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Pulsar glitches: The crust may be enough
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Background: Pulsar glitches—the sudden spin-up in the rotational frequency of a neutron star—suggest the
existence of an angular-momentum reservoir confined to the inner crust of the neutron star. Large and regular
glitches observed in the Vela pulsar have originally constrained the fraction of the stellar moment of inertia that
must reside in the solid crust to about 1.4%. However, crustal entrainment—which until very recently has been
ignored—suggests that in order to account for the Vela glitches, the fraction of the moment of inertia residing
in the crust must increase significantly; to about 7–9 %. This indicates that the required angular momentum
reservoir may exceed that which is available in the crust.
Purpose: We explore the possibility that uncertainties in the equation of state provide enough flexibility for the
construction of models that predict a large crustal thickness and consequently a large crustal moment of inertia.
Methods: Moments of inertia—both total and crustal—are computed in the slow-rotation approximation using
a relativistic mean-field formalism to generate the equation of state of neutron-star matter.
Results: We compute the fractional moment of inertia of neutron stars of various masses using a representative
set of relativistic mean-field models. Given that analytic results suggest that the crustal moment of inertia is
sensitive to the transition pressure at the crust-core interface, we tune the parameters of the model to maximize
the transition pressure, while still providing an excellent description of nuclear observables. In this manner we
are able to obtain fractional moments of inertia as large as 7% for neutron stars with masses below 1.6 solar
masses.
Conclusions: We find that uncertainties in the equation of state of neutron-rich matter are large enough to
accommodate theoretical models that predict large crustal moments of inertia. In particular, we find that if the
neutron-skin thickness of 208Pb falls within the (0.20–0.26) fm range, large enough transition pressures can
be generated to explain the large Vela glitches—without invoking an additional angular-momentum reservoir
beyond that confined to the solid crust. Our results suggest that the crust may be enough.

DOI: 10.1103/PhysRevC.90.015803 PACS number(s): 97.60.Jd, 26.60.Kp, 26.60.Gj, 21.65.Ef

I. INTRODUCTION

Rotation-powered pulsars tend to spin down slowly and
steadily due to the emission of magnetic dipole radiation,
making pulsars one of nature’s most accurate clocks. For
example, the Crab pulsar—with a rotational period of P ≈
33 ms—spins down at a rate of Ṗ /P ≈ 1.3 × 10−11 s−1 or
about 13 μs per year. However, in spite of this remarkable
regularity, young pulsars often display “glitches” which
represent a sudden and abrupt spin-up in their rotational
frequency. Through high-precision pulsar timing, an extensive
glitch catalog is now available which, at the time of this writing,
has recorded a total of 439 glitches from 150 different pulsars
[1,2]. Moreover, pulsar timing has revealed that glitches are
recurrent—with some of the more active glitchers being the
Vela with 17, the Crab with 25, and PSR B1737-30 with
33 [2].

The glitch mechanism is intimately related to the formation
of superfluid vortices in the inner crust of the rotating neutron
star [see Refs. 3,4, and references contained therein]. Given

*jpiekarewicz@fsu.edu
†farrooh.fattoyev@tamuc.edu
‡horowit@indiana.edu

that many pulsars rotate extremely fast, the areal density of
superfluid vortices may be extremely high. For example, in
the case of the Crab pulsar the vortex density reaches nv =
4mn/�P ∼ 2 × 105 cm−2, where mn is the neutron mass. The
vortex density is so high that, although the bulk superfluid
does not rotate, the superfluid as a whole appears to be rotating
collectively as a “rigid” body [4]. However, as the pulsar slows
down by the emission of magnetic dipole radiation, the initial
distribution of vortices—which are believed to be pinned to a
crystal lattice of neutron-rich nuclei—falls out of equilibrium.
This induces a differential rotation between the slower neutron
star and the faster superfluid vortices. When the differential lag
is too large, then suddenly and abruptly some fraction of the
vortices unpin, migrate outwards, and transfer their angular
momentum to the solid crust—and to any stellar component
strongly coupled to it, such as the liquid core [5]. This sudden
(typically in less than a day) transfer of angular momentum
is detected as a pulsar spin-up or a glitch. As a result of the
glitch, the density of vortices diminishes from its pre-glitch
value leaving the superfluid in close equilibrium with the solid
crust. As the star continues to slow down over a period of days
to years, stresses between the crust and the superfluid start to
build up again until eventually more vortices unpin, transfer
their angular momentum to the solid crust, and ultimately
generate another glitch. The recurrence of glitches and the
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ensuing recovery is therefore a manifestation of a “sluggish”
solid crust falling periodically out of equilibrium with the
larger distribution of superfluid vortices.

Glitches from the Vela pulsar (B0833-45) were first
observed in 1969 and have been continuously recorded for
more than 40 years. So far a total of 17 glitches have
been documented with individual spin-up rates of the order
��/� = 10−6; note that although more glitches have been
recorded for the Crab pulsar, the typical spin-up rate is three
orders of magnitude smaller [1,2]. The high recurrence rate
and large magnitude of the Vela glitches have been used to
constrain the underlying equation of state (EOS) of neutron-
star matter in terms of three measured quantities: its spin
frequency � = 70.338 060 018 s−1, its average spin-down rate
�̇ = −9.8432 × 10−11, and its glitch activity parameter Ag—
defined in terms of the cumulative spin-up rate

∑
n ��n/� =

2.9760 × 10−5 as follows [6,7]:

Ag = 1

t

N∑
n=1

��n

�
≈ 2.277 × 10−14 s−1, (1)

where t = 41.421 years is the total time elapsed between the
first and the last (N = 17) glitches. Thus, in the standard
model of pulsar glitches, the ratio of the moment of inertia
of the superfluid component driving the glitches Is to the
moment of inertia of the solid crust Ic—plus any portion of
the star strongly coupled to it—must satisfy the following
inequality [6]:

Is

Ic

� Ag

�

|�̇| ≈ 0.016. (2)

