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The measurement of 1.97 ± 0.04Msolar for PSR J1614-2230 and 2.01 ± 0.04Msolar for PSR J0348 + 0432
puts a strong constraint on the neutron star equation of state and its exotic composition at higher densities. In
this paper, we investigate the possibility of an exotic equation of state within the observational mass constraint
of 2Msolar in the framework of relativistic mean field model with density-dependent couplings. We particularly
study the effect of antikaon condensates in the presence of hyperons on the mass-radius relationship of the
neutron star.
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I. INTRODUCTION

Neutron stars are fascinating objects to probe exotic states
of dense matter that cannot be otherwise studied in a terrestrial
laboratory. The central density of its core surpasses the nuclear
density by a few times. The exact nature of its internal structure
is yet to be understood. Various theoretical models have been
proposed to explain its structure and characteristics. Among
them, the Walecka model, a Lorentz covariant theory of
dense matter involving baryons and mesons, has been widely
applied to study the neutron star matter [1]. This traditional
meson exchange picture is known as the relativistic field
theoretical model. The model including nonlinear scalar meson
terms yields the saturation properties of nuclear matter and
finite nuclei quite well. However, the regime above saturation
density is not well understood. Extrapolating the nuclear
matter properties to high density leads to uncertainties. In most
of the relativistic mean-field (RMF) calculations, nonlinear
self-interaction terms for scalar and vector fields are introduced
to account for the high-density behavior [2]. But this may
not be a reliable approach due to instabilities and higher-
order field dependence that may appear at high densities.
Another more suitable approach is to incorporate the density
dependence through the meson-baryon couplings [3–5]. In the
density-dependent model the appearance of a rearrangement
term in baryon chemical potential significantly changes the
pressure, consequently the equation of state (EoS) at higher
densities.

We must also consider the role of nuclear symmetry
energy, the energy associated with the isospin asymmetry,
on the behavior of the EoS at high densities. The nuclear
symmetry energy alters the stiffness of the EoS. It is of great
importance, along with its density dependence, in studying
many crucial problems in astrophysics, such as neutronization
in a core-collapse supernova explosion, neutrino emission
from protoneutron star (PNS), neutron star radii, crust thick-
ness, and cooling, among various others [6]. The symmetry
energy and its density dependence near the saturation density
n0 are denoted by Sν = Esym(n0) and slope parameter L =
3n0dEsym/dn|n=n0,T =0 respectively. These parameters can be
constrained by the findings of precise nuclear physics ex-

periments (heavy-ion collision analysis, dipole polarizability
analysis, etc.) as well as astrophysical observations. The
bounds on the parameters are found to be 29 MeV < Sν <
32.7 MeV and 40.5 MeV < L < 61.9 MeV respectively [6,7].
Now if we look into the most popular and widely used
parametrizations to model neutron star structure, such as GM1,
TM1, NL3, etc., we find that the values of both symmetry
energy and its slope parameters in all these cases (for GM1,
Sν = 32.47 MeV and L = 93.8 MeV; TM1, Sν = 36.95 MeV
and L = 110.99 MeV; NL3, Sν = 37.39 MeV and L =
118.49 MeV [7]) do not quite fall into the experimental range.
Whereas the density-dependent (DD2) RMF model we are
going to employ in this paper with Sν = 31.67 MeV and L =
55.04 MeV is fully consistent with the above experimental and
observational constraints [5]. In fact, it is the only relativistic
EoS model with linear couplings. Also the DD2 EoS model
agrees well with the predictions by Chiral EFT [7]. However
it should be noted that the density-dependent parametrization
(DD) was in use [3,8,9] even before this symmetry energy
experimental data set was available. The current DD2 model
differs from the previous DD model only by the use of
experimental nuclear masses [5].

The discovery of binary pulsar PSR 1913 + 16 in 1974
by Hulse and Taylor lead to the first precise measurement
of neutron star mass (1.4408 ± 0.0003Msolar) [10]. The mil-
lisecond pulsar PSR J1614-2230 of mass 1.97 ± 0.04Msolar

[11] in 2010, PSR 1903 + 0327 of mass 1.67 ± 0.02Msolar

[12], and PSR J0348 + 0432 of mass 2.01 ± 0.04Msolar [13]
subsequently in 2011 have raised the bar. The knowledge of
the precisely measured mass of neutron stars has important
consequences for constraining the equation of state of dense
matter. It can throw light on the otherwise poorly known
composition of the compact star core.

