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Electromagnetic transition form factors of the Roper resonance in a phenomenological field theory
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We analyze the form factors of the electromagnetic nucleon-to-Roper-resonance transition in the framework
of a low-energy phenomenological field theory. A systematic power-counting procedure is generated by applying
the complex-mass scheme. Within this power counting we calculate the form factors to next-to-next-to-leading
order and fit the results to empirical data.
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I. INTRODUCTION

To explore the structure of the nucleon and its excitations
a substantial experimental effort was made to measure pion
photo- and electroproduction at electron accelerators such
as Bates, ELSA, JLab, and MAMI. Analyzing the available
electroproduction data, transition form factors for all four-star
resonances below center-of-mass energies of 2 GeV have
been extracted in the framework of phenomenological models
(see, e.g., Refs. [1–4] for an overview). Knowledge about
the transition form factors is necessary to obtain a complete
understanding of the nucleon excitation spectrum. In that
context, precise data over a wide range of momentum transfers
have also been extracted for the P11(1440) transition form
factors [5–10]. The P11(1440) resonance, often referred to as
Roper resonance, is the first excited state of the nucleon with
quantum numbers I (JP ) = 1

2 ( 1
2

+
) [11]. The Q2 dependence of

the measured nucleon-to-Roper helicity amplitudes supports
the simple quark model assumption that it constitutes the
first radial excitation of the nucleon [9,12]. On the other
hand, describing the Roper resonance in the framework of
the simplest spherically symmetric constituent quark model
with SU(6) spin-flavor symmetry leads to a parity reversal
pattern because, in contrast to the quark model calcula-
tions, the S11(1535) turns out to be heavier than the Roper
resonance [13,14]. By applying quantum chromodynamics
(QCD)-inspired potentials, the right level ordering between
the two resonances can be generated within relativistic quark
models [15]. Further understanding of the nature of the Roper
resonance and the level ordering is provided by lattice QCD.
After also observing the wrong parity reversal pattern in early
studies [16–18], recent numerical simulations on the lattice
hint towards the correct level ordering [19–24].

Theoretical studies of the transverse and scalar (longitu-
dinal) helicity amplitudes have been performed in various
frameworks such as nonrelativistic constituent quark mod-
els (including relativistic corrections) [25–27], relativistic
quark models [28–31], chiral quark models [32–34], different
hybrid models [35,36], approaches including vector-meson-
dominance features [37,38], and lattice QCD [39,40]. Even
though the empirical data for the transverse and scalar
(longitudinal) helicity amplitudes can be described fairly well
for larger values of the squared momentum transfer in the
framework of relativistic quark models as well as in lattice
QCD, neither of the two approaches predicts the behavior in
the low-Q2 region correctly [9,12,29,33,37,39,40].

The aim of this article is to investigate the electromagnetic
nucleon-to-Roper-resonance transition form factors in the
framework of a low-energy phenomenological field theory
which is motivated by chiral perturbation theory [41,42] (see,
e.g., Refs. [43,44] for an introduction). In particular, we
perform a perturbative calculation including loop corrections
beyond the tree-level approximation. For that purpose we
require a power-counting scheme that allows us to assess the
importance of a given diagram. In mesonic chiral perturbation
theory a straightforward power counting, i.e., correspondence
between the loop expansion and the chiral expansion in terms
of momenta and quark masses at a fixed ratio [42], is obtained
by using dimensional regularization in combination with a
minimal subtraction scheme. The construction of a consistent
power counting in effective field theories with heavy degrees
of freedom turns out to be a more complex problem [45] which
can be resolved by choosing a suitable renormalization scheme
[46–50]. To also include resonant degrees of freedom, such
as the Roper resonance, we apply the complex-mass scheme
(CMS) [51–55], an extension of the on-mass-shell renormal-
ization scheme to unstable particles. In the context of the strong
interaction, the CMS was successfully used to calculate the
pole masses and widths of the ρ meson [56] and the Roper
resonance [57]. Furthermore, electromagnetic properties have
been investigated such as the magnetic moments of the Roper
resonance [58] and the ρ meson [59] as well as the pion vector
form factor in the timelike region [60]. Finally, the CMS was
shown to respect unitarity in a perturbative framework [61].

This article is organized as follows. In Sec. II, we briefly
discuss the effective Lagrangians on which the subsequent
calculation is based. The applied renormalization scheme and
the power-counting rules are described in Sec. III. In Sec. IV,
we give a definition of the electromagnetic transition form
factors as well as the corresponding helicity amplitudes. In
Sec. V, we discuss the fit of our results to empirical data and
analyze our final results. Section VI contains a short summary.

II. EFFECTIVE LAGRANGIAN

In this section, we specify the effective Lagrangian relevant
for the subsequent calculation of the transition form factors of
the Roper resonance at next-to-next-to-leading order (NNLO).
In addition to the pion, the nucleon, and the Roper resonance,
we also include the ρ meson as an explicit degree of freedom.
As is well known from calculations of the electromagnetic
form factors of the nucleon [62–64] and the �-resonance
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transition form factors [65], the explicit inclusion of the
ρ meson is essential for generating sufficient curvature in
the theoretically predicted results. However, for the sake of
simplicity, at the present stage we do not explicitly consider
the effects of other resonances such as the � resonance. In
analogy to nucleon form factor calculations, we expect the
π� loop contributions to be of similar or smaller size as the
πN and πR loop contributions. At present we take the attitude
that these effects can be absorbed in the available low-energy
coupling constants.