That is, long term timing observations of the Vela pulsar
suggest that in order to account for its glitch activity, at
least 1.6% of the stellar moment of inertia must reside in
the superfluid reservoir [6–8]. Moreover, by adopting two
plausible assumptions, one may rewrite the above limit in
such a way as to provide a more meaningful constraint on
the EOS. First, in the two-component model of Baym et al.
[9], it is assumed that the component of the moment of inertia
that rotates at the observed stellar frequency consists of the
solid outer crust plus the liquid interior; then, Ic = I − Is ≈ I ,
where I is the total stellar moment of inertia. Second, given that
the inner crust is both thicker and denser than the outer crust,
the crustal moment of inertia may be approximated as Icrust =
Iouter + Iinner ≈ Iouter + Is ≈ Is . Thus, one may express the
above constraint as follows:

Is

Ic

� Icrust

I
� 0.016. (3)

This expression is particularly convenient as both Icrust and I
may be readily evaluated in the slow-rotation approximation
(see Sec.II). Indeed, most of the formalism relies on the
solution of the Tolman-Oppenheimer-Volkoff equation whose
only required input is the EOS of neutron-star matter. Further,
whereas the total moment of inertia depends sensitively on
the poorly constrained high-density component of the EOS,
the crustal component Icrust is sensitive to physics that may
be probed in the laboratory. In fact, analytic expressions
for Icrust already exist that are both illuminating and highly

accurate [see Refs. 6,10,11, and references contained therein].
In particular, the crustal moment of inertia is highly sensitive to
physical observables—particularly the transition pressure—at
the crust-core interface.

Recently, however, the standard glitch mechanism has
been called into question [7,12]. It has been argued that
crustal entrainment—the non-dissipative elastic scattering of
unbound neutrons by the crystal lattice—effectively reduces
the angular-momentum reservoir. That is, entrainment effects
reduce the density of superfluid neutrons that could eventually
become the source of the superfluid vortices. The impact
from crustal entrainment may be encoded in an effective
neutron mass m�

n ≡ mnn
f
n/nc

n, that reflects the ratio of unbound
neutrons nf

n (i.e., neutrons not bound to the nuclear lattice) to
those nc

n neutrons that are effectively free (i.e., not entrained)
[7,13]. As a result, crustal entrainment modifies the constraint
given in Eq. (3) to

Icrust

I
� 0.016

( 〈m�
n〉

mn

)
� 0.07, (4)

where in the last expression we have adopted 〈m�
n〉/mn �

4.3 as suggested in Ref. [12]. Note that the amount of
crustal entrainment may be uncertain, so more sophisticated
calculations could yield a different constraint for the fractional
moment of inertia. Indeed, band-structure calculations [14]
seem to suggest that the crustal moment of inertia may
be even larger than 7%. Hence, in an effort to estimate
the uncertainty associated with crustal entrainment, we will
assume that the fraction of the crustal moment of inertia lies
between a lower limit of 1.6% [Eq. (3)] and an upper limit
consisting of an uncertainty band between 7% [12] and 9.4%
[7,15]. Given the significant impact that crustal entrainment
may have in constraining Icrust/I , it has been suggested that
the crust is not enough, so that the core superfluid must
also participate in glitches [12]. However, before completely
dismissing the standard glitch mechanism in favor of a more
exotic explanation, we explore the conservative alternative that
uncertainties in the EOS (which are large) could still allow the
inner crust to account—by itself—for a large enough fraction
of the moment of inertia to explain the large Vela glitches.

Uncertainties in the EOS are known to significantly affect
the transition between the liquid interior and the solid crust.
Particularly relevant to the present discussion is the poorly-
known density dependence of the symmetry energy S(ρ). The
symmetry energy represents the energy required to convert
symmetric nuclear matter into pure neutron matter at a fixed
baryon density ρ. Although the symmetry energy at saturation
density is fairly well determined, the value of its slope L
remains highly uncertain. And it is precisely the slope of the
symmetry energy that controls the properties of neutron-rich
matter at the crust-core transition region [16]. Indeed, the
transition density and proton fraction at the crust-core interface
are both linearly anticorrelated to L. However, in stark contrast,
the transition pressure does not vary monotonically with
L [11,17]. Note that such lack of correlation between the
transition pressure and L—which appears to contradict some
recent studies [18–22]—emerges only as one systematically
explores a wide range of models. Given that the crustal
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moment of inertia grows with an increasing transition pressure,
we want to explore the possibility of generating realistic
EOS that predict large transition pressures. As we shall
demonstrate, we find a class of relativistic mean-field models
with moderate values of L that generate fractional moments
of inertia as large as Icrust/I ≈ 0.09 for a canonical 1.4M�
neutron star. By using neutron star observations, the authors
of Ref. [23] have recently and independently reached a similar
conclusion. Moreover, we argue that these predictions may
be directly tested in the laboratory. Although L can not
be directly measured in the laboratory, it is known to be
strongly correlated to the neutron-skin thickness of 208Pb
[24–27], a fundamental nuclear-structure observable that has
been measured [28,29]—and will be measured with increasing
accuracy—at the Jefferson Laboratory [30]. In summary, it is
the main goal of the present work to explore whether present
uncertainties in the EOS are large enough to accommodate
realistic models that could account for large pulsar glitches—
even in the presence of crustal entrainment.

We have organized the paper as follows. In Sec. II we review
the essential details required to compute the stellar moment of
inertia and the class of equations of state that will be used. In
particular, special attention is paid to the crustal component
of the moment of inertia and its sensitivity to the transition
pressure at the crust-core interface. In Sec. III we provide
predictions for the fraction of the moment of inertia residing
in the crust. We show that although the transition pressure is
sensitive to the slope of the symmetry energy, its behavior is
not monotonic. This suggests a range of values for L—that
are neither too small nor too large—that provide the thickest
crust and consequently the largest fractional moment of inertia.
Finally, we offer our conclusions in Sec. IV.