It is still an open issue if novel phases of matter such
as hyperons, Bose-Einstein condensates of pions and kaons,
and also quarks may exist in the neutron star interior or
not. The presence of hyperons and antikaon condensates
makes the EoS softer resulting in a smaller maximum mass
neutron star than that of the nuclear EoS [14,15]. In fact
strangeness in the high-density baryonic matter is almost the
inevitable consequence of the Pauli principle. Strange degrees
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of freedom would be crucial for long time evolution of the
PNS [16] also. The observation of massive compact stars
with mass >2Msolar puts stringent constraint on the model
of neutron stars and may abandon most of the soft EoS.
However, it is at present not possible to rule out all exotica
with recent observation as many model calculations including
hyperons and/or quark matter could still be compatible with
the observations. Many of these approaches are parameter
dependent, for example the EoS with hyperons are compatible
with the benchmark of 2Msolar [17–21]. Antikaon condensate
is another possible strange candidate in the dense interior of
neutron stars. It was first demonstrated by Kaplan and Nelson
within a chiral SU(3)L×SU(3)R model in dense matter formed
in heavy-ion collisions [22]. The isospin doublet for kaons
is K ≡ (K+,K0) and that for antikaons K̄ ≡ (K−,K̄0). The
attractive interaction in nuclear matter reduces the in-medium
energy of (anti)kaons; which at higher density eventually falls
below the chemical potential of the leptons and replaces them.
Antikaon condensation was later studied in detail in the context
of a cold neutron star and protoneutron star [15,23,24] in the
RMF model, also in the density-dependent RMF model [3].
The net effect of K− condensates in neutron star matter is to
maintain charge neutrality replacing electrons and to soften the
EoS resulting in the reduction of maximum mass of the neutron
star [3,23], which was found to be within the observational
limit. Also the threshold of (anti)kaon condensation is sensitive
to antikaon optical potential and the presence of charged
hyperons pushes the threshold to higher densities. In a recent
study both the approaches, density-dependent couplings and
higher-order couplings, in presence of (anti)kaon condensates
have been compared [25]. All the parameter sets were found
to produce 2Msolar neutron stars without antikaon condensate
and some with antikaon condensate, but hyperons were not
included in that study.

In this paper, we investigate the possibility of antikaon
condensation in β-equilibrated hyperon matter relevant to the
dense interior of compact stars. Here we work with less to
moderately attractive antikaon optical potential depth. We
also use the φ meson for hyperonic and kaonic interaction.
Antikaon condensation in the presence of hyperons with
additional φ mesons has been studied previously [3], but not in
the realistic density-dependent framework. In this work we are
interested to explore in a density-dependent model whether this
softening of EoS that arises due to both antikaon condensation
and hyperon, can still produce a 2Msolar neutron star within
the observational limit. The paper is organized as follows. In
Sec. I, we briefly describe the model to calculate the EoS.
The parameters of the model are listed in Sec. III. Section IV
is devoted to results and discussion. Finally we summarize
in Sec. V.

II. FORMALISM

A phase transition from hadronic to antikaon condensed
matter is considered here. This phase transition could be
either a first-order or second-order transition. The hadronic
phase is made of different species of the baryon octet along
with electrons and muons making a uniform background.
In the present approach, the model Lagrangian density

(L = LB + Ll) is of the form

LB =
∑

B=N,�,�,�

ψ̄B(iγμ∂μ − mB + gσBσ − gωBγμωμ

− gρBγμτB · ρμ)ψB + 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

4
ωμνω

μν + 1

2
m2

ωωμωμ− 1

4
ρμν · ρμν + 1

2
m2

ρρμ · ρμ.

(1)

Leptons are treated as noninteracting particles and described
by the Lagrangian density

Ll =
∑

l

ψ̄l(iγμ∂μ − ml)ψl. (2)

Here ψl (l ≡ e,μ) is the lepton spinor whereas ψB denotes
the baryon octet. Baryons interact via the exchange of scalar
σ , vector ω, ρ mesons; τB is the isospin operator. The field
strength tensors for the vector mesons are given by ωμν =
∂μων − ∂νωμ and ρμν = ∂μρν − ∂νρμ. The gαB(n̂)’s, where
α = σ,ω, and ρ, specify the coupling strength of the mesons
with baryons and are vector density dependent. The density
operator n̂ has the form, n̂=

√
ĵμĵμ, where ĵμ = ψ̄γμψ . Also,

the meson-baryon couplings become a function of total baryon
density n, i.e., 〈gαB(n̂)〉 = gαB(〈n̂〉) = gαB(n) [3,5].