We write the effective Lagrangian as1

LEFT = Lπ + L0 + LNR + Lρ, (1)

where Lπ denotes the lowest-order Goldstone-boson La-
grangian including the quark-mass term and the interaction
with the external electromagnetic four-vector potential Aμ

[44]:

Lπ = F 2

4
Tr(∂μU∂μU †) + F 2M2

4
Tr(U † + U )

+ i
F 2

2
Tr[(∂μUU † + ∂μU †U )vμ]. (2)

The pion fields are contained in the unimodular, unitary, (2 ×
2) matrix U :

U (x) = u2(x) = exp

(
i
φ(x)

F

)
, φ = φkτk.

The external electromagnetic four-vector potential Aμ enters
into vμ = −eAμτ3/2 [e2/(4π ) ≈ 1/137,e > 0]. F denotes
the pion-decay constant in the chiral limit, Fπ = F [1 +
O(m̂)] = 92.2 MeV, and M is the pion mass at leading order
in the quark-mass expansion: M2 = 2Bm̂, where B is related
to the quark condensate 〈q̄q〉0 in the chiral limit [42].

Introducing nucleon and Roper-resonance isospin doublets,
N and R, with bare masses mN0 and mR0, respectively, L0

reads

L0 = N̄

(
i /D − mN0 + gA

2
γ μγ5uμ

)
N

+ R̄

(
i /D − mR0 + gR

2
γ μγ5uμ

)
R, (3)

where gA corresponds to the chiral limit of the axial-vector
coupling constant, gA = 1.2701(25) [66], and gR represents
the analog for the Roper-resonance case. The building block
uμ is given by

uμ = i[u†∂μu − u∂μu† − i (u†vμu − uvμu†)], (4)

and the covariant derivatives are defined as

DμH = (
∂μ + 	μ − i v(s)

μ

)
H,

(5)
	μ = 1

2 [u†∂μu + u∂μu† − i (u†vμu + uvμu†)],

where H stands for either the nucleon or the Roper resonance
and v(s)

μ = −eAμ/2. By expanding uμ of Eq. (4) for vμ = 0

1To simplify the notation, only bare masses are supplied with a
subscript 0.

in terms of the pion fields, one obtains from Eq. (3) the
Goldberger-Treiman relation gπNN = m gA/F [67,68], where
gπNN and m denote the chiral limit of the pion-nucleon
coupling constant and the nucleon mass, respectively. An
analogous relation results for the Roper resonance.

The interaction terms LNR are constructed in accordance
with Ref. [69]. The leading-order interaction between the
nucleon and the Roper is given by

L(1)
NR = gNR

2
R̄γ μγ5uμN + H.c., (6)

where H.c. refers to the Hermitian conjugate and gNR is
an unknown coupling constant. The second- and third-order
Lagrangians for the nucleon-Roper-resonance interaction rel-
evant for our calculation read

L(2)
NR = R̄

[
c∗

6

2
f +

μν + c∗
7

2
v(s)

μν

]
σμνN + H.c. + · · · ,

L(3)
NR = i

2
d∗

6 R̄
[
Dμ,f +

μν

]
DνN + H.c. (7)

+ 2 i d∗
7 R̄

(
∂μv(s)

μν

)
DνN + H.c. + · · · ,

where

v(s)
μν = ∂μv(s)

ν − ∂νv
(s)
μ ,

f +
μν = ufμνu

† + u†fμνu, (8)

fμν = ∂μvν − ∂νvμ − i[vμ,vν].

The coupling constants c∗
6 and c∗

7 are related to the isovector
and isoscalar transition magnetic moments. Furthermore, the
coupling constants d∗

6 and d∗
7 contribute to the slopes of the

isovector and isoscalar transition form factors to be discussed
below. As discussed in Ref. [69], interaction terms of the form,

iλ1R̄ /DN − λ2R̄N + H.c., (9)

need not be considered. The first term and its Hermitian
conjugate can be eliminated in terms of a field transformation
[70] (equation-of-motion argument). After diagonalizing the
nucleon-Roper mass matrix, the effects of the λi terms of
Eq. (9) can be absorbed in the couplings of already existing
terms or higher-order terms.

Finally, we need the Lagrangian containing the ρ meson.
The ρ-meson triplet consists of a pair of charged fields, ρ±

μ =
(ρ1μ ∓ iρ2μ)/

√
2, and a third neutral field, ρ0

μ = ρ3μ. There are
different approaches to include vector mesons systematically
into the effective Lagrangian (see, e.g., Ref. [71]). We choose
the ρ meson to transform inhomogeneously under chiral
transformations (VL,VR),

ρμ �→ KρμK† − i

g
∂μKK†, (10)

where

ρμ = ρkμ

τk

2
,

(11)

K(VL,VR,U ) =
√

VRUV
†
L

−1

VR

√
U,

and g is a coupling constant to be discussed below. The relevant
part of the effective Lagrangian containing the ρ meson can
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be written as

Lρ = Lπρ + LπρN + LπρR + LπρNR. (12)

The part describing the ρ meson and its interaction with pions
reads [64,71]

Lρ = −1

2
Tr(ρμνρ

μν)

+M2
ρ0Tr

[(
ρμ − i

g
	μ

)(
ρμ − i

g
	μ

)]
+ · · · , (13)

where

ρμν = ∂μρν − ∂νρμ − ig[ρμ,ρν],

and Mρ0 denotes the (bare) ρ-meson mass. Note that the
structure proportional to the low-energy constant (LEC) dx of
Ref. [64] does not contribute to the transition form factors
at NNLO and is, therefore, omitted from Eq. (13). The
coupling constant g can be fixed via the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin relation [72,73],

M2
ρ = 2g2F 2, (14)

generated by the combination of chiral symmetry and the
consistency of the EFT with respect to renormalizability [74].
Equation (13) is self-consistent with respect to constraints and
perturbative renormalizability [75].