II. FORMALISM

In this section we provide a brief review of the formalism
required to compute the moment of inertia of a neutron star.
First, we outline the procedure required to compute the stellar
moment of inertia in the slow-rotation approximation. The
enormous advantage of this approach is that most of what
is required is a solution of the Tolman-Oppenheimer-Volkoff
(TOV) equations in the limit of spherical symmetry. Given that
the neutron-star matter equation of state is the sole ingredient
required to solve the TOV equations, we devote a second
subsection to review the main physical assumptions underlying
our models.

A. Moment of inertia of a neutron star

In the slow-rotation approximation pioneered by Hartle and
Thorne [31,32] the moment of inertia of a uniformly rotating,
axially symmetric neutron star is given by the following
expression:

I ≡ J

�
= 8π

3

∫ R

0
r4e−ν(r) ω̄(r)

�

(E(r) + P (r))√
1 − 2GM(r)/r

dr, (5)

where J and � are the angular momentum and rotational
frequency of the neutron star. Further, M(r), E(r), and P (r)
are the stellar mass, energy density, and pressure profiles,

respectively. Finally, ν(r) and ω(r) [with ω̄(r) ≡ � − ω(r)]
are radially dependent metric functions. In the absence of
general relativistic effects and in the simplified situation of
a neutron star of uniform density, the stellar moment of inertia
reduces to the elementary result of I = 2MR2/5. However,
for realistic situations the stellar moment of inertia differs
considerably from this elementary result. Note that in order
for the slow-rotation approximation to be valid, the stellar
frequency � must be far smaller than the mass-shedding
Kepler frequency �K. That is,

� 
 �K =
√

GM

R3
≈ (1.15 × 104 s−1)

√
M/M�

(R/R10)3
, (6)

where a Newtonian approximation to the Kepler frequency was
used, and in the last expression the stellar mass is expressed
in solar masses and the radius in units of R10 ≡ 10 km.
Equivalently, the slow-rotation approximation is valid if the
period of the neutron star is significantly longer than about half
a millisecond. Both the Crab and Vela pulsars—with periods
of 33 and 89 milliseconds, respectively—fall safely within this
bound.

The enormous virtue of the slow-rotation approximation is
that every quantity that appears in Eq. (5) may be computed in
the limit of spherical symmetry. As such, with the exception of
the Lense-Thirring frequency ω(r), they may all be obtained
from a solution of the Tolman-Oppenheimer-Volkoff (TOV)
equations, properly supplemented by an equation of state
P = P (E). However, one should note that even under this
simplified situation the formalism remains complex. Indeed,
the Lense-Thirring precession is a qualitative new effect with
no counterpart in Newtonian gravity that is caused by the
dragging of inertial frames around a rotating compact star.
Nevertheless, once the TOV equations are solved so that
mass, energy density, and pressure profiles are obtained, the
remaining quantities appearing in Eq. (5) may be computed by
either performing a quadrature (in the case of ν) or by solving
a suitable differential equation (in the case of ω̄) [11]. The
formalism for the moment of inertia of an axisymmetric star
in hydrostatic equilibrium is derived in far greater detail in
Refs. [33,34], although a more pedagogical discussion may be
found in the text by Glendenning [35].

Whereas the evaluation of the stellar moment of inertia
relies on the numerical computation of various quantities,
accurate and illuminating analytic expressions for the crustal
moment of inertia already exist. The crustal component of the
moment of inertia is defined in terms of the integral given in
Eq. (5) but now with the integration range limited from the
transition (or core) radius Rt to the stellar radius R. That is,

Icrust = 8π

3

∫ R

Rt

r4e−ν(r) ω̄(r)

�

(E(r) + P (r))√
1 − 2GM(r)/r

dr. (7)

However, given that the crust is thin and the density within it is
low, a closed-form approximation for Icrust has been obtained
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[6,10,11,36–38]. That is,

Icrust ≈ 16π

3

R6
t Pt

Rs

[
1 − 0.21

(R/Rs − 1)

]

×
[

1 + 48

5
(Rt/Rs − 1)(Pt/Et ) + · · ·

]
, (8)

where Rs = 2GM is the Schwarzschild radius of the star, and
Pt and Et are the pressure and energy density at the crust-core
interface. The ellipsis in the above equation indicates that the
derivation was carried out to first order in the small (typically
�1%) quantity Pt/Et . Note that the TOV equation in the
crustal region may be solved exactly using a polytropic EOS
[11]. Although in reporting results for the crustal moment
of inertia the exact expression given in Eq. (7) will always
be used, the above analytic expression provides valuable
insights. First, although approximate, the expression has been
shown to be highly accurate [11]. Second, the two terms that
appear between brackets in Eq. (8) provide small (∼10%)
and canceling contributions to the leading term. Thus, the
crustal moment of inertia of a neutron star of mass M is
dominated by Rt ≡ R − Rcrust and Pt , quantities that are
highly sensitive to the poorly constrained density dependence
of the symmetry energy. Note that the low-density environment
near the crust-core interface may be simulated in the collisions
of heavy ions. Indeed, novel and unique experiments involving
heavy-ion collisions with very neutron-rich nuclei at both
present and future radioactive beam facilities will provide
significant constraints on the EOS of neutron-rich matter [39].

B. Equation of state for neutron-star matter

Neutron stars are rich dynamical systems with core
densities and neutron-proton asymmetries that far exceed
those found in nuclei under normal conditions. As such, the
EOS required to understand the structure and dynamics of
neutron stars is highly uncertain and involves uncontrolled
extrapolations. To mitigate this problem we rely on several
nuclear-structure models that have been previously constrained
by a variety of laboratory observables. These models, that fall
under the rubric of relativistic mean-field models, provide a
Lorentz covariant and causal framework that becomes essential
as one extrapolates to the high densities encountered in the
stellar core [40–42].