The Lagrangian structure closely follows the formalism
of Typel et al. [4,5]. The above model has been extended
to accommodate the whole baryon octet. The interaction of
hyperons with the nucleons is considered through meson
exchange just like the nucleon-nucleon interaction. However,
an additional vector meson φ and a scalar meson σ ∗ are
also included, they are important for the the hyperon-hyperon
interaction only [2,26]. Interaction among hyperons can be
represented by the Lagrangian density

LYY =
∑
B

ψ̄B(gσ ∗Bσ ∗ − gφBγμφμ)ψB

+ 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2)

− 1

4
φμνφ

μν + 1

2
m2

φφμφμ. (3)

It has been reported that the attractive hyperon-hyperon
interaction mediated by σ ∗ meson is very weak [2]. We neglect
the contribution of σ ∗ meson in this calculation.

Using the Euler-Lagrange relation the equations of motion
for the meson and baryons fields are easily derived from the
total Lagrangian density (L = LB + Ll + LYY ). The density
dependence of the couplings while computing variation of L
with respect to ψB gives rise to an additional term, which
we denote by the rearrangement term [3,5]. The meson field
equations are solved self-consistently taking into consideration
the conditions for charge neutrality and baryon number
conservation. We consider a static and isotropic matter in the
ground state. For such a static system, all space and time
derivatives of the fields vanish. Also, in the rest frame of
the matter the space components of ωμ, ρμ, and φμ vanish.
Furthermore, the third component of the isovector ρ meson
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couples to baryons because the expectation values of the
sources for charged ρ mesons in the equation of motion also
vanish in the ground state. It is to be noted φ mesons do not
couple with nucleons, i.e., gφN = 0. The meson field equations
are solved in the mean-field approximation where the meson
fields are replaced by their expectation values. The meson field
equations are given by

m2
σ σ =

∑
B

gσBns
B, (4)

m2
ωω0 =

∑
B

gωBnB, (5)

m2
ρρ03 =

∑
B

gρBτ3BnB, (6)

m2
φφ0 =

∑
B

gφBnB. (7)

The number density and scalar number density for the baryon
B are given by

nB = 〈ψ̄Bγ0ψB〉 = k3
FB

3π2
, (8)

ns
B = 〈ψ̄BψB〉 = 2JB + 1

2π2

∫ kFB

0

m∗
B(

k2 + m∗2
B

)1/2 k2 dk

= m∗
B

2π2

[
kFB

√
kFB

2 + m∗2
B −m∗2

B ln
kFB

+
√

kFB

2 + m∗2
B

m∗
B

]
.

(9)

The Dirac equation for the spin 1
2 particles is given by

[γμ(i∂μ − �B) − m∗
B]ψB = 0. (10)

The effective baryon mass is defined as m∗
B = mB − gσBσ ,

with mB as the vacuum rest mass of baryon B whereas �B =
�

(0)
B + �

(r)
B is the vector self-energy. The first term in the vector

self-energy consists of the usual nonvanishing components of
the vector mesons, i.e., �

(0)
B = gωBω0 + gρBτ3Bρ03 + gφBφ0.

while the second term is the rearrangement term, which arises
due to the density dependence of meson-baryon couplings [3],
assumes the form

�
(r)
B =

∑
B

[−g′
σBσns

B + g′
ωBω0nB + g′

ρBτ3Bρ03nB

+ g′
φBφ0nB

]
, (11)

where g′
αB = ∂gαB

∂ρB
, α = σ,ω,ρ,φ, and τ3B is the isospin

projection of B = n,p,�,�−,�0,�−,�−,�0. In the interior
of neutron stars, the baryons and leptons are in chemical
equilibrium governed by the general equilibrium condition
μi = biμn − qiμe, where bi is the baryon number, qi is the
charge of the ith baryon, μn is the chemical potential of neu-
tron, and μe is that of the electron. This condition determines
the threshold of a particular hyperon. As the chemical potential
of the neutron and electron becomes sufficiently large at high
density and eventually the threshold of hyperons is reached,
they are populated. The chemical potential for the baryon B

is μB =
√

k2
B + m∗2

B + gωBω0 + gρBτ3Bρ03 + gφBφ0 + �
(r)
B .