The remaining parts of the Lagrangian relevant for the
subsequent calculation are given by

LπρN = N̄

[
k1

(
ρμ − i

g
	μ

)
γ μ

]
N + · · · ,

LπρR = R̄

[
k2

(
ρμ − i

g
	μ

)
γ μ

]
R + · · · , (15)

LπρNR = R̄

[
k3

2
ρμνσ

μν + k4[Dμ,ρμν]Dν

]
N + H.c. + · · · .

In the following, we assume that the ρ meson couples
universally, meaning that the self-coupling of the ρ meson
equals the coupling of the ρ meson to pions and nucleons,
k1 = g. Moreover, we also assume that the ρ meson cou-
ples universally to the Roper resonance, i.e., k2 = g. These
universality conditions are supposed to be a consequence of
consistency conditions imposed by the demand of perturbative
renormalizability [74].

III. RENORMALIZATION AND POWER COUNTING

In the following, we apply the CMS which originally was
developed in the context of the Standard Model to derive
properties of W±, Z0, and Higgs bosons obtained from reso-
nant processes [51–55]. In Refs. [56–59], the renormalization
prescriptions were modified to obtain a consistent power
counting in the framework of effective field theory. Referring
to these articles, we split the bare parameters (and fields)
of the Lagrangian into, in general, complex renormalized
parameters and counter terms. We choose the renormalized
masses as the poles of the dressed propagators in the chiral

limit:

mR0 = zχ + δzχ ,

mN0 = m + δm, (16)

Mρ0 = Mρχ + δMρχ ,

where zχ is the complex pole of the Roper propagator in the
chiral limit, m is the mass of the nucleon in the chiral limit,
and Mρχ is the complex pole of the ρ-meson propagator in
the chiral limit. We include the renormalized parameters zχ ,
m, and Mρχ in the propagators and treat the counter terms
perturbatively. The renormalized couplings are chosen such
that the corresponding counter terms exactly cancel the power-
counting-violating parts of the loop diagrams.

Because the starting point is a Hermitian Lagrangian in
terms of bare parameters and fields, unitarity cannot be violated
in the complete theory. Generalizing the notion of cutting rules
[76] to unstable particles, in Ref. [61] it was shown at the
one-loop level that within the CMS unitarity is also satisfied
in a perturbative sense. In this context, it was verified that
unstable particles do not appear as asymptotic states and are
therefore excluded from the unitarity condition [77].

We organize our perturbative calculation by applying the
standard power counting of Refs. [78,79] to the renormalized
diagrams, i.e., an interaction vertex obtained from an O(qn)
Lagrangian counts as low-energy order qn, a pion propagator
as order q−2, a nucleon propagator as order q−1, and the
integration of a loop as order q4. In addition, we assign
the order q−1 to the Roper propagator and the order q0

to the ρ-meson propagator. In practice, we implement this
scheme by subtracting the loop diagrams at, in general,
complex “on-mass-shell” points in the chiral limit. Because
the virtual-photon four-momentum transfer qμ counts as
O(q), we also assign the order q1 to the mass difference
between the Roper resonance and the nucleon. In view of
a chiral-symmetry-breaking scale �χSB = 4πF ≈ O(1 GeV)
implied by pion loop corrections [80], we expect only a slow
convergence of the perturbative expansion, even more so,
because the available experimental data start only at somewhat
large values of Q2.

IV. ELECTROMAGNETIC TRANSITION FORM FACTORS

The Roper resonance does not appear in the spectrum
of asymptotic states as it is an unstable particle. To define
the matrix element for the electromagnetic transition from
the nucleon to the Roper resonance, we consider the pion
electroproduction amplitude for an invariant energy near the
mass of the Roper resonance. For the incoming nucleon, being
a stable particle, on-shell kinematics correspond to p2

i = m2
N .

On the other hand, for unstable particles such as the outgoing
Roper resonance, the analogous kinematical point is given by
the pole position, i.e., p2

f = z2. Introducing “Dirac spinors”
w̄i and wj with complex masses z for the final lines, in
Ref. [81] the authors described a method how to extract from
the general vertex only those pieces which survive at the pole.
The renormalized vertex function for p2

i = m2
N and p2

f = z2
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may be written in terms of two transition form factors,2√
ZR w̄i(pf )	μ(pf ,pi)u

j (pi)
√

ZN

= w̄i(pf )

[(
γ μ − /q

qμ

q2

)
F̃ ∗

1 (Q2)

+ iσμνqν

MR + mN

F̃ ∗
2 (Q2)

]
uj (pi), (17)

where ZR and ZN are the residues of the dressed propagators of
the Roper resonance and the nucleon, respectively. Moreover,
we introduced the positive-valued quantity Q2 = −q2 =
−(pf − pi)2. The normalization of the Pauli form factor F̃ ∗

2
features the sum of the nucleon mass mN and the Breit-Wigner
mass of the Roper resonance MR = 1.44 GeV. We choose
this normalization to improve comparability of our results
with phenomenological analyses. Both transition form factors
are complex-valued functions even for q2 < 0 because of the
resonance character of the Roper. In contrast to the elastic
case, the coefficient of the Dirac form factor F̃ ∗