The EOS for the uniform liquid core is based on an
interacting Lagrangian density with its parameters accurately
calibrated to a variety of nuclear properties. Besides nucleons,
the uniform liquid core contains leptons—both electrons
and muons—that enforce charge neutrality and chemical
equilibrium and are treated as relativistic free Fermi gases.
However, the model contains no exotic degrees of freedom.
The interacting Lagrangian density includes a nucleon field
(ψ) interacting via the exchange of two isoscalar mesons
(a scalar φ and a vector V μ) and one isovector meson (bμ)
[41,42]. That is,

Lint = ψ̄
[
gsφ −

(
gvVμ + gρ

2
τ · bμ

)
γ μ

]
ψ−U (φ,V μ,bμ),

(9)

where gs, gv, and gρ represent the Yukawa couplings between
the nucleon and the corresponding meson fields. Although
essential for the description of the properties of finite nuclei,
note that the photon field does not contribute to the EOS at the
mean-field level. In order to improve the phenomenological
standing of the model, the Lagrangian density must be
supplemented by nonlinear meson interactions that introduce
an effective density dependence. These nonlinear terms are
given by

U (φ,V μ,bμ) = κ

3!
(gsφ)3 + λ

4!
(gsφ)4 − ζ

4!

(
g2

vVμV μ
)2

− �v
(
g2

ρ bμ · bμ
)(

g2
vVνV

ν
)
. (10)

Historically, the first two terms (κ and λ) were introduced by
Boguta and Bodmer to soften the incompressibility coefficient
of symmetric nuclear matter [43]. The last two terms (ζ and
�v), on the other hand, play a critical role in the behavior of the
EOS at high densities. In particular, the isoscalar parameter ζ
serves to soften the equation of state of symmetric nuclear
matter at high densities [44] and, at present, can only be
meaningfully constrained by the maximum mass of a neutron
star [45,46]. Finally, the mixed isoscalar-isovector parameter
�v was introduced to modify the poorly constrained density
dependence of the symmetry energy [16,47]. Tuning this
parameter provides a simple, efficient, and reliable method
of softening the symmetry energy. Further details on the
calibration procedure may be found in Refs. [16,48,49] and
references contained therein.

As one moves away from the stellar core the density
diminishes until the uniform system becomes unstable against
cluster formation. That is, at densities of about one half of
nuclear-matter saturation density, it becomes energetically
favorable for the uniform system to cluster into neutron-rich
fragments that are embedded in a dilute neutron vapor. Such
instability delineates the transition between the uniform liquid
core and the non-uniform solid crust. The stellar crust itself is
divided into an inner and an outer region. In the outer crust
the system is organized into a Coulomb lattice of neutron-rich
nuclei embedded in a degenerate electron gas [50,51]. The
composition in this region is solely determined by the masses
of neutron-rich nuclei in the 26 � Z � 50 region and the
pressure support is provided by the degenerate electrons. For
this region we adopt the standard equation of state of Baym,
Pethick, and Sutherland (BPS) [50]. In contrast, the EOS for
the inner crust is highly uncertain and must be inferred from
theoretical calculations. In addition to a Coulomb lattice of
progressively more exotic neutron-rich nuclei embedded in
an electron gas, the inner crust now includes a dilute vapor
of superfluid neutrons. Moreover, at the bottom layers of the
inner crust, complex and exotic structures with almost equal
energy—“nuclear pasta”—have been predicted to emerge
[36,52,53]. Whereas significant progress has been made in
simulating this exotic region [54–59], a detailed equation of
state is still missing. Hence, we resort to a polytropic EOS
to interpolate between the solid outer crust and the uniform
liquid interior [6,60].

Before proceeding to display our results, we discuss in some
detail the choice of Lagrangian parametrizations that are used
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in this work (see Tables I and II). The oldest of these is the
accurately calibrated NL3 model of Lalazissis and collabora-
tors [61,62]. The NL3 set has been remarkably successful in
reproducing with only a handful of parameters several nuclear
ground-state properties, such as binding energies, charge-radii,
and deformations, throughout the nuclear chart. Note that
in the original NL3 parametrization two of the empirical
parameters appearing in Eq. (10) are absent: ζ = �v ≡ 0. The
absence of these two parameters produces equations of state
for both symmetric nuclear matter and pure neutron matter
that are fairly stiff. In order to modify such behavior, the
FSUGold model incorporates these two additional parameters
as an efficient means to soften both components of the EOS
[63]. Indeed, mass-vs-radius relationships for neutron stars
predicted by FSUGold generate a lower limiting mass and
smaller stellar radii than NL3. Moreover, the stiffer symmetry
energy predicted by NL3 yields neutron skins for heavy
nuclei (such as 208Pb) significantly thicker than FSUGold.
However, other than the nuclear-skin thickness, both parameter
sets are successful in accounting for well measured ground-
state properties of finite nuclei. Next, the IU-FSU effective
interaction [64] used in this work represents a fine tuning of
the FSUGold model. Such fine tuning was implemented in
response to an interpretation of x-ray observations [65] that
suggested that FSUGold predicts neutron star radii that are
too large and a maximum stellar mass that is too small. To
a large extent, this was efficiently implemented by increasing
the value of �v—resulting in a softer symmetry energy—and
decreasing the value of ζ , which stiffened the EOS at high
densities (see Table I). Finally, the “last” of the four effective
interactions employed in this work, TAMUC-FSUc (or “TFc”
for short) was conceived in response to the question of
whether a thick neutron skin in 208Pb, such as the central
value reported by the PREX Collaboration [28,29], is already
incompatible with laboratory experiments or astrophysical
observations [49]. To test this assertion, we generated a model
with a relatively thick neutron skin and then examined its
predictions for several ground-state properties of finite nuclei,
their collective monopole and dipole response, and mass-
vs-radius relations for neutron stars. Perhaps surprisingly—
especially in view of Refs. [66,67] that suggest that stringent
limits on the neutron-skin thickness of 208Pb and on the
slope of the symmetry energy L already exist—we found
no compelling reason to rule out models with large neutron
skins [49].

