentials Vσ , Vω, Vρ , Vc, Vσ + Vω, Vσ + Vω + Vρ , and Vσ + Vω + Vρ + Vc obtained with NL-SH, TM2,
and NL3 parameter sets for 31P. In (a), the three curves circled by the upper small ellipse correspond to −Vσ and those by the lower ellipse
correspond to Vω.

factors obtained with the NL-SH, TM2, and NL3 parameter
sets.

Finally, a few remarks should be made on the method and
results of the present paper. As a first attempt, we investigated
the spins and parities of the odd-A P isotopes 25−47P by
combining the relativistic elastic magnetic electron-nucleus
scattering theory with the RMF nuclear structure model.
Actually, nuclei in the considered region are known to be
deformed, so a more reasonable and realistic method should
be one that can take into account the deformation of the nuclei.
From this point of view, there should exist much room for
the method and results to be further improved. As a matter
of fact, good work in calculating the elastic magnetic form
factors based on deformed nuclear structure models have
been done by other authors [60], and the spectroscopy factors
used in the present paper can also be produced directly from
the deformed model for spin 1

2 ground-state nuclei [61–63].
In Ref. [60], E. Graca et al. introduced a deformed model
approach to calculating the elastic magnetic form factors of
odd-A nuclei. In this method, a relation of dependence of the
elastic magnetic form factors on the deformation parameter,

which bears much physical interest, are built such that the
spherical single-nucleon form factors can be naturally brought
down to agree with the experimental data by adjusting the
deformation parameter to reproduce the experimental nuclear
magnetic moments. With this method, the elastic magnetic
form factors of 29Si can be better reproduced. Therefore, we
expect that with this method more accurate elastic magnetic
form factors can be obtained for the considered isotopes 25−47P.

IV. SUMMARY

With the combination of the RMF model and the elastic
magnetic electron-scattering theory in the relativistic frame,
we have theoretically investigated the spins and parities of
the odd-A isotopes 25−47P and explored the feasibility of
experimentally studying the s-d level inversion and spins
and parities of 37−47P with elastic magnetic electron nucleus
scattering. The RMF model calculations show that for the
isotopes 27−35P, whose spins and parities have been determined
by experiments, the results given by the NL-SH, TM2, and
NL3 parameters all agree with the experimental ones [1]. For
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37−47P, whose spins and parities have not been determined, the
RMF model results show that the order of the 2s1/2 and 1d3/2

single proton levels may be inverted by the neutron excess
and, consequently, two possible spin-parity values 1

2
+

and
3
2

+
are obtained with the three parameter sets. For 37,39P, the

results may be either 1
2

+
, which agrees with those given by

the NUBASE2012 data table, or 3
2

+
; for 41−45P, the results are

3
2

+
, which differs from those given by NUBASE2012; for 47P

the results are 3
2

+
, the same as that given by NUBASE2012.

The calculations with the elastic magnetic electron-scattering
theory show that the form factors of 37−47P between the two
different states of motion of the single valence proton, 2s1/2

and 1d3/2, significantly differ. The results imply that elastic
magnetic electron scattering can be a possible method for
experimentally probing the possible s-d level inversion and
the spins and parities of 37−47P. The results can also be used for
testing the validity of the RMF model for describing unstable
nuclei.

We also made a discussion on the contributions of the upper
components and lower components of the single nucleon-wave
functions and that of the crossed term. It was found that the
contributions of the lower components alone can be neglected;
nevertheless, the importance of the lower components cannot
be underestimated. The lower components may undergo an

enhancement in elastic magnetic electron-nucleus scattering,
and in this case, the contribution of the crossed term to the form
factors can be larger than that of the upper components. This
shows that the lower components of the Dirac four-spinors
play an important role in elastic magnetic electron-nucleus
scattering. The result agrees with and supports the conclusion
given in the literature [58,59].

In addition, the isotopic shifts of the elastic magnetic form
factors and the changes of the form factors for a fixed orbital
of the same nucleus obtained with different parameter sets
(NL-SH, TM2, and NL3) were also discussed. It was found
that the isotopic shifts of the elastic magnetic form factors
are mainly out of the change of the ρ field with the increase
of neutron number and that the changes of the form factors
obtained with different parameter sets are mainly due to the
change of the σ and ω fields.
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