1 contains a
term proportional to qμ so that current conservation can be
fulfilled. It is common to parametrize the nucleon-to-Roper
transition in terms of the transverse and scalar (longitudinal)
helicity amplitudes A1/2 and S1/2, respectively, defined in
the rest frame of the Roper resonance. The relation between
the helicity amplitudes extracted from experimental data
and the matrix elements of the current operator defines the
coupling only up to a phase, which in the present context
reduces to a sign ζ = ±1 [1,3,82]. We therefore define

F ∗
i (Q2) = ζ F̃ ∗

i (Q2). (18)

With this convention, the transverse and scalar (longitudinal)
helicity amplitudes can be expressed as the following linear
combinations of the form factors F ∗

1 and F ∗
2 [8]:

A1/2(Q2) = e Q−√
4KmNMR

(F ∗
1 (Q2) + F ∗

2 (Q2)),

S1/2(Q2) = e Q−√
8KmNMR

(
Q−Q+
2MR

)
MR + mN

Q2
(19)

×
[
F ∗

1 (Q2) − Q2

(MR + mN )2
F ∗

2 (Q2)

]
,

with

K = M2
R − m2

N

2MR

, Q± =
√

(MR ± mN )2 + Q2.

According to [1,3,82], in Eq. (18) we choose ζ = −1 if gπNN

and gπNR have the same sign and ζ = 1 for opposite signs. In
the present context, this translates into comparing the signs of
gA and gNR .

At NNLO [O(q3)], the vertex function 	μ(pf ,pi) obtains
contributions from four tree diagrams (see Fig. 1) and 18
loop diagrams (see Fig. 2). According to Eq. (15), there is no
nucleon-photon-Roper and no nucleon-ρ-Roper interaction at

2The tilde symbol denotes the phase convention of the present
theoretical calculation.

(T1)

2

(T2)

1

1

(T3)

3

(T4)

2

1

FIG. 1. Tree diagrams contributing to the electromagnetic tran-
sition form factors of the Roper resonance. Solid and wiggly lines
correspond to the nucleon and the external electromagnetic field,
respectively; double-solid lines correspond to the Roper and double-
wiggly lines to the ρ meson. The numbers in the vertices indicate the
respective orders.

O(q). Writing the wave function renormalization constant as

ZN/R = 1 + δZN/R, (20)

where δZN/R is of O(q2), we find that the product of tree
diagrams (T1) and (T2) (see Fig. 1) and δZN/R is at least of
O(q4), i.e., beyond the accuracy of our calculation.

To renormalize the diagrams of Fig. 2 we first apply the
modified minimal subtraction scheme of ChPT (M̃S) [45].
Then, we perform additional finite subtractions such that the
renormalized diagrams satisfy the given power counting. We
find that the M̃S-subtracted contributions to F ∗

1 do not contain
any power-counting-violating terms. On the other hand, all
power-counting-violating terms of F ∗

2 are analytic in small
quantities and can be absorbed by the renormalization of
the available coupling constants. This finding, together with
current conservation, provides an important consistency check
for our calculation.

V. NUMERICAL EVALUATION AND RESULTS

For the numerical evaluation of the one-loop integrals we
substitute the physical values for the relevant parameters given
in Table I. The difference between the physical values and
the respective values in the chiral limit is beyond the given
precision with respect to a (chiral) low-energy expansion.
More specifically, we need to evaluate scalar one-, two-,
and three-point functions with complex parameters.3 While
it is well known how to analytically continue scalar one- and
two-point functions to complex internal masses and complex
external invariant momenta, the evaluation of three-point
functions with complex parameters is more involved and, to
the best of our knowledge, only possible for a few special
cases (see Ref. [84]). To avoid this complication, we drop
the finite imaginary part of the internal masses of the Roper
resonance in all loop integrals. Neglecting the imaginary part
in the one-loop integrals constitutes an effect of O(�2) which
is beyond the accuracy of our one-loop calculation.

As far as the remaining eight LECs are concerned we make
use of the following strategy. The couplings gA, gNR , and gR

appear in the one-loop diagrams of Fig. 2, namely, in terms
of the products gA gNR and gR gNR in diagrams (1)–(9) and
(10)–(18), respectively. To keep the number of free parameters

3A definition of scalar loop integrals can be found in Ref. [83].
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FIG. 2. Loop diagrams contributing to the electromagnetic transition form factors of the Roper resonance. Dashed, solid, and wiggly lines
correspond to the pion, nucleon, and external electromagnetic field, respectively; double-solid lines correspond to the Roper and double-wiggly
lines to the ρ meson. The numbers in the vertices indicate the respective orders.

as small as possible, we follow Ref. [69] and take gR = 1 such
that gA and gR are roughly of the same size (the naive quark
model predicts gA = gR). Moreover, we use gNR = 0.35 [69],
compatible with a tree-level fit to the branching ratio of the
Roper resonance into one pion and a nucleon [85].4

The remaining six parameters appear only in the tree
diagrams and can be determined by a fit to data. In total, four
helicity amplitudes can be analyzed from electroproduction
experiments, tranverse [pA1/2(Q2), nA1/2(Q2)] and scalar
(longitudinal) [pS1/2(Q2), nS1/2(Q2)] helicity amplitudes of
proton and neutron, respectively. From mainly JLab experi-
ments measured by the CLAS collaboration, analyzed helicity
amplitude data are found in the literature from a MAID analysis,

4Using mR = 1365 MeV for the real part of the pole position and
	Nπ = 190 × 0.65 MeV = 123.5 MeV for the partial decay width,
one obtains the slightly larger value gNR = 0.47.