In summary, the equation of state adopted in this work
consists of three parts: (i) a BPS component up to a neutron-
drip density of ρdrip ≈ 4 × 1011 g/cm3 to describe the outer
crust; (ii) a polytropic component for the inner crust that
interpolates between ρdrip and the crust-core transition density
ρt ; and (iii) a RMF component to describe the uniform
liquid core. Note that ρt is a model-dependent quantity highly
sensitive to the density dependence of the symmetry energy.
Consistency demands that the same RMF model used to
generate the EOS will also be used to predict the crust-core
transition density. In particular, the instability of the uniform
ground state against cluster formation will be determined
through a relativistic random phase approximation (RPA) as
detailed in Refs. [16,60].

III. RESULTS

In this section we display results for the fraction of the
stellar moment of inertia residing in the nonuniform crust.
By using a variety of realistic equations of state, we test
the basic premise of our work, namely, whether the crust
may be enough to explain large pulsar glitches. We start by
displaying in Fig. 1 the fraction of the crustal moment of
inertia for a variety of neutron-star masses for two “families”
of relativistic mean-field models: FSUGold [63] (or “FSU”
for short) and NL3 [61,62]. Note that each member of the
family is characterized by a unique value of the neutron-skin
thickness of 208Pb. The original two models—with values of
R208

skin = 0.21 fm for FSU and R208
skin = 0.28 fm for NL3—were

accurately calibrated to several nuclear properties and have
been fairly successful in describing a variety of nuclear phe-
nomena. However, as already mentioned, from the perspective
of the EOS a critical difference between these two models
is that NL3 predicts a significantly stiffer EOS than FSU. In
particular, NL3 predicts a maximum neutron star mass almost
one solar mass heavier than FSU. Moreover, with a symmetry
energy also significantly stiffer, NL3 predicts considerably
larger stellar radii. However, the density dependence of the
symmetry energy may be efficiently modified by tuning the
isoscalar-isovector coupling �v. Indeed, it is precisely through
the tuning of �v that we have generated the two families
of RMF models displayed in Fig. 1. Note that in doing
so, all isoscalar properties—such as the EOS of symmetric
nuclear matter—are left intact [11]. Also note that we have
quantified the sensitivity of the crustal fraction of the moment
of inertia to the density dependence of the symmetry energy
in terms of R208

skin. This provides an attractive connection
between a laboratory measurement and an astrophysical
observation.

The lack of a linear correlation between the neutron skin
thickness R208

skin and the fraction of the crustal moment of
inertia is clearly evident in Fig. 1. Whereas earlier studies
have found a strong linear correlation between R208

skin and
various properties of the EOS in the crust-core transition
region [11,16]—such as the baryon density, energy density,
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FIG. 1. (Color online) Fraction of the crustal moment of inertia
as a function of the neutron-skin thickness of 208Pb for a variety
of neutron-star masses (in units of the solar mass) as predicted by
two “families” of mean-field models. (a) Predictions made with the
relatively soft FSU [63] parametrization and (b) with the relatively
stiff NL3 interaction [61,62].
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TABLE I. Parameter sets for the relativistic mean-field models used in the text. The parameter κ and the meson masses ms, mv, and mρ are
all given in MeV. The nucleon mass has been fixed at M = 939 MeV in all models.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ �v

IU-FSU 491.500 782.500 763.000 99.4266 169.8349 184.6877 3.3808 +2.9600 × 10−4 0.0300 4.6000 × 10−2

FSUmax 491.500 782.500 763.000 112.1996 204.5469 122.9556 1.4203 +2.3762 × 10−2 0.0600 2.4776 × 10−2

NL3max 508.194 782.501 763.000 104.3871 165.5854 119.3049 3.8599 −1.5905 × 10−2 0.0000 2.6708 × 10−2

TFcmax 496.800 782.500 763.000 113.9565 198.0546 149.9692 2.6078 −1.8640 × 10−3 0.0200 1.5133 × 10−2

and proton fraction—no such correlation was observed in the
case of the transition pressure [11,17]. Given the sensitivity
of the crustal moment of inertia to the transition pressure, as
indicated in Eq. (8), we now use such lack of correlation to
identify the particular member of the FSU and NL3 families
that yields the largest transition pressure and, consequently, the
largest fraction of the crustal moment of inertia. As suggested
by the results displayed in Fig. 1, this occurs for models
with “intermediate” values for the neutron-skin thickness
of 208Pb.

The parameters for the four RMF models employed in
this paper have been listed in Table I. We reiterate that all
these models provide a fairly accurate description of various
properties of finite nuclei throughout the nuclear chart. In
particular, the IU-FSU parametrization was derived from
the original FSUGold model by adjusting a few empirical
parameters with the goal of softening the symmetry energy
(in order to generate smaller stellar radii) and stiffening the
overall EOS at higher density (to generate a larger limiting
neutron-star mass) [64]. In turn, the “FSUmax” set represents
that particular member of the FSU family the predicts the
maximum value for the transition pressure Pt . The remaining
two sets, “NL3max” and “TFcmax”, were selected in a similar
fashion from the corresponding NL3 [61,62] and TFc [49]
families. That is, with the exception of IU-FSU that was
selected as an example of a model with a fairly soft symmetry
energy, the remaining three models were chosen to maximize
the value of the transition pressure.