The term gφBφ0 in μB is applicable for hyperons only. The
energy density due to baryons can be explicitly expressed as

εB = 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + 1

2
m2

φφ2
0

+
∑
B

2JB + 1

2π2

∫ kFB

0

(
k2 + m∗2

B

)1/2
k2 dk

+
∑

l

1

π2

∫ KFl

0

(
k2 + m2

l

)1/2
k2 dk. (12)

However, the expression for pressure in addition contains the
rearrangement term (�(r)

B ) and is given by

PB = −1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

φφ2
0 + 1

2
m2

ρρ
2
03

+�
(r)
B

∑
B

nB + 1

3

∑
B

2JB + 1

2π2

∫ kFB

0

k4 dk(
k2 + m∗2

B

)1/2

+ 1

3

∑
l

1

π2

∫ KFl

0

k4 dk(
k2 + m2

l

)1/2 . (13)

The pressure (PB) is related to the energy density (εB) in this
phase through the Gibbs-Duhem relation

PB =
∑

i

μini − εB. (14)

The rearrangement term does not contribute to the energy
density explicitly, whereas it occurs in the pressure through
baryon chemical potentials. It is the rearrangement term
that accounts for the energy-momentum conservation and
thermodynamic consistency of the system [3]. Similarly, we
calculate number densities, energy densities, and pressures of
electrons and muons.

Next we discuss the antikaon condensed phase composed
of all the species of the baryon octet, the antikaon isospin
doublet with electron and muons in the background. The
baryon-baryon interaction in the antikaon condensed phase is
described by the Lagrangian density of Eq. (1). We choose the
antikaon-baryon interaction on the same footing as the baryon-
baryon interaction. The Lagrangian density for (anti)kaons in
the minimal coupling scheme is given by [15,23,27,28]

LK = D∗
μK̄DμK − m∗2

K K̄K, (15)

where the covariant derivative is Dμ = ∂μ + igωKωμ +
igρKτK · ρμ + igφKφμ and the effective mass of (anti)kaons is
given by m∗

K = mK − gσKσ , where mK is the bare kaon mass.
The isospin doublet for kaons is denoted by K ≡ (K+,K0)
and that for antikaons is K̄ ≡ (K−,K̄0). For s-wave (p = 0)
condensation, the in-medium energies of K̄ ≡ (K−,K̄0) are
given by

ωK−, K̄0 = m∗
K − gωKω0 − gφKφ0 ∓ gρKρ03. (16)

It is to be noted that for s-wave (k = 0) K̄ condensation at
T = 0, the scalar and vector densities of antikaons are same
and those are given by [28]

nK−, K̄0 = 2(ωK−,K̄0 + gωKω0 + gφKφ0 ± gρKρ03)K̄K. (17)
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The requirement of chemical equilibrium fixes the onset
condition of antikaon condensations in neutron star matter.

μn − μp = μK− = μe, (18)

μK̄0 = 0, (19)

where μK− and μK̄0 are respectively the chemical potentials of
K− and K̄0. In the mean-field approximation, the meson field
equations in the presence of antikaon condensates are given
by

m2
σ σ =

∑
B

gσBns
B + gσK

∑
K̄

nK̄ , (20)

m2
ωω0 =

∑
B

gωBnB − gωK

∑
K̄

nK̄ , (21)

m2
ρρ03 =

∑
B

gρBτ3BnB + gρK

∑
K̄

τ3K̄nK̄ , (22)

m2
φφ0 =

∑
B

gφBnB − gφK

∑
K̄

nK̄ . (23)

Antikaon condensates do not directly contribute to the pressure
so it is due to baryons and leptons only. However, the
presence of an additional term due to (anti)kaons in the
meson field equations changes the fields. Also K− mesons
modify the charge neutrality condition. Thus the values of
rearrangement term, pressure, etc. are changed when the
(anti)kaons appear. The energy density of (anti)kaons is
given by εK̄ = m∗

K (nK− + nK̄0 ). The total energy density
has contribution from the baryons, antikaons, and leptons
ε = εB + εK̄ + εl .

