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We study the effects of density-dependent electromagnetic, axial, and weak vector form factors on the inclusive
(e,e′) reaction and the charged-current neutrino-nucleus scattering in the quasi-elastic region within the framework
of a relativistic single-particle model. The density-dependent form factors obtained from a quark-meson coupling
model are applied into the (e,e′) reaction and the neutrino-nucleus scattering via charged current. The effects
of the density-dependent form factors increase the (e,e′) cross sections by a few percent. However, the effects
may reduce the differential cross sections up to 20% (60%) at ρ = 1.0ρ0 (2.0ρ0) for the antineutrino scattering
and also reduce the cross section up to 20% (30%) at ρ = 1.0ρ0 (2.0ρ0) for the neutrino scattering around the
peak positions, where the normal density is ρ0 ∼ 0.15 fm−3. For the density of finite nuclei such as 12C, 40Ca,
and 208Pb as 0.6, 0.7, and 1.0 of ρ0, the in-medium effects are 20% to 30%, even in the antineutrino case.
Our theoretical double-differential and total cross sections are compared with the recent MiniBooNE data for
12C(νμ,μ−) scattering.
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Since the “EMC” effect [1] was first discovered, the
possible medium modifications of nucleon form factors have
been studied for over thirty years. During the last twenty
years, two different theoretical models have appeared to
predict the modifications of the electric and magnetic form
factors of nucleons in a nuclear medium. These are the
quark-meson coupling (QMC) model generated by Thomas
and collaborators [2], and the cloudy bag model (CBM) used
by Cheon and Jeong [3]. In nuclear media, both models tend
to show a more rapid falloff with four-momentum transfer
squared (Q2) for the electric form factor GE than the free-space
value.

An experiment at the Thomas Jefferson National Accel-
erator Facility JLab [4] obtained the ratio of GE/GM for
protons by measuring Pt and Pl , which are the transverse
and the longitudinal recoil proton polarization, respectively, in
�ep→e �p scattering at high Q2 (0.5–3.5 GeV/c2). Subsequent
experiments 4He(�e,e′ �p )3H at the Mainz Microtron (MAMI)
at Q2 = 0.4 GeV/c2 [5] and JLab [6,7] at 0.5–3.5 GeV/c2

investigated the polarization transfer reaction and extracted
the ratio of the polarization transfer ratio (P ′

x/P
′
z) for 4He over

the same ratio for 1H. Since the polarization transfer ratio is
proportional to GE/GM , medium effects might change the
value of the ratio for a proton in 4He as compared to a free
proton.

As for theoretical calculations, Kim and Cheoun [8]
investigated the roles of the anomalous magnetic moment
in a nuclear medium within the CBM model and found no
explanation of a possible longitudinal suppression for inclusive
(e,e′) reaction from 40Ca and 208Pb at lower electron energy.
To investigate the medium effects of the nucleon electric

and magnetic (EM) form factors in the nucleus, Kim and
Wright [9] calculated the quasi-elastic electron scattering
and found no discernible evidence for the modification of
the nucleon form factors from their free-space values for
the inclusive (e,e′) reactions. Cloet et al. [10] addressed, in
the 4He(�e,e′ �n)3He reaction, that the in-medium change of the
GE/GM form-factor ratio for a bound neutron at small values
of momentum transfer, Q2, is dominated by the change in the
electric-charge radius

On the other hand, the Adelaide group [11] calculated
the weak form factors with density-dependence in the QMC
model. This model successfully described various properties
of hadrons in a nuclear medium, finite nuclei [12], and
hypernuclei [13]. In particular, the authors of Ref. [12] found
a simple scaling relationship for the change of the hadron
masses, which was described in terms of the number of
nonstrange quarks in a hadron and the value of the scalar
mean field in a nucleus.

In our previous papers [14], we study the effects of
density-dependent form factors on the neutrino reaction via
charged current (CC) and neutral current (NC) within the
framework of the quasiparticle random phase approximation
(QRPA). Neutrino-reaction cross sections in a nuclear medium
with normal density ρ0 can be reduced by about 5% maximally,
but antineutrino-reaction cross sections are largely decreased
in the nuclear medium by around 30% because of different
helicities. But these calculations were performed for neutrino
reactions at Eν(ν̄) � 80 MeV.