Before displaying our results for various crustal properties,
we discuss briefly some of the uncertainties in the EOS of
relevance to the present work. We start by listing in Table II
model predictions for a few bulk parameters that characterize
the behavior of asymmetric nuclear matter in the vicinity of
saturation density. That is, we write the energy per nucleon as

follows:

E

A
(ρ,α) =

(
ε0 + 1

2
K0x

2 + · · ·
)

+
(

J + Lx + 1

2
Ksymx2 + · · ·

)
α2 + · · · ,

(11)

where α ≡ (N − Z)/A is the neutron-proton asymmetry and
x ≡ (ρ − ρ0 )/3ρ0 quantifies the deviations of the density from
its saturation value [68,69]. Moreover, ε0 and K0 represent the
binding energy per nucleon and incompressibility coefficient
of symmetric nuclear matter, whereas J , L, and Ksym represent
the energy, slope, and curvature of the symmetry energy. Also
shown in Table II are predictions for the binding energy per
nucleon, charge radius, and neutron-skin thickness of 208Pb,
alongside the measured experimental values. Note that the
pioneering Lead Radius Experiment (PREX) at the Jefferson
Laboratory has recently provided the first electroweak deter-
mination of the neutron radius of 208Pb. Given that its charge
radius has been accurately known for many years, PREX
effectively measured the neutron-skin thickness of 208Pb to
be [28,29]:

R208
skin = 0.33+0.16

−0.18 fm. (12)

The results in Table II indicate that although the extensive
experimental database of nuclear masses and charge radii is
sufficient to constrain some of the bulk parameters of neutron-
rich matter, it is insufficient to constrain them all, particularly
those associated with the density dependence of the symmetry
energy. It is precisely this flexibility that we have exploited
in constructing theoretical models that predict large transition
pressures without compromising their ability to describe well
measured nuclear observables.

TABLE II. Predictions for the bulk parameters characterizing the behavior of infinite nuclear matter at saturation density ρ0 . The quantities ε0

and K0 represent the binding energy per nucleon and incompressibility coefficient of symmetric nuclear matter, whereas J , L, and Ksym represent
the energy, slope, and curvature of the symmetry energy. Also shown are the binding energy per nucleon, charge radius, and neutron-skin
thickness of 208Pb, alongside the corresponding experimental values. All quantities are given in MeV except as otherwise indicated.

Model ρ0 (fm−3) ε0 K0 J L Ksym B/A Rch (fm) Rskin (fm)

IU-FSU 0.155 −16.40 231.33 31.30 47.20 +28.53 −7.89 5.48 0.16
FSUmax 0.148 −16.30 230.01 33.23 66.00 −65.59 −7.89 5.51 0.22
NL3max 0.148 −16.24 271.54 32.14 59.00 −25.44 −7.92 5.52 0.20
TFcmax 0.148 −16.46 260.49 38.28 74.00 −67.78 −7.89 5.51 0.26

Experiment −7.87 5.50 0.33+0.16
−0.18
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TABLE III. Predictions for the transition density, proton fraction, energy density, and pressure at the crust-core interface. Also shown are
predictions for the crustal mass, radius, and fractional moment of inertia for a 1.4M� neutron star.

Model ρt (fm−3) Yt Et (MeV fm−3) Pt (MeV fm−3) Mcrust(M�) Rcrust (km) Icrust/I (%)

IU-FSU 0.0871 0.0438 82.655 0.289 0.019 0.989 2.827
FSUmax 0.0727 0.0321 68.810 0.425 0.027 1.430 4.407
NL3max 0.0826 0.0357 78.290 0.550 0.052 1.990 7.619
TFcmax 0.0794 0.0484 75.454 0.692 0.061 2.372 9.258

To further elucidate some of the uncertainties in the EOS
that are of relevance to the transition region between the
liquid core and the solid crust, we list in Table III the density,
proton fraction, energy density, and pressure at the crust-core
interface. Also shown are predictions for the crustal mass,
radius, and fractional moment inertia for a “canonical” 1.4M�
neutron star. As expected, crustal properties are strongly
correlated to the transition pressure Pt . Indeed, the larger the
value of Pt , the larger the fraction of the mass, radius, and
moment of inertia contained in the solid crust. To complement
the tabular information we display in Fig. 2 the EOS, i.e.,
pressure as a function of baryon density, for uniform neutron-
star matter. Note that as a result of the saturation of symmetric
nuclear matter, the pressure in the vicinity of saturation
density (ρ0 � 0.15 fm−3) is dominated by the contribution
from the symmetry energy; that is, P ≈ ρ0L/3. Moreover,
since L is strongly correlated to R208

skin, one can readily infer
the relative size of the neutron-skin thickness of 208Pb from
the value of the pressure at saturation density. Remarkably,
this same pressure controls the stellar radius of low-mass
neutron stars [60] (see Fig. 5). However, whereas stellar
radii are sensitive to the density dependence of the symmetry
energy in the immediate vicinity of nuclear-matter saturation
density [10], the maximum neutron-star mass depends on
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FIG. 2. (Color online) Equation of state in the form of pressure-
vs-baryon density as predicted by the four models considered in the
text. The insert displays (on a linear scale) the EOS on a more limited
range: from the crust-core transition density up to nuclear-matter
saturation density. The symbols denote the density and pressure at
the crust-core interface.

the high-density component of the EOS—which is largely
controlled by the parameter ζ [see Eq.(10)]. In particular, the
smaller the value of ζ the larger the limiting neutron-star mass.
Thus, by tuning ζ one can efficiently increase the maximum
neutron-star mass without affecting the EOS at normal nuclear
densities [44]. Indeed, for the RMF models employed here one
obtains: Mmax/M� = 1.72,1.94,2.14, and 2.75, for FSUmax,
IU-FSU, TFcmax, and NL3max, respectively. Finally, the
insert displays the EOS (on a linear scale) starting from
the transition point up to saturation density. Indicated with the
various symbols are the predictions from the different models
for the crust-core transition density and pressure. Clearly, the
behavior of Pt is not monotonic; whereas TFcmax predicts
the largest transition pressure, its transition density is neither
the smallest nor the largest.

