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Evaluation of the curvature-correction term from the equation of state of nuclear matter
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Based on the nuclear equation of state, the curvature correction term to the surface tension coefficient is
calculated. Tolman’s δ correction is shown to be sensitive to the Skyrme force parametrization. The temperature
dependence of the Tolman length, important in heavy ion collision experiments, is derived. In the present approach
the curvature term is related to the bulk properties of the nuclear matter through the equation of state. The results
are compared with the existing theoretical calculations based on the Gibbs-Tolman formalism and with the
theoretical predictions concerning its dependence on the interparticle distance.
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During recent decades, rapid progress has been achieved in
macroscopic description of the nuclear matter [1,2]. A number
of papers devoted to the thermodynamics of small systems or
hydrodynamics of nuclear matter appeared [3–5]. Among the
macroscopic models used in nuclear physics, theories based on
the droplet model of nuclei [6] play a special role. They make
possible the description of the average properties of a saturated
system, such as a nucleus consisting of two components
(neutrons and protons), with account for the boundary effects
and the presence of the diffuse layer. For nuclei with mass
number A, in studies of their surface properties, the account
for curvature effects is important, which means the inclusion
of additional terms proportional to A

1
3 in an expansion (e.g.,

Eq. (2.13) in Ref. [6]) concerning the nuclear properties in
terms of the fundamental dimensionless ratio, i.e., the ratio of
the interparticle spacing r0 to the nuclear radius R, r0

R
= A− 1

3 .
Corrections due to curvature may play an important role

when studying light nuclei or processes where surface terms
are important. Particularly important are those corrections in
the interpretation of multifragmentation experiments [5,7],
in which light nuclei necessarily appear. The exponential
dependence of the yield of fragments on the surface tension
makes this process sensitive to the curvature corrections [8].
Other important phenomena that may be affected by the
changes in the surface tension due to curvature corrections
are the following:

(1) the appearance of the neck region in the fission processes
and

(2) the hydrodynamic instability of the structures formed in
heavy ion experiments, governed by surface effects [9].

Quite a number of papers dedicated to studies of the surface
energy and the properties of the surfaces in nuclear matter
[9–11] appeared. Furthermore, the dependence of the surface
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tension (and surface energy) on the surface curvature and
studies of its influence on different physical properties was also
studied by various groups of authors [12,13]. Still, for decades
it remains a controversial issue in mesoscopic thermodynamics
[14–16].

Let us first recall that the thermodynamic description of the
curvature correction, originating from the difference between
the equimolar surface and the surface of tension [17,18],
dates back to the 1940s. The Tolman length δ was originally
introduced in Ref. [19] to describe the curvature dependence
of the surface tension of a small liquid droplet. It was defined
as a correction term in the surface tension σ of the liquid-vapor
droplet in the isothermal case:

σ (R) = σ∞

(
1 − 2δ

R
+ · · ·

)
, (1)

where R is the droplet radius, equal to the radius of the
surface tension [17,18], and σ∞ is the surface tension of
the planar interface. Equation (1) originates from the Gibbs-
Tolman-Kenig-Buff’s thermodynamic equation and from the
assumption that δ is independent of R for δ � R [20]. This
physics should work not only for liquid droplets but also
for any system with curved interface of a non-negligible
boundary layer [14]. This situation corresponds to nuclei and
nuclear systems with a finite diffuse layer [1]. The value of
the Tolman length has the same order of magnitude as the
average interparticle distance r0 [21,22], typical of a nuclear
systems r0 ∼ 0.7 fm at normal density ρ ∼ 0.17 fm−3. Hence,
mathematically the term 2δ

R
in Eq. (1) becomes important

for the systems with R < 14 fm, i.e., important for nuclear
systems with R < 8 fm. The above estimations show that this
approximation works well in a wide range of radii and can play
an important role in all known nuclei and structures formed in
heavy ion collision experiments.

Within the above approximation, the dependence of the
surface tension on the curvature of the interface is defined only
by the Tolman length δ. Therefore, the knowledge (evaluation)
of δ is quite important. However, the sign of the known
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FIG. 1. Schematic picture of the gedanken experiment.