Recently, since the first measurement of 12C(νμ,μ−) scat-
tering at MiniBooNE [15], several theoretical works have
appeared [16–18]. Nieves et al. [16] calculated the double
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cross section by including multinucleon contributions and then
deduced the increase of the axial mass associated with the
concept of underestimated neutrino flux. To explain the Mini-
BooNE data, Meucci et al. [17] obtained a good description of
the total cross section by using the relativistic Green’s function
method. Ankowski [18] calculated 12C(νμ,μ−) scattering with
the axial mass 1.23 GeV and underestimated the MiniBooNE
data by 20%, but overestimated the data by 15% with an axial
mass of 1.39 GeV.

In the present work, we investigate the in-medium ef-
fects by the density-dependent weak form factors by ex-
amining the inclusive (e,e′) reaction and the inclusive CC
neutrino(antineutrino)-nucleus [ν(ν̄)–A] scattering from 12C,
40Ca, and 208Pb. We use a relativistic single-particle model in
the quasi-elastic region. The bound nucleon wave functions
are solutions to the Dirac equation in the presence of
the strong scalar and vector potentials of the σ -ω model
[19]. The wave functions of the nucleons knocked out are
generated by the same potential as for the bound nucleons,
which is called the relativistic mean field (RMF). This RMF
model has been widely used to calculate the electron- and
neutrino-nucleus scattering [20]. This RMF model guarantees
current conservation and gauge invariance and provides good
agreement with the Bates (e,e′) data by approximating the
Coulomb distortion for incoming and outgoing electrons [21].
In particular, in order to include the Coulomb distortion of the
outgoing leptons, we use the approach of our previous work
[22]. Our results are compared with double-differential and
total-cross-section data measured by MiniBooNE [15].

We choose a laboratory frame where the target nucleus
is seated at the origin of the coordinate system. Four-
momenta of incident and outgoing ν(ν̄) are labeled p

μ
i =

(Ei,pi), p
μ
f = (Ef ,pf ). p

μ
A, p

μ
A−1, and pμ represent the

four-momenta of the target nucleus, residual nucleus, and final
nucleon, respectively. The differential cross section is given
by

dσ

dTN

= 4π2 MNMA−1

(2π )3MA

∫
sin θldθl

∫
sin θNdθNpf −1

rec σW
M

× [vLRL + vT RT + hv′
T R′

T ], (1)

where MN is the nucleon mass, θl denotes the scattering angle
of the lepton, and h = −1 (h = +1) corresponds to the helicity
of the incident ν (ν̄). θN and TN represent the polar angle and
the kinetic energy of the knocked-out nucleons, respectively.
Detailed forms for the kinematical factor σW

M , recoil factor frec,
kinematical coefficients v, and the corresponding response
functions R are given in our previous paper [23].

For a free nucleon, the weak current operator Ĵ μ for the
CC reaction comprises the vector FV

i (Q2), the axial GA(Q2)
vector, and the pseudoscalar GP (Q2) form factors given by

Ĵ μ = FV
1 (Q2)γ μ + FV

2 (Q2)
i

2MN

σμνqν + GCC
A (Q2)γ μγ 5

+ GP (Q2)

2M
qμγ 5. (2)

By the conservation of vector current hypothesis, the vector
form factors for the CC reaction are expressed as

F
V,p(n)(CC)
i = F

p(n)
i (Q2) − F

n(p)
i (Q2). (3)

The axial form factor is usually given by

GCC
A (Q2) = −gA/

(
1 + Q2/M2

A

)2
, (4)

where gA = 1.262 and MA = 1.032 GeV represent the axial
coupling constant and the axial cutoff mass, respectively.
The induced pseudoscalar form factor is parametrized by the
Goldberger–Treimann relation:

Gp(Q2) = 2MN

Q2 + mπ
2
GCC

A (Q2), (5)

where mπ is the pion mass.
In this work, we put the density-dependence of the weak

form factors, R(FV
1,2) = FV

1,2(ρ,Q2)/FV
1,2(ρ = 0,Q2), which is

generated by the QMC model [11]. The constituent quark
mass in a hadron is generated by the quark condensate 〈q̄q〉
in vacuum, but the mass (or 〈q̄q〉) in nuclear matter may be
reduced from the value in vacuum because of the condensed
scalar (σ ) field depending on the nuclear density ρ. The
decrease of the quark mass then leads to the variation of
baryon internal structures at the quark level. Such an effect
is considered self-consistently in the QMC model. Detailed
features of the form factors and their modifications in nuclear
matter used in this study are found in Ref. [14].