Having highlighted the most critical features of the EOS,
we are now in a position to discuss our predictions for various
crustal properties—specifically the mass, radius, and fractional
moment of inertia. We start by displaying in Fig. 3 the crustal
contribution to the mass and radius of neutron stars of various
masses as predicted by the four RMF models considered
in the text. For reference, we provide approximate analytic
expressions for these two quantities. That is [11],

Mcrust ≈ 8π
R4

t Pt

Rs

(1 − Rs/Rt ), (13a)

Rcrust ≈ 8
R2

t Pt

RsEt

(
1 − 8RtPt

RsEt

)−1

. (13b)

As in the case of the crustal moment of inertia given in
Eq. (8), both Mcrust and Rcrust are proportional to the product
of the core radius Rt (raised to some power) times the transition
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FIG. 3. (Color online) Crustal contributions to the total mass (a)
and radius (b) as a function of neutron-star mass as predicted by the
four models considered in the text.
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FIG. 4. (Color online) Fraction of the moment of inertia residing
in the crust as a function of stellar mass for the four models considered
in the text. The horizontal line represents observational constraints
from the Vela glitches by assuming no (〈m∗

n〉/mn = 1) entrainment.
In contrast, the uncertainty band accounts for significant crustal
entrainment of between 7% [12] and 9.4% [7,15].

pressure Pt [11]. Such a dependence is clearly displayed in the
figure. We observe that whereas only a very small fraction of
the total neutron-star mass resides in the low-density crust,
the crustal contribution to the overall size of the star may be
significant. For example, for the case of a 1.4M� neutron star,
the TFcmax model predicts that of the total 14.4 km stellar
radius, 2.4 km (or �17%) are accounted by the crust. Could
such a thick crust account for the large pulsar glitches?

To answer this question we have computed the crustal
fraction of the total moment of inertia as a function of the
neutron-star mass. Our results are displayed in Fig. 4 alongside
the observational constraints imposed from the large Vela
glitches. Here we follow the assumptions that suggest that
in order to explain the large Vela glitches 1.6% of the moment
of inertia must reside in the superfluid reservoir, but that such
number must be increased to between 7% [12] and 9.4% [7,15]

if entrainment effects are included. As one may expect from
the sensitivity of crustal properties to the transition pressure,
the trends displayed in Fig. 4 follow closely those observed in
Fig. 3. We insist that although the analytic formulas displayed
in Eqs. (8) and (13) are highly insightful, the predictions made
for all crustal properties displayed in Figs. 3 and 4 are exact, at
least within the framework of the slow-rotation approximation.
Our results indicate that even though the observation of large
pulsar glitches in the presence of crustal entrainment provides a
very stringent constraint on the EOS, some realistic theoretical
models are consistent with such a constraint. Indeed, our
findings suggest that one may account for the large Vela
glitches even in the presence of significant crustal entrainment
provided Mvela � 1.6M�. Note that a similar conclusion was
reached in Ref. [23] from a study of neutron-star observations.

As mentioned earlier in Sec. II B, the complexity of the
inner stellar crust has hindered the construction of a detailed
EOS and has made us rely on a polytropic approximation
that interpolates between the solid outer crust and the uniform
liquid core [60]. Given the importance of crustal properties
on our results, it is pertinent to examine the sensitivity of
our results to our choice of γrFG = 4/3, which corresponds
to the polytropic index of a noninteracting relativistic Fermi
gas. To do so, we have examined in Table IV the sensitivity
to the choice of polytropic index on the total stellar radius,
total moment of inertia, crustal mass, crustal radius, and
fractional moment of inertia for a 1.4M� neutron star. Note
that for γrFG = 4/3, the results for the crustal properties
are those quoted in Table III. Although the crustal radius
displays a strong sensitivity to the polytropic index—which
correspondingly affects the total stellar radius—neither the
crustal mass nor the total and fractional moments of inertia
display dramatic changes. Indeed, Table IV displays a change
of only �11% for the fractional moment of inertia. This result
helps to further validate our main conclusion.

Before leaving this section, we would like to highlight
some recent findings on stellar radii that appear to create
significant tension with the constraints emerging from large
pulsar glitches. Recently, Guillot et al. [70] were able to
determine neutron-star radii by fitting the spectra of five

TABLE IV. Predictions for the total radius, total moment of inertia, crustal mass, crustal radius, and fractional moment of inertia for a
1.4M� neutron star as predicted by the various models used in the text.

Model Polytrope index Rtot (km) Itot (1045 g cm2) Mcrust (M�) Rcrust (km) Icrust/I (%)

IU-FSU γmin = 1.000 12.938 1.564 0.019 1.434 2.877
γrFG = 1.333 12.493 1.563 0.019 0.989 2.827
γmax = 2.420 12.198 1.563 0.018 0.694 2.784

FSUmax γmin = 1.000 13.647 1.488 0.028 2.246 4.559
γrFG = 1.333 12.831 1.487 0.027 1.430 4.407
γmax = 2.422 12.300 1.486 0.027 0.900 4.287

NL3max γmin = 1.000 15.610 1.866 0.054 3.290 7.970
γrFG = 1.333 14.313 1.862 0.052 1.990 7.619
γmax = 2.156 13.591 1.860 0.051 1.267 7.380

TFcmax γmin = 1.000 16.169 1.766 0.064 4.132 9.865
γrFG = 1.333 14.412 1.759 0.061 2.372 9.258
γmax = 2.007 13.542 1.755 0.060 1.499 8.917
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quiescent low-mass x-ray binaries (qLMXB) in globular
clusters. By assuming that all neutron stars independent of their
mass share a common radius (R(M) ≡ R0) they determined
this common radius to be

R0 = 9.1+1.3
−1.5 km. (14)

Although several of the assumptions made in Ref. [70] suggest
that other interpretations may be favored [71], Eq. (14)
is highly intriguing as it suggests stellar radii significantly
smaller than those predicted by many theoretical models
[10,39]. Moreover, as one combines such a small radius with
the observation of neutron stars with masses of M ≈ 2M�
[45,46], then most theoretical models appear to be ruled out.
This is because, on the one hand, the pressure around twice
nuclear-matter saturation density must be small enough to
accommodate small stellar radii but, on the other hand, the
pressure must stiffen significantly at high densities to support
massive neutron stars.