III. MODEL PARAMETERS

The nucleon-meson density-dependent couplings are de-
termined following the prescription of Typel et al. [4,5]. The
functional dependence of the couplings on density was first
introduced in Ref. [29] and is described as

gαB(n) = gαB(n0)fα(x), (24)

where n is the total baryon density defined as n = ∑
B nB ,

x = n/n0, and fα(x) = aα
1+bα (x+dα )2

1+cα (x+dα )2 is taken for α = ω,
σ . The number of parameters are reduced by constraining
the functions as fσ (1) = fω(1) = 1, f ′

σ (0) = f ′
ω(0) = 0, and

fσ (1) = fω(1) = 1, f ′′
σ (1) = f ′′

ω (1) [4]. The ρμ coupling
decreases at higher densities, therefore, an exponential density
dependence is assumed for the isovector meson ρ, i.e.,
fα(x) = exp[−aα(x − 1)] [29]. This functional dependence
is now widely used [21,30,31]. The saturation density, the
mass of σ meson, the couplings gαB(n0), and the coefficients
aα ,bα ,cα ,dα are found by fitting the finite nuclei properties [4,5]
and are tabulated in Table I. The fit gives the saturation
density n0 = 0.149065 fm−3, binding energy per nucleon as
−16.02 MeV and incompressibility K = 242.7 MeV. The
masses of neutron, proton, ω, and ρ mesons are 939.56536,
938.27203, 783, and 763 MeV, respectively (see Table II
of Ref [5]).

TABLE I. Parameters of the meson-nucleon couplings in DD2
model.

meson α gαB aα bα cα dα

ω 13.342362 1.369718 0.496475 0.817753 0.638452
σ 10.686681 1.357630 0.634442 1.005358 0.575810
ρ 3.626940 0.518903

Next we determine the hyperon-meson couplings. In the
absence of density-dependent Dirac-Bruekner calculation for
hyperon couplings, we use scaling factors [2] and nucleon-
meson couplings of Table I to determine the hyperon-meson
couplings. The vector coupling constants for hyperons are
determined from the SU(6) symmetry [2] as,

1

2
gω� = gω� = 1

3
gωN,

1

2
gρ� = gρ� = gρN ; gρ� = 0, (25)

2gφ� = gφ� = −2
√

2

3
gωN .

The scalar meson (σ ) coupling to hyperons is obtained from
the potential depth of a hyperon (Y) in the saturated nuclear
matter

UN
Y (n0) = −gσY σ + gωY ω0 + �

(r)
N , (26)

where �
(r)
N involves only the contributions of nucleons.

The analysis of energy levels in � hypernuclei suggests a
potential well depth of � in symmetric matter UN

� (n0) =
−30 MeV [32,33]. On the other hand, recent analysis of
a few � hypernuclei events predict a � well depth of
UN

� (n0) = −18 MeV [34,35]. However, � hyperons are ruled
out because of the repulsive �-potential depth in nuclear
matter. The particular choice of hyperon-nucleon potential
does not change the maximum mass of neutron stars [36]. We
use these values and find the scaling factor as Rσ� = gσ�

gσN
=

0.62008 and Rσ� = gσ�

gσN
= 0.32097. Finally we compute the

meson-anti(kaon) couplings on the same footing as that of
meson-hyperon couplings. However, we do not consider any
density dependence here. Coupling constants of ω and ρ
mesons with kaons are obtained from the quark model and
isospin counting rule [15,28] and the coupling constant of φ
mesons with kaons is given by the SU(3) relations and the
value of gππρ [2],

gωK = 1
3gωN ; gρK = gρN ; and

√
2gφK = 6.04. (27)

The scalar coupling constant (gσK ) is obtained from the real
part of the K− optical potential at the normal nuclear matter

TABLE II. Parameters of the scalar σ meson-(anti)kaon
couplings in DD2 model.

UK̄ (MeV) −60 −80 −100 −120 −140

gσK̄ −1.24609 −0.72583 −0.20557 0.31469 0.83495
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TABLE III. Threshold density (in units of n0) of the K− (K̄0) condensates in the DD2 model. (-) denotes no-show of them.