As shown in Fig. 1, we calculate the inclusive (e,e′) reaction
in terms of the energy transfer ω before we calculate the
ν(ν̄)-A scattering by comparing with the experimental data
from the Stanford Linear Accelerator Center (SLAC) [24].
Solid (red) curves are the results for no density dependence,
dashed (black) curves are for ρ = 0.5ρ0, dotted (blue) curves
are for ρ = 1.0ρ0, dash-dotted (pink) curves are for ρ = 1.5ρ0,
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FIG. 1. (Color online) The differential cross sections of the inclu-
sive (e,e′) reaction in terms of the energy transfer ω for the incident
electron energy 2.02 GeV and scattering angle θ = 15◦ from 12C.
Solid (red) curves are the results for no density dependence, dashed
(black) curves are for ρ = 0.5ρ0, dotted (blue) curves are for ρ = ρ0,
dash-dotted (pink) curves are for ρ = 1.5ρ0, dash-dot-dotted (sky
blue) curves are for ρ = 2.0ρ0. The experimental data were measured
at the Stanford Linear Accelerator Center [24].
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FIG. 2. (Color online) The differential cross sections of the neutrino scattering for the incident neutrino energies 0.5 and 1.5 GeV from
12C, 40Ca, and 208Pb. The explanations of the curves are the same as for Fig. 1. The upper six panels are the results for the neutrino and the
lower six are for the antineutrino.

and dash-dot-dotted (sky-blue) curves are for ρ = 2.0ρ0.
The differences between each curve are 1% ∼ 2% and the
effect of the density enhances the cross section with higher
densities. This result shows reverse behavior of the nuclear
medium effect by changing the nucleon form factor in our
previous work [9]. Note that the ρ0 ∼ 0.15 fm−3 is the normal
density. But, if we take 12C density as ρ = 0.6ρo, this density
dependence is not discernible in the electron scattering.

In Fig. 2, we calculate the differential cross sections
for the ν(ν̄)-A scattering in terms of the kinetic energy
of the knocked-out nucleons from 12C, 40Ca, and 208Pb at
incident-neutrino energies of 0.5 and 1.5 GeV. Solid (red)
curves are the results for no density dependence, dashed
(black) curves are for ρ = 0.5ρ0, dotted (blue) curves are
for ρ = 1.0ρ0, dash-dotted (pink) curves are for ρ = 1.5ρ0,

dash-dot-dotted (sky-blue) curves are for ρ = 2.0ρ0. The
upper six panels are the results for ν and the lower six are
for ν̄.

For the case of ν, around the peak positions, the effects of
the density-dependent form factors reduce the cross sections
by about 10% for ρ = 0.5ρ0, 20% for ρ = 1.0ρ0, 30% for ρ =
1.5ρ0, and 30% for ρ = 2.0ρ0. The effects do not depend on
the incident ν energies and nuclei. For the case of the ν̄, around
the peak positions, the effects of the density dependence reduce
the cross sections by about 20% for ρ = 0.5ρ0, 35% for ρ =
1.0ρ0, 50% for ρ = 1.5ρ0, and 60% for ρ = 2.0ρ0. The effect
for ν̄ is greater than that for ν.

The main reason why we have density effects larger than
those in the electron scattering comes from the axial form
factor peculiar to the ν scattering. As shown in Fig. 1 in
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FIG. 3. (Color online) The double cross sections of the neutrino
scattering in terms of the muon angle (left panel) and the muon
kinetic energy (right panel). The experimental data were measured
by MiniBooNE [15].

the second paper of Ref. [14], the axial form factor shows
stronger momentum and density dependence than those of
vector form factors, if we exploit the QMC form factor. For
example, around a density of ρ = 1.0ρ0, about 15% is changed
for the axial form factor while about 10% change happens for
EM from factors.