Such a situation is illustrated in Fig. 5 where the mass-vs-
radius relationship is displayed for the four models considered
in the text. The solid portion of each of these curves indicates
the region that is consistent with the constraint from the large
Vela glitches. That is, whereas IUFSU is compatible only with
very small masses, TFcmax is consistent up to a mass of
1.6M�. In addition to the “single-radius” finding of Guillot
et al. [70], we display results obtained from the analysis of
several x-ray bursters by Ozel et al. [72], Steiner et al. [65],
and Suleimanov et al. [73]. However, given that systematic
uncertainties in the analysis of x-ray bursters continue to
hinder the reliable extraction of stellar radii [73], qLMXBs
may provide, at least at present, a more reliable source for
the determination of stellar radii. Also shown in the figure
are the limits imposed by the measurement of two massive
neutron stars [45,46]. It is evident from Fig. 5 that none
of our theoretical models are consistent with stellar radii
significantly smaller than 12 km. Indeed, to our knowledge
very few—perhaps only one [74]—EOS can simultaneously
account for small radii and large masses. Note that we are
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FIG. 5. (Color online) Mass-vs-radius relationship predicted by
the four models considered in the text. Also shown are observational
constraints on stellar masses [45,46] and radii [65,70,72,73], as
explained in the text.

unaware on whether such an EOS may be able to account for
the large Vela glitches. In our case models such as TFcmax,
that appear to account for both massive neutron stars and large
pulsar glitches, predict stellar radii that are significantly larger
than the common radius value of R0 = 9.1+1.3

−1.5 km. Indeed, for
a 1.4M� neutron star, TFcmax predicts a radius of 14.4 km,
or 4 km larger than the suggested upper limit for R0.

IV. CONCLUSIONS

The large jumps observed in the spin frequency of some
neutron stars like the Vela pulsar suggest the existence of
an angular-momentum reservoir confined to the inner stellar
crust. As such, large pulsar glitches have been used to
constrain the EOS of neutron-rich matter by imposing limits
on the fraction of the moment of inertia that must reside in
the crust. Until recently, the large Vela glitches demanded
that at least 1.6% of the stellar moment of inertia must be
located in the crust. Although useful, many realistic EOS
are compatible with such limit. However, recent studies seem
to indicate that a significantly larger value is required once
crustal entrainment is taken into account. Indeed, encoding
the impact of crustal entrainment in a value of the effective
neutron mass of 〈m∗

n〉/mn = 4.3, suggests that the limit on
the fractional moment of inertia must be increased to almost
7%; band-structure calculations [14] seem to suggest that this
number may increase even further to about 9.4% [7,15]. Unless
the mass of the Vela pulsar is very small (�1M�) then a large
number of theoretical models become incompatible with this
much more stringent limit. This has lead to the assertion that
the “crust is not enough.”

The main goal of this work was to reexamine whether
indeed the crust is not enough. Given that the crustal moment
of inertia is highly sensitive to the transition pressure Pt

at the crust-core interface, we examined the predictions of
a variety of relativistic mean-field models in the transition
region. In particular, we found that certain bulk properties of
the EOS at the crust-core interface are strongly correlated
to the slope of the symmetry energy L; however, not the
transition pressure. Indeed, Pt increases monotonically for
small L, reaches its maximum at some intermediate value,
and ultimately decreases with increasing L. Given that in
the class of RMF models used in this work one can easily
tune the value of L, we searched for models with the largest
transition pressure. By doing so, we were able to generate
neutron stars with thick crusts and large crustal moments of
inertia. Indeed, our results support the standard model of pulsar
glitches, provided the Vela mass does not exceed 1.6M�. In
particular, this requires values for the neutron-skin thickness of
208Pb of about R208

skin � (0.20 − 0.26) fm. This finding—which
represents the central result of our work—offers yet another
attractive connection between a laboratory measurement and
an astrophysical observation.

We close with a few questions and comments on the
impact of our findings on other neutron-star observables
sensitive to crustal dynamics. First, rapidly rotating neutron
stars with large asymmetries (such as mass quadrupoles) are
efficient sources of gravitational waves. In particular, “large
mountains” on rapidly rotating neutron stars may efficiently
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radiate gravitational waves provided that the breaking strain
of the crust is large [75]. Horowitz and Kadau have performed
large-scale molecular-dynamics simulations that reveal a large
breaking strain in support of large mountains in neutron stars
[76]. Such findings suggest that large mountains in rapidly
rotating neutron stars may generate gravitational waves that
may be detectable by the next generation of gravitational-wave
observatories. Thus, one would like to understand the impact
of the large crustal thicknesses found in our work (e.g., Rcrust �
2.4 km for a 1.4M� neutron star) on the breaking strain of the
crust and ultimately on the emission of gravitational waves.
Moreover, the size of the crust may also impact the cooling
light curves of low-mass x-ray binaries during quiescence.
Indeed, a thick stellar crust could increase the time scale
for crustal cooling after extended periods of accretion; see
Ref. [77] and references contained therein.

However, although the large crustal thicknesses raises
interesting questions and accounts for large crustal fractions
of the stellar moment of inertia, the moderate values of L
required to account for the large pulsar glitches are inconsistent
with a recent analysis of quiescent low-mass X-ray binaries
that suggests very small stellar radii. In fact, the class of
relativistic mean-field models employed in this work are
unable to generate such small radii—regardless of whether
one incorporates the pulsar-glitch constraint or not. Although
not without controversy, we found it instructive to take the
small-radius result at face value and ask whether it is possible

to account for both large pulsar glitches and small neutron
stars. If crustal entrainment is as large as it has been suggested,
then a moderate value of the neutron-skin thickness of 208Pb
is required. This prediction can be tested by performing
parity violating electron scattering experiments at the Jefferson
Laboratory. However, in order for neutron-star radii to be as
small as suggested, a dramatic softening of the symmetry
energy must develop by the time that the density reaches
about 2 times nuclear-matter saturation density. Such a rapid
softening is likely to involve a change in the structure of
dense matter, likely due to a phase transition. In principle,
the onset of such a phase transition may also be probed in
the laboratory using energetic heavy-ion collisions of highly
asymmetric nuclei. Finally, the EOS must significantly stiffen
at even higher densities in order to account for the observation
of massive neutron stars. Such unique behavior of the EOS and
its possible realization in neutron stars reaffirms the special
bond between astrophysics and nuclear physics.
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