Ref. [8], and a CLAS analysis, Ref. [9], both from single-pion
electroproduction, and from a recent CLAS analysis, Ref. [10],
from two-pion electroproduction. These data points are only
for a proton target and Q2 � 0.28 GeV2. No single-Q2 data
have yet been analyzed for the neutron target. At Q2 = 0,
the transverse helicity amplitudes are obtained from pion
photoproduction and somewhat precise values are found in
the Particle Data Listings [66]. The scalar helicity amplitudes
pS1/2(0) and nS1/2(0) are in general also finite, but cannot be
measured in a photoproduction experiment.

The data points are obtained from reaction models describ-
ing the electroproduction cross sections. MAID is a unitary
isobar model incorporating all established resonances up to
2 GeV. The resonant contributions are parametrized in terms
of a Breit-Wigner ansatz and the background is given in terms
of unitarized nucleon and vector-meson Born diagrams. A
similar approach is used by the CLAS collaboration, including
dispersion relations as an additional constraint. The application
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TABLE I. Physical values of the parameters, where the masses
and Fπ are given in units of GeV and gA is dimensionless. The values
are taken from Ref. [66].

mN Mπ z Mρ Fπ gA

0.938 0.140 1.365 − i
2 0.190 0.775 − i

2 0.149 0.0922 1.27

of both models allows for the extraction of so-called single-Q2

data for the electromagnetic transition from the proton to the
positively charged Roper over a wide range of momentum
transfers.

Because of the above-mentioned limitations in the data,
we first performed a fit of the six parameters to the empirical
helicity amplitudes obtained in the analysis of MAID2007, with
an update in 2008, mainly because of new electroproduction
data at higher Q2 [8]. This fit cannot describe all four helicity
amplitudes simultaneously. In particular, we find different
values for the coupling k4, which only affects the scalar helicity
amplitudes, when fitted to proton and neutron amplitudes
separately. However, the empirical MAID fit that was found
by a global fit of the MAID model to the world data base
on electroproduction of proton and neutron targets, still has
quite a few uncertainties, especially for the scalar neutron
helicity amplitude, to which practically no available data were
very sensitive. As a consequence, we tried a fit to only three
empirical helicity amplitudes, by excluding the scalar neutron
helicity amplitude. From this analysis with the empirical
helicity amplitudes we can conclude that a large isovector
coupling of the ρ meson is observed with a value k3 ≈ −4.9.
In Fig. 3, we present our results together with both the data
and the empirical fit of the helicity amplitudes. The results for
the LECs are given in Table II.
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FIG. 3. (Color online) Transverse and scalar (longitudinal) he-
licity amplitudes A1/2 and S1/2 of the nucleon-to-Roper-resonance
transition in units of 10−3 GeV−1/2. Solid (black) lines, total results in
the complex-mass scheme; long-dashed (red) lines, tree contribution;
short-dashed (blue) lines, loop contribution; dash-dotted (green) lines,
empirical parametrization of Ref. [8]. The data points originate from
the analysis of single-pion electroproduction data (circles [6] and
squares [9]) and double-pion electroproduction data (triangles [10]).
The values of A1/2 at the real-photon point are taken from Ref. [66].

TABLE II. Values for the fitted LECs, where c∗
p/n = c∗

7
2 ± c∗

6 and
k3 are given in units of GeV−1, k4 in units of GeV−2, and d∗

p/n =
d∗

7 ± d∗
6 in units of GeV−3. The values of gR and gNR of the first two

columns were fixed for the fit; see text.

gR gNR c∗
p c∗

n d∗
p d∗

n k3 k4

1.0 0.35 0.29 −0.18 0.04 0.1 −4.9 1.0

In Fig. 4, the curves for the transition form factors F ∗
1 and

F ∗
2 are shown. For a discussion of the individual contributions

to the transition form factors it is useful to compare them with
the elastic nucleon form factors. Therefore, in Fig. 5 we also
provide the nucleon form factors F1 and F2 of Ref. [64], that
were obtained in an analogous scenario containing nucleons,
pions, and vector mesons as dynamical degrees of freedom.
We stress that the parameters of Ref. [64] were obtained from
a fit to experimental data up to and including a maximal
value of Q2

max = 0.4 GeV2. First of all, as might be expected
from the structure and the topology of the loop diagrams, by
and large the pion loop contributions are of a similar size
for both the elastic nucleon form factors and the nucleon-
to-Roper-resonance transition form factors. However, there
are similarities as well as differences that will be discussed
in the following. At Q2 = 0, the Dirac form factors are
determined in terms of the (transition) charge operator, and
the corresponding loop contributions add up to zero in each
case. In contrast, the Pauli form factors at Q2 = 0 are not
fixed by current conservation. In the case of the nucleon form
factors, there exists a substantial isovector loop contribution
to the anomalous magnetic moment, whereas the isoscalar
piece is small.5 For the nucleon-to-Roper transition, the loop
contribution at Q2 = 0 is much smaller and predominantly

5Isoscalar and isovector quantities are obtained by taking the sum
and difference of proton and neutron quantities, respectively, and
dividing the result by 2.
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FIG. 4. (Color online) Dirac and Pauli form factors F ∗
1 and F ∗

2

of the nucleon-to-Roper-resonance transition. The meaning of the
curves and of the data points as in Fig. 3. The relations between the
form factors and the helicity amplitudes is given in Eq. (19).
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FIG. 5. (Color online) Dirac and Pauli form factors F1 and F2 of
the nucleon [64]. Solid (black) lines, total results; long-dashed (red)
lines, tree contribution; short-dashed (blue) lines, loop contribution.

of isoscalar type. A significant difference occurs in the Q2

dependence of the Pauli form factors. In the nucleon case, the
pion loop contribution reveals little Q2 dependence for both the
proton and neutron. On the other hand, the Pauli transition form
factors develop a noticeable Q2 dependence for the isoscalar
combination, whereas the isovector combination remains
somewhat small. With respect to the Dirac form factors, the
pion loop contributions to F̃

∗p−R
1 and F̃ ∗n−R

1 behave similarly
as Fn

1 and F
p
1 , respectively, albeit with a smaller magnitude.