In Fig. 3, we calculatethe double-differential cross sections
as a function of the outgoing muon angle (left panel) and muon
kinetic energy (right panel). The explanations of the curves are
the same as for Fig. 2. The effects of the density dependence
are the same as for the previous results in Fig. 2. For the
case of no density dependence, our results are smaller than
the MinBooNE data [15] by about 20% around the peak.

In Fig. 4(a), we calculate the total cross sections of Eq. (1)
for 12C(νμ,μ−) scattering in terms of the incident ν energies
and compare our results with the experimental data from
MinBooNE [15]. We use the standard axial mass MA = 1.032
GeV. The in-medium effects by the density dependent form
factors reduce the total cross sections by about 10% for
ρ = 0.5ρ0, 15% for ρ = ρ0, 20% for ρ = 1.5ρ0, and 18%
for ρ = 2.0ρ0. The red line, which is the RMF calculation by
the form factors in free space, is already too small by about
40% by comparing with the experimental data. Discussions on
the final-state interaction by other approaches are detailed in
other papers. If we consider the nuclear density of 12C as about

0.6ρ0, the discrepancy becomes about 60% by comparing with
the data.

To reduce this discrepancy, we use the different value of
the axial mass MA = 1.39 GeV fit to another MiniBooNE
experiment [25] in Fig. 4(b). The experiment is for the ν elastic
scattering from CH2 via NC. The effect of the different axial
mass MA enhances the total cross sections about 32%; that
is, the effect of MA is about 35%. The effect of the density
dependence is the same as in the previous figure. But our results
are still below the experimental data. However, the discrepancy
becomes larger by about 15% if the density dependencies of
the form factors are taken into account as ρ = ρ0.

In this work, we investigate the density dependence on
the differential cross sections for the (e,e′) reaction and the
CC reaction of A(νμ,μ−) and A(ν̄μ,μ+) scattering within
the framework of a relativistic single-particle model. The
effect of the density dependence enhances the (e,e′) cross
section by about a few percent and reduces the ν-A cross
sections around peak positions by about 10% for ρ = 0.5ρ0

but the effect for the ν̄-A scattering reduces up to 20%. The
in-medium effects are 20% to 30% even for the case of ν̄

if one considers the density of finite nuclei, 12C, 40Ca, and
208Pb as 0.6ρ0, 0.7ρ0, or 1.0ρ0, respectively. Our theoretical
double-differential cross sections with free-space values are
smaller than the experimental data by about 20%. The effects
of the density dependence reduces the double-differential cross
sections. The effect on the total cross sections is estimated to
reduce them by about 15%, irrespective of axial mass MA.
Since our results for MA = 1.39 GeV are still below the
experimental data by 15%, even if the in-medium effect is
taken into account, we need to improve our nuclear model
such as the nuclear model of the bound and the final states.

In nuclear matter, the chiral symmetry is believed to be
partially restored, which implies that the quark mass is reduced
depending on the density. In the QMC model used in this work,
the quark mass is also reduced by the in-medium attractive
scalar force due to the surrounding nucleons because it is
constructed with the chiral symmetry. This is the reason why
gA is decreased in nuclear matter or in a nucleon embedded
in a nucleus, as shown in Fig. 1 of our previous papers [14].
This reduction is the main reason leading to the reduction
of relevant cross sections. In fact, this approach is usually
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FIG. 4. (Color online) The total cross sections of the neutrino scattering in terms of the incident energies with (a) MA = 1.032 GeV and
(b) MA = 1.39 GeV. The experimental data are measured by MiniBooNE [15].
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adopted for infinite nuclear matter, such as neutron stars. Of
course, nobody can be sure of the validity of this approach
for nuclear matter because all related coupling constants are
determined to reproduce static properties of finite nuclei at
ρ = ρ0. One of the motivations of this work is to test this
approach for neutrino scattering in the quasi-elastic region,

although disagreement with MiniBooNE data becomes more
serious.
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