(calculated) values of the Tolman length are not unique: Both
negative and positive values can be found in the literature
[15,17,20]. At the same time, there are no reliable experimental
methods to evaluate it. This paper aims to introduce a method
allowing the evaluation of δ from the experimental data [23].

In studying the curvature-correction term for the nuclear
matter one should keep in mind the connection between the
surface and bulk properties of the matter [6,12]. As shown in
the droplet model, the coefficients in the term proportional
to A

1
3 in the expansion of nuclear properties in terms of

the fundamental dimensionless ratio A− 1
3 are connected to

the bulk properties of the nuclear matter, described by terms
proportional to A and A

2
3 . This justifies our approach to the

evaluation of the curvature correction (Tolman’s length δ) from
the equation of state (EOS) of nuclear matter.

Let us consider infinite nuclear matter (P0, T = const.) with
the chosen spherical volume V0 = 4

3πR0
3 in it, consisting of

A nucleons. Next, one may perform the following gedanken
experiment. When all nucleons external to the chosen volume
are removed, one gets a “nuclear droplet” that, due to surface
tension, shrinks to the volume V = 4

3πR3, where R is the final
radius of the chosen volume (Fig. 1).

This droplet remains in equilibrium in one of the following
regimes:

(i) The time scale of the particles evaporation is big enough
and the evaporated particles are removed from the surface
(P (V,T ) = 0).

(ii) The “nuclear liquid” is surrounded by the saturated
“nuclear vapor” with P liq = P vap and chemical potential
μliq = μvap. The superscripts liq and vap denote liquid and
vapor phases, respectively.

Another gedanken experiment is to consider a big nucleus
V0

big = 2V0 = 2( 4
3πR0

3) in equilibrium, consisting of 2A
nucleons, subsequently divided in two equal parts V each
containing A nucleons. Due to surface effects the smaller
nuclei will shrink, so that 2V = 2( 4

3πR3) < V0
big.

Next we introduce the parameter ξ = R0 − R > 0 (Fig. 1),
assumed to be independent of R. Let us consider the EOS the
same as the form in Ref. [23]:

�P = P − P0 = f

(
V0 − V

V0

)
, (2)

where P0, V0 and P , V are the initial and final points of
the system evolution along the coexistence curve. Within our
gedanken experiment, a small parameter ξ

R
can be introduced

and, therefore, the function f in Eq. (2) with the argument

V0−V
V0

= 1 − [1 + ξ
R

]−3 can be expanded in the series:

�P = f (0) + ∂f (0)

∂
(

1
R

) 1

R
+ 1

2

∂2f (0)

∂
(

1
R

)2

(
1

R

)2

+ · · ·

= f (0) + 3ḟ (0)

(
ξ

R

)
+1

2
(9f̈ (0) −12ḟ (0))

(
ξ

R

)2

+ · · ·.

(3)

On the other hand, the excess pressure due to the surface
tension in the left-hand side of Eq. (3) can be found from the
Laplace equation [24]:

�P = 2σ (R)

R
, (4)

By substituting σ (R) from Eq. (1) to Eq. (4), restricting ourself
by the second order in the expansion (3), and equating the
coefficients of the same order of 1

R
, one gets from Eqs. (3) and

(4)

δ =
[

4ḟ (0) − 3f̈ (0)

6(ḟ (0))2

]
σ∞. (5)

To get numerical results for the Tolman length from Eq. (5), it
is necessary to chose the appropriate EOS of nuclear matter.
In the present work we adopt the EOS of nuclear matter of
low-temperature and high-density limit where λ3ρ � 1, that
is, when the average de Broglie thermal wavelength λ is larger
than the average interparticle separation ρ− 1

3 in a form [25]

P (ρq,T )

=
∑

q

[
5

3
ε∗

kq(ρq,T ) − εkq(ρq,T )

]