The present calculation neglects loop contributions involving
the � resonance as a propagating degree of freedom. From a
comparison with the nucleon case [64], we expect additional
loop contributions which, for larger values of Q2, might be of
a similar size as the present loop contributions. When fitting
to data, these additional contributions will be compensated by
different values of the available LECs. Finally, let us stress
that the application of a one-loop calculation to values of Q2

as large as 0.6 GeV2 is very likely to be too far stretched.
Given the fact that no data exist for small values of Q2, our
results should be regarded as a compromise. We expect them
to be more trustworthy for smaller values of Q2. Moreover,
they allow us to assess the significance of quantum (loop)
effects, which would be absent in a purely phenomenological
tree-level fit.

One possible approach to obtain model-independent predic-
tions for the transition form factors are numerical simulations
on the lattice. At present, calculations of the nucleon-to-Roper-
resonance transition form factors are based on the quenched
approximation and seem to fail for low squared momentum
transfers [39,40]. Given the manifest Lorentz covariance of
our results, they may provide useful guidance for systematical
extrapolations of lattice simulations to the physical value of
the pion mass. To obtain an idea of the pion-mass dependence
of the transition form factors we show F ∗

1 and F ∗
2 for different

values of the pion mass in Fig. 6.

VI. SUMMARY AND OUTLOOK

To summarize, we have calculated the electromagnetic
transition form factors of the Roper resonance up to and
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FIG. 6. Dirac and Pauli form factors F ∗
1 and F ∗

2 of the nucleon-to-
Roper-resonance transition for different values of the pion mass. Solid
lines refer to Mπ = 0.14 GeV, dashed lines to Mπ = 0.2 GeV, dotted
lines to Mπ = 0.3 GeV, and dash-dotted lines to Mπ = 0.4 GeV,
respectively.

including NNLO using EFT techniques. To obtain a systematic
power counting, we applied the CMS which is a generalization
of the on-mass-shell renormalization to unstable particles.

Our final results have been fitted to empirical data of the
helicity amplitudes up to and including Q2 = 0.58 GeV2.
Even though the obtained results are in good agreement with
the empirical analyses, we stress that a one-loop calculation
should be treated with care beyond Q2 = 0.4 GeV2. The
reason we have extended the fits to such large values of
Q2 is the lack of empirical data in the low-Q2 domain. To
reduce the number of fit parameters we fixed the LECs gR and
gNR because, in principle, they belong to other processes and
contribute only to loop diagrams in the present calculation. The
remaining six LECs were assumed to be real and determined
by fitting the data of the proton helicity amplitudes and the
empirical parametrization of the neutron helicity amplitudes.
A potentially useful application of our calculation is in the
context of lattice extrapolations. To that end, we have also
discussed the pion-mass dependence of the transition form
factors.

In conclusion, it is possible to systematically calculate the
electromagnetic transition form factors of the Roper resonance
by applying the CMS and phenomenologically describe the
available empirical data in the low-Q2 region. On the other
hand, because of the large difference between the nucleon and
Roper resonance masses, serving as an expansion parameter,
the convergence of the underlying perturbative expansion and
the valid region of applicability has yet to be studied more
thoroughly.

The nucleon-to-Roper transition vertex containing the
transition form factors appears as a building block in the
resonant s channel of pion electroproduction. For this reason,
a full calculation of pion electroproduction for center-of-
mass energies in the region of the Roper mass seems to be
feasible choosing an appropriate power counting. A further
improvement concerns the inclusion of the � resonance as an
explicit dynamical degree of freedom.
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(1988).
[46] H.-B. Tang, arXiv:hep-ph/9607436.
[47] T. Becher and H. Leutwyler, Eur. Phys. J. C 9, 643 (1999).
[48] J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038

(1999).
[49] T. Fuchs, J. Gegelia, G. Japaridze, and S. Scherer, Phys. Rev. D

68, 056005 (2003).
[50] M. R. Schindler, J. Gegelia, and S. Scherer, Phys. Lett. B 586,

258 (2004).
[51] R. G. Stuart, in Z0Physics, edited by J. Tran Thanh Van (Editions

Frontieres, Gif-sur-Yvette, 1990), p. 41.
[52] A. Denner, S. Dittmaier, M. Roth, and D. Wackeroth, Nucl.

Phys. B 560, 33 (1999).
[53] A. Denner and S. Dittmaier, Nucl. Phys. Proc. Suppl. 160, 22

(2006).
[54] S. Actis and G. Passarino, Nucl. Phys. B 777, 100 (2007).
[55] S. Actis, G. Passarino, C. Sturm, and S. Uccirati, Phys. Lett. B

669, 62 (2008).
[56] D. Djukanovic, J. Gegelia, A. Keller, and S. Scherer, Phys. Lett.