UK̄ (MeV) −60 −80 −100 −120 −140

npK−K̄0 4.11(7.16) 3.74(6.62) 3.40(6.07) 3.08(5.54) 2.79(5.00)
np�K−K̄0 6.54(-) 5.30(-) 4.35(-) 3.63(7.65) 3.07(6.40)
np��−�0K−K̄0 -(-) -(-) -(-) 6.07(8.95) 3.81(6.79)

density [2,3,15,23]

UK̄ (n0) = −gσKσ − gωKω0 + �
(r)
N . (28)

The study of kaon atoms clearly suggests an attractive
(anti)kaon nucleon optical potential. However, there is contro-
versy about how deep the potential is: whether the (anti)kaon
optical potential is extremely deep, as it is preferred by the
phenomenological fits to kaonic atoms data, or shallow, as it
comes out from unitary chiral model calculations. Different
experiments also suggest a range of values for UK̄ from −50
to −200 MeV and do not come to any definite consensus [37].
We chose a set of values of UK̄ from −60 to −140 MeV.
The coupling constants for kaons with σ meson, gσK at the
saturation density for these values of UK̄ for DD2 model are
listed in Table II.

IV. RESULTS

We report our results calculated using the DD2 model.
We begin with the composition of the star in the presence
of different exotic particles. As the neutron chemical potential
and the Fermi level of nucleons become sufficiently large at
high density, different exotic particles could be populated in
the core of the star. First we consider antikaon condensates
(K−,K̄0) in the nucleon-only system consisting of proton,
neutron, electron, and muon. For UK̄ (n0) = −60 MeV, K−
appears at 4.11n0 in the nucleon-only matter. The threshold
density of K− condensation decreases as the antikaon potential
in nuclear matter becomes more attractive. We note that the
threshold density of K̄ condensation shifts towards lower
density as the strength of |UK̄ (n0)| increases. Also, it is
observed that K− condensates populate before K̄0 condensate
appears. It is always energetically favorable to populate the
condensates of negatively charged kaons, which take care of
the charge neutrality but, being condensates, do not add to
the pressure unlike the leptons. The threshold densities of the
K−(K̄0) in β-equilibrated matter with different compositions
are listed in Table III, the values corresponding to K̄0

condensates are given in the parentheses.
Next, we consider � and �−, �0 apart from the nucleons. At

low density, the system consists of only nucleons and leptons
until strange baryons appear beyond twice the normal matter
density. � hyperons are the first to appear at 2.22n0, followed
by �− at 2.44n0 and finally �0 sets in at 7.93n0. If we allow the
(anti)kaons in addition to � hyperons, K− appears at 3.07n0

and 6.54n0 at UK̄ = −140 MeV and −60 MeV, respectively.
However, K̄0 appears only at higher density and for a deeper
potential depth (|UK̄ | � 120 MeV). The presence of hyperons
delays the onset of K̄ condensation to higher density as
evident from Table III. Moreover, negatively charged hyperons

diminish the electron chemical potential delaying the onset of
K− condensation.

In Fig. 1 we compare the particle fractions for a particular
value of UK̄ = −120 MeV. Before the onset of exotic particles,
the charge neutrality is maintained among protons, electrons,
and muons. We see that � hyperons appear at 2.22n0 and
its density rises fast at the cost of neutrons. We notice
that the onset of K− condensates takes care of the charge
neutrality of the system as soon as it appears at 3.63n0 and
leptons are depleted. This behavior is quite expected, as K−
mesons, being bosons, condense in the lowest-energy state and
are therefore energetically favorable to maintain the charge
neutrality of the system. Another notable fact is the rise of
proton fraction as soon as the K− condensate takes care of the
negative charge neutrality; which leads to an almost isospin
symmetric matter at higher density. In case �− is also present,
both the (anti)kaons condense only at higher density and for
|UK̄ | � 120 MeV as is noticed in Fig. 2. The early onset of
�− hyperons does not allow K̄ to appear in the system for
lower values of UK̄ . We see the competition of all the exotic
particles in Fig. 2 for UK̄ = −120 and − 140 MeV. Though the
onset of �− delays the appearance of antikaon condensates,
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FIG. 1. Fraction of various particles in β-equlibrated n, p,
�, and lepton matter including K− and K̄0 condensates for
UK̄ (n0) = −120 MeV as a function of normalized baryon density.
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FIG. 2. Fraction of various particles in β-equlibrated n, p, �,
�−, �0, and lepton matter including K− and K̄0 condensates for
UK̄ (n0) = −120 MeV and −140 MeV as a function of normalized
baryon density.

with stronger UK̄ = −140 MeV, K− suppresses �− and even
manages to replace it completely at higher density.