+ t0

2

(
1 + x0

2

)
ρ2 + t3

12

(
1 + x3

2

)
(α + 1)ρα+2

− t0

2

(
x0 + 1

2

) ∑
q

ρq
2 − t3

12

(
1

2
+ x3

)
(α + 1)ρα

∑
q

ρq
2

+C(β + 1)ρβρp
2 + Cs(η − 1)ρη, (6)

with

εkq = m∗
q

m

1

β

2g√
π

λq
−3F 3

2
(ηq),

ε∗
kq = 1

β

2g√
π

λq
−3F 3

2
(ηq),

ηq(ρq,T ) = F 1
2

−1

(√
π

2g
λq

3ρq

)
, (7)

Cρβ = 4π

5
e2R2,

Csρ
η = 4πr0

2σ

V
1
3

ρ
2
3 ,

where m and m∗ are the mass and effective mass respectively,
T and ρ are the temperature and density, q is the proton or

neutron, F is the Fermi integral, λ =
√

2π�2

m∗T is the average
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de Broglie thermal wavelength, g = 2 is the spin degeneracy
factor, t0, t3, x0, x3 and α are the Skyrme force parameters,
β = 1

T
, and Cρβ and Csρ

η the approximate Coulomb and

surface effects for a finite uniform sphere of radius R = r0A
1
3

with total charge Z (Uc = 3
5

e2Z2

RV
). From Eqs. (5) and (6) for

the symmetric nuclear matter with the isospin-independent
effective mass in the case T = 0 at normal density ρ0, one
gets for δ:

δ = 2

3

1

ρ0
2

−33t0 − 160Wρ0
−1/3 + t3(1 + α)ρ0

α 1
12 (7(3α + 6) − 3(3α + 6)2)(

15t0 + 1
12 t3(1 + α)((3α + 6) − (3α + 6)2)

)2 σ∞, (8)

where

W = h2

10m

(
3

8πg

) 2
3
(

5 − 3m∗
m

m∗
m

)
. (9)

As a check of our approach, we have calculated the values
of the Tolman length δ for different effective interactions,
SLy6, SkM*, and SV-min (Table I) with the surface tension
of the planar interface at T = 0 set to σ∞ = 1.1 Mev/fm2

[26]. The obtained values appear to be negative for all chosen
parametrizations (Table II), which means that the surface of
tension is located closer to the liquid phase with respect
to the equimolar surface. Those results are consistent with
those obtained from the Gibbs-Tolman approach [16,29]. All
values derived in the present approach agree in sign with
those calculated in Refs. [16,29] from the Gibbs-Tolman
formalism applied to the charged Fermi-liquid droplets. As
to the absolute value, they are slightly higher but consistent
in the order of magnitude. Even though the authors of Refs.
[16,29] performed a detailed analysis of the positions of the
surface of tension and equimolar surface in the nuclei in order
to calculate the Tolman length; the result δ = −0.3703 fm
seem to underestimate the Tolman length, as it is smaller than
the internucleon distance r0 ∼ 0.7 fm.

As seen from Table II, the obtained value of δ in the case of
SkM∗ parametrization, introduced to account for the surface
properties of nuclear matter, is close to the distance between
the nucleons,

One can see from Table II that the suggested approach is
very sensitive to parametrization of the Skyrme force, and the
results may differ by more than a factor of two. In our opinion,
this discrepancy

TABLE I. Sets of Skyrme parameters and corresponding nuclear
properties used in the present paper [27,28]

Skyrme forces SkM* [27] SLy6 [27] SV-min [28]

K (MeV) 216.6 229.8 222.0
m ∗ /m 0.79 0.69 0.95
t0 (MeV fm3) −2645.0 −2479.50 −2112.248
x0 0.09 0.825 0.243 886
t3 (MeV fm3(1+α)) 15 595.0 13 673.0 13 988.567
x3 0.0 1.355 0.258 070
α 1/6 1/6 0.255 368

(i) may originate from the different sets of phenomenolog-
ical inputs used when calibrating the nuclear effective energy
functionals or

(ii) may be related to the same constant surface tension co-
efficient σ∞ used in calculations with all the parametrizations
when its value depends on the energy functional used.