B 680, 235 (2009).
[57] D. Djukanovic, J. Gegelia, and S. Scherer, Phys. Lett. B 690,

123 (2010).
[58] T. Bauer, J. Gegelia, and S. Scherer, Phys. Lett. B 715, 234

(2012).
[59] D. Djukanovic, E. Epelbaum, J. Gegelia, and U.-G. Meißner,

Phys. Lett. B 730, 115 (2014).
[60] T. Bauer, D. Djukanovic, J. Gegelia, S. Scherer, and L. Tiator,

AIP Conf. Proc. 1432, 269 (2012).
[61] T. Bauer, J. Gegelia, G. Japaridze, and S. Scherer, Int. J. Mod.

Phys. A 27, 1250178 (2012).
[62] B. Kubis and U.-G. Meißner, Nucl. Phys. A 679, 698 (2001).
[63] M. R. Schindler, J. Gegelia, and S. Scherer, Eur. Phys. J. A 26,

1 (2005).
[64] T. Bauer, J. C. Bernauer, and S. Scherer, Phys. Rev. C 86, 065206

(2012).
[65] M. Hilt, T. Bauer, S. Scherer, and L. Tiator (unpublished).

015201-8

http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://dx.doi.org/10.1140/epjst/e2011-01488-9
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1016/j.ppnp.2011.08.001
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1142/S0218301313300154
http://dx.doi.org/10.1088/0034-4885/76/7/076301
http://dx.doi.org/10.1088/0034-4885/76/7/076301
http://dx.doi.org/10.1088/0034-4885/76/7/076301
http://dx.doi.org/10.1088/0034-4885/76/7/076301
http://dx.doi.org/10.1103/PhysRevC.71.015201
http://dx.doi.org/10.1103/PhysRevC.71.015201
http://dx.doi.org/10.1103/PhysRevC.71.015201
http://dx.doi.org/10.1103/PhysRevC.71.015201
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1140/epja/i2007-10490-6
http://dx.doi.org/10.1103/PhysRevC.78.045209
http://dx.doi.org/10.1103/PhysRevC.78.045209
http://dx.doi.org/10.1103/PhysRevC.78.045209
http://dx.doi.org/10.1103/PhysRevC.78.045209
http://dx.doi.org/10.1016/j.physletb.2009.01.048
http://dx.doi.org/10.1016/j.physletb.2009.01.048
http://dx.doi.org/10.1016/j.physletb.2009.01.048
http://dx.doi.org/10.1016/j.physletb.2009.01.048
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.80.055203
http://dx.doi.org/10.1103/PhysRevC.86.035203
http://dx.doi.org/10.1103/PhysRevC.86.035203
http://dx.doi.org/10.1103/PhysRevC.86.035203
http://dx.doi.org/10.1103/PhysRevC.86.035203
http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1103/PhysRevLett.12.340
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1063/1.3647158
http://dx.doi.org/10.1016/0370-2693(77)90074-0
http://dx.doi.org/10.1016/0370-2693(77)90074-0
http://dx.doi.org/10.1016/0370-2693(77)90074-0
http://dx.doi.org/10.1016/0370-2693(77)90074-0
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1103/PhysRevD.19.2653
http://dx.doi.org/10.1016/0370-1573(95)00062-3
http://dx.doi.org/10.1016/0370-1573(95)00062-3
http://dx.doi.org/10.1016/0370-1573(95)00062-3
http://dx.doi.org/10.1016/0370-1573(95)00062-3
http://dx.doi.org/10.1103/PhysRevD.65.074503
http://dx.doi.org/10.1103/PhysRevD.65.074503
http://dx.doi.org/10.1103/PhysRevD.65.074503
http://dx.doi.org/10.1103/PhysRevD.65.074503
http://dx.doi.org/10.1103/PhysRevD.67.114506
http://dx.doi.org/10.1103/PhysRevD.67.114506
http://dx.doi.org/10.1103/PhysRevD.67.114506
http://dx.doi.org/10.1103/PhysRevD.67.114506
http://dx.doi.org/10.1016/S0920-5632(03)01525-1
http://dx.doi.org/10.1016/S0920-5632(03)01525-1
http://dx.doi.org/10.1016/S0920-5632(03)01525-1
http://dx.doi.org/10.1016/S0920-5632(03)01525-1
http://dx.doi.org/10.1016/S0920-5632(03)01543-3
http://dx.doi.org/10.1016/S0920-5632(03)01543-3
http://dx.doi.org/10.1016/S0920-5632(03)01543-3
http://dx.doi.org/10.1016/S0920-5632(03)01543-3
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1016/j.physletb.2004.11.010
http://dx.doi.org/10.1016/j.physletb.2005.07.026
http://dx.doi.org/10.1016/j.physletb.2005.07.026
http://dx.doi.org/10.1016/j.physletb.2005.07.026
http://dx.doi.org/10.1016/j.physletb.2005.07.026
http://dx.doi.org/10.1016/j.physletb.2009.07.063
http://dx.doi.org/10.1016/j.physletb.2009.07.063
http://dx.doi.org/10.1016/j.physletb.2009.07.063
http://dx.doi.org/10.1016/j.physletb.2009.07.063
http://dx.doi.org/10.1016/j.physletb.2010.08.049
http://dx.doi.org/10.1016/j.physletb.2010.08.049
http://dx.doi.org/10.1016/j.physletb.2010.08.049
http://dx.doi.org/10.1016/j.physletb.2010.08.049
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1016/j.physletb.2011.12.048
http://dx.doi.org/10.1016/0370-2693(69)90261-5
http://dx.doi.org/10.1016/0370-2693(69)90261-5
http://dx.doi.org/10.1016/0370-2693(69)90261-5
http://dx.doi.org/10.1016/0370-2693(69)90261-5