In Fig. 3 pressure (P) is plotted against energy density (ε) for
a system consisting of nucleons and (anti)kaons for different
UK̄ . The solid line corresponds to the nucleon-only matter
whereas the other lines correspond to the matter including K−
and K̄0 condensates for antikaon optical potentials UK̄ (n0) =
−60 to −140 MeV. The EoS is softened as soon as the K−
and K̄0 appear, the effect being more pronounced for a deeper
UK̄ . The EoS with UK̄ = −140 MeV is the softest. The kinks
in the EoS at midenergy densities (426.5–693.0 MeV fm−3)
correspond to the K− onset and those at higher densities
(872.1–1492.6 MeV fm−3) mark the K̄0 condensation.
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FIG. 3. The equation of state (EoS), pressure (P) vs energy
density (ε). The full line is for n, p, and lepton matter whereas
others are with additional K− and K̄0 condensates calculated with
UK̄ (n0) = −60,−80,−100,−120, and −140 MeV. Deeper UK̄ cor-
responds to softer EoS.

Similarly we draw the EoS in the presence of additional
hyperons in Fig. 4. With the appearance of � hyperons at
330 MeV fm−3, the slope of the EoS deviates from the nucleon
one. The EoS is further softened at the onset of �−. However,
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FIG. 4. (Color online) The equation of state (EoS), pressure (P)
vs energy density (ε) for various particle combination of n, p, �,
�−, �0, and lepton in β-equilibrated matter including K− and K̄0

condensates with UK̄ (n0) = −120 MeV.
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FIG. 5. The neutron star mass sequences are plotted with radius
for the equations of state of Fig. 3. The full line is for n, p, and lepton
matter whereas others are with additional K− and K̄0 condensates
calculated with UK̄ (n0) = −60,−80,−100,−120, and −140 MeV.
Deeper UK̄ corresponds to lower line. The gray band specifies the
observational limits.

the EoS considering all the exotic particles is not the softest
one here. We have seen that hyperons delay (anti)kaons to
higher density. This explains the relative stiffness of the EoS at
higher density in the presence of � along with other particles.
In the figure we only draw the (anti)kaon EoS corresponding
to UK̄ (n0) = −120 MeV.

We solve the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions for spherically symmetric, static compact stars and show
our result in Figs. 5, 6 corresponding to the equations of state of
Figs. 3 and 4, respectively. For low-density (n < 0.001 fm−3)
crust, we use the EoS of Baym, Pethick, and Sutherland [38].
The set of maximum mass of the nucleons-only and hyperon
stars and their corresponding central densities and radii
corresponding to EoS of Fig. 4, are listed in Table IV. The
gray band in both figures marks the observational limits of
Refs. [11,13]. We notice that in all the cases the values of
the maximum mass lie well above the benchmark 2.0Msolar,
the radii being within the range of 11.42–11.87 km. The
radii decrease with additional exotic degrees of freedom. The
softer the EoS, the less mass it can support against gravity
and the more compact is the star. The maximum mass of
a nucleon-only star is 2.417Msolar, with the inclusion of �
and � hyperons this reduces to 2.1Msolar and 2.032Msolar,
respectively. It is noted that the core contains � and �−, but
no �0, and is denser compared to the nucleon-only case.

Table V enlists the values of maximum mass and its
corresponding central energy density and radius for the
hyperons and (anti)kaons EoS with different values of optical
potential. When we consider (anti)kaons in addition to the
nucleons, they are found to reduce the maximum mass of the
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FIG. 6. (Color online) The neutron star mass sequences are plot-
ted with radius for the equations of state of Fig. 4. The gray band
specifies the observational limits.

star for all UK̄ , but the central density does not increase until
it has got K̄0, which happens only at |UK̄ | � 120 MeV. In
the presence of � hyperons, for UK̄ as low as −60 MeV,
antikaons do not have any effect on the maximum mass,
as K− condensate appears at 6.54n0, which is beyond the
central density and K̄0 does not appear at all. The effect
of K− condensates is pronounced from |UK̄ | = 80 MeV,
where the core contains a considerable fraction of K−, but
still no K̄0 condensates. Both the (anti)kaons appear only at
|UK̄ | � 120 MeV and reduce the maximum mass.

Next we discuss the scenario when our system contains
�’s in addition to nucleons, � and K̄ . Though K̄ appears for
|UK̄ | � 120 MeV, the maximum mass is reduced for UK̄ =
−140 MeV only. As it is evident from Fig. 2, the core (density
6.65n0) contains only 2% and 15.5% of K− condensate for
the two cases, respectively, whereas K̄0 does not populate the
core at all. So only the K− condensate plays an effective role
in reducing the maximum mass of the star, that also for optical
potential deeper than −120 MeV.