Although this point requires further study, a brief analysis
of the observed difference is still possible. For example, the
chosen parametrizations represent three typical sets:

(i) SkM∗ is a representative of the group of Skyrme forces
developed to study the surface energy and fission barriers [30].
SkM∗ was constructed by using the fission barriers in 208Pb
and surface coefficients asurf as phenomenological inputs. It
improves the description of surface effects and the high-
precision description of nuclear ground states considerably.
Therefore, it looks quite reasonable that the results for the
Tolman length obtained for that parametrization are very close
to the internuclear distance r0 ∼ 0.7 fm, in accordance with
the theoretical predictions of Refs. [21,22].

(ii) SLy6 is a parametrization particularly adapted to
neutron-rich matter and neutron stars [27,31] and it is not
surprising that the Tolman length δ evaluated in the present
paper for the symmetric matter is less consistent with the
theoretical predictions of its value as compared to the SkM∗
force. The reason why this force produces an overestimated
value may come from the bigger difference between the
neutron and proton distributions in the neutron-rich matter
as compared to symmetric nuclear matter and, therefore, from
the possible increase of the distance between the equimolar
surface and surface of tension.

(iii) As to the third, SV-min force, it is the most recent
parametrization that was constructed using a large set of
spherical nuclei as well as some detailed observables such
as neutron skin, isotope shifts, and superheavy elements [28].
The r.m.s. errors in the charge distribution form factor, radius,
and surface thickness for that force are very close to those
of the SkM∗ force [32]. That may suggest an explanation for
the similar deviation of the Tolman length from the theoretical
predictions for this two forces.

TABLE II. Tolman’s length δ for different Skyrme force
parametrizations and from Ref. [29] for the SkM* force

SkM* Sly6 SV-min Ref. [29]

Tolman length δ (fm) −0.8869 −1.5600 −0.5512 −0.3703
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FIG. 2. Temperature dependence of the Tolman length δ. Panels
(a), (b), and (c) show the nuclear matter with the parametrizations
SkM*, SLy6, and SV-min respectively. The initial values ρ0 corre-
spond to the equilibrium condition P (ρ0,T ) = 0. (d) The same for
the ordinary liquid Ar [23].

The suggested approach may provide realistic values for the
Tolman’s δ correction that can be used as a test for the validity
of each parametrization in treating the surface properties of
the nuclei.

The temperature dependence δ(T ) is shown in Fig. 2. One
can see that the correction term in nuclear matter [Figs. 2(a),
2(b), and 2(c)] increases with temperature for all studied
parametrizations of nuclear forces. All the curves far away
from the critical point can be approximated by the equation

δ(T ) = δ(0)(1 + aT b), (10)

where a and b are free parameters that slightly vary for
all forces. Any simple analytical approximation explaining
the physics of such a behavior is highly desirable. At the
same time, our semiqualitative picture corresponds to the data
for ordinary liquids [Fig. 2(d)] known in the literature [23]
and makes it important for heavy ion collision experiments,
where the yield of fragments is exponentially dependent on
the surface tension, and the nuclear matter is hot.

In this paper we have calculated the curvature correction
term in the surface tension from the nuclear equation of state
for the SLy6, SkM ∗ , and SV-min parametrizations. The
obtained results show the importance of that correction for
light nuclei.

To summarize, our study shows that the present approach
makes possible calculations of the Tolman length δ from a
simple thermodynamic equations. The obtained values are
consistent with the existing data and with the theoretical
predictions. We remind that the agreement improves if EOS
accounting for the surface effects (SkM* and SV-min) instead
of those adapted for neutron matter (e.g., SLy6) are used.
The temperature dependence δ(T ) for the nuclear matter
shows the same behavior as that of ordinary liquids. The
possibility of evaluating the temperature dependence of the
curvature correction term makes the suggested approach useful
in analyzing the results of heavy ion collision experiments and
in calculating yields of light fragments. The present approach,
based on a minimal set of assumptions, provides a simple and
reliable way to calculate the curvature correction term, and
it may be used to study the properties of light nuclei as well
as of complicated nuclear processes, sensitive to the surface
tension.
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