TABLE IV. Maximum mass, central density and radius of
nucleons only as well as hyperon compact stars in the DD2 model.
Maximum mass is in Msolar, central density with respect to the
saturation density n0, radius in km.

M(Msolar) nc(n0) R (km)

np 2.417 5.71 11.87
np� 2.10 6.40 11.57
np�� 2.032 6.66 11.42
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TABLE V. Maximum mass, central density and radius of compact stars with nucleons, hyperons and (anti)kaons for different values of
optical potential depth in the DD2 model. Maximum mass is in Msolar, central density in n0, radius in km and UK̄ in MeV.

UK̄ −60 −80 −100 −120 −140

M nc R M nc R M nc R M nc R M nc R

npK−K̄0 2.376 5.54 12.15 2.343 5.53 12.18 2.299 5.6 12.14 2.242 5.78 12.05 2.164 5.91 12.01
np�K−K̄0 2.10 6.4 11.57 2.098 6.35 11.62 2.085 6.29 11.68 2.058 6.36 11.64 2.02 6.63 11.48
np��−�0K−K̄0 2.032 6.66 11.42 2.032 6.66 11.42 2.032 6.66 11.42 2.032 6.65 11.43 2.016 6.67 11.4

V. SUMMARY

We study the equation of state and compositions of
hyperons and antikaon condensates in neutron star matter
within the framework of the relativistic field theoretical model
with density-dependent couplings. The density dependence of
nucleon-meson couplings are determined following the DD2
model of Typel et. al [4,5]. The density-dependent meson-
hyperon vertices are obtained from the density-dependent
meson-nucleon couplings using hypernuclei data [2], scaling
law [39], and SU(6) symmetry. The scalar meson coupling to
� and � hyperons are fitted to the potential depth of respective
hyperons in saturated nuclear matter, which is available from
experiments. A repulsive interaction between the hyperons are
mediated by the exchange of φ (1020) mesons. The couplings
of antikaon-nucleon interactions are obtained in the similar
manner. However, they are not density dependent.

The abundance of all the particles considered here matches
with the results of other models. In all the cases, � hyperons
get into the system first, followed by the negatively charged
�− hyperons. The antikaon condensates also populate the
nuclear matter at reasonably low densities for a deeper optical
potential. However, in hyperon-rich matter their appearance
is delayed until higher densities. Also, the negatively charged
hyperons diminish the electron chemical potential delaying the
onset of K− condensation. All these findings are consistent
with earlier results.

Neutron star masses have been precisely measured for
some binary pulsars. Until very recently, the largest precisely
measured NS mass is 1.97 ± 0.04Msolar for PSR J16142230,
and 2.01 ± 0.04Msolar for PSR J0348 + 0432. We observe that
the strangeness degrees of freedom softens the nuclear EoS
that results into the reduction of neutron star maximum mass.

Most of the existing models conflict with the observation of
such high pulsar masses. However, in all the cases we find the
maximum mass within the constraint of observational limits.
So we conclude that exotic EoS can not be ruled out by the
observation of a 2Msolar compact star. In the framework of
the DD2 model, there is a scope for accommodating strange
hyperons and antikaon condensates within the observational
limits of neutron star mass. This model can be exploited to
develop a new EoS table involving antikaon condensates for
core-collapse supernova explosions and neutron stars for a
wide range of density, temperature, and proton fraction.

As a final remark, we briefly mention the finite-temperature
effect on the hyperon EoS and maximum mass of the neutron
stars. We notice a nonzero temperature does not make much
difference in the EoS and maximum mass. But in the presence
of � hyperons, the EoS differs slightly at finite temperature
compared to the T = 0 case. This is due to the late appear-
ance of �− and suppression of �0 in the former case. This
difference is found to have small effect on the mass-radius re-
lation in both the cases. The maximum mass and corresponding
radius in the presence of n,p,�,�−,�0 is found to vary from
2.032Msolar(11.42 km) at T = 0 to 2.108Msolar(11.72 km) at
T = 15 MeV, respectively. However, the transport properties
of hot and β-equilibrated matter in neutron and protoneutron
stars might be affected, which on the other hand may have
important implications for the thermal nucleation of droplets
of antikaon condensed matter. The critical temperature of
antikaon condensates is a subject for future research.
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