http://dx.doi.org/10.1103/PhysRevD.46.2864
http://dx.doi.org/10.1103/PhysRevD.46.2864
http://dx.doi.org/10.1103/PhysRevD.46.2864
http://dx.doi.org/10.1103/PhysRevD.46.2864
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1103/PhysRevC.86.065202
http://dx.doi.org/10.1103/PhysRevC.41.2783
http://dx.doi.org/10.1103/PhysRevC.41.2783
http://dx.doi.org/10.1103/PhysRevC.41.2783
http://dx.doi.org/10.1103/PhysRevC.41.2783
http://dx.doi.org/10.1016/S0370-2693(97)00149-4
http://dx.doi.org/10.1016/S0370-2693(97)00149-4
http://dx.doi.org/10.1016/S0370-2693(97)00149-4
http://dx.doi.org/10.1016/S0370-2693(97)00149-4
http://dx.doi.org/10.1103/PhysRevC.60.035203
http://dx.doi.org/10.1103/PhysRevC.60.035203
http://dx.doi.org/10.1103/PhysRevC.60.035203
http://dx.doi.org/10.1103/PhysRevC.60.035203
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevD.81.074020
http://dx.doi.org/10.1103/PhysRevD.37.89
http://dx.doi.org/10.1103/PhysRevD.37.89
http://dx.doi.org/10.1103/PhysRevD.37.89
http://dx.doi.org/10.1103/PhysRevD.37.89
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1016/S0370-2693(01)01348-X
http://dx.doi.org/10.1140/epja/i2009-10878-2
http://dx.doi.org/10.1140/epja/i2009-10878-2
http://dx.doi.org/10.1140/epja/i2009-10878-2
http://dx.doi.org/10.1140/epja/i2009-10878-2
http://dx.doi.org/10.1103/PhysRevD.46.70
http://dx.doi.org/10.1103/PhysRevD.46.70
http://dx.doi.org/10.1103/PhysRevD.46.70
http://dx.doi.org/10.1103/PhysRevD.46.70
http://dx.doi.org/10.1103/PhysRevD.84.014004
http://dx.doi.org/10.1103/PhysRevD.84.014004
http://dx.doi.org/10.1103/PhysRevD.84.014004
http://dx.doi.org/10.1103/PhysRevD.84.014004
http://dx.doi.org/10.1016/S0370-2693(98)00574-7
http://dx.doi.org/10.1016/S0370-2693(98)00574-7
http://dx.doi.org/10.1016/S0370-2693(98)00574-7
http://dx.doi.org/10.1016/S0370-2693(98)00574-7
http://dx.doi.org/10.1103/PhysRevD.76.073007
http://dx.doi.org/10.1103/PhysRevD.76.073007
http://dx.doi.org/10.1103/PhysRevD.76.073007
http://dx.doi.org/10.1103/PhysRevD.76.073007
http://dx.doi.org/10.1103/PhysRevD.78.114508
http://dx.doi.org/10.1103/PhysRevD.78.114508
http://dx.doi.org/10.1103/PhysRevD.78.114508
http://dx.doi.org/10.1103/PhysRevD.78.114508
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0378-4371(79)90223-1
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1007/978-3-642-19254-8_1
http://dx.doi.org/10.1007/978-3-642-19254-8_1
http://dx.doi.org/10.1007/978-3-642-19254-8_1
http://dx.doi.org/10.1007/978-3-642-19254-8_1
http://dx.doi.org/10.1016/0550-3213(88)90108-3
http://dx.doi.org/10.1016/0550-3213(88)90108-3
http://dx.doi.org/10.1016/0550-3213(88)90108-3
http://dx.doi.org/10.1016/0550-3213(88)90108-3
http://arxiv.org/abs/arXiv:hep-ph/9607436
http://dx.doi.org/10.1007/s100530050518
http://dx.doi.org/10.1007/s100530050518
http://dx.doi.org/10.1007/s100530050518
http://dx.doi.org/10.1007/s100530050518
http://dx.doi.org/10.1103/PhysRevD.60.114038
http://dx.doi.org/10.1103/PhysRevD.60.114038
http://dx.doi.org/10.1103/PhysRevD.60.114038
http://dx.doi.org/10.1103/PhysRevD.60.114038
http://dx.doi.org/10.1103/PhysRevD.68.056005
http://dx.doi.org/10.1103/PhysRevD.68.056005
http://dx.doi.org/10.1103/PhysRevD.68.056005
http://dx.doi.org/10.1103/PhysRevD.68.056005
http://dx.doi.org/10.1016/j.physletb.2004.02.056
http://dx.doi.org/10.1016/j.physletb.2004.02.056
http://dx.doi.org/10.1016/j.physletb.2004.02.056
http://dx.doi.org/10.1016/j.physletb.2004.02.056
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.025
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.025
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.025
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.025
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.027
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.027
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.027
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.027
http://dx.doi.org/10.1016/j.physletb.2008.09.028
http://dx.doi.org/10.1016/j.physletb.2008.09.028
http://dx.doi.org/10.1016/j.physletb.2008.09.028
http://dx.doi.org/10.1016/j.physletb.2008.09.028
http://dx.doi.org/10.1016/j.physletb.2009.08.068
http://dx.doi.org/10.1016/j.physletb.2009.08.068
http://dx.doi.org/10.1016/j.physletb.2009.08.068
http://dx.doi.org/10.1016/j.physletb.2009.08.068
http://dx.doi.org/10.1016/j.physletb.2010.05.022
http://dx.doi.org/10.1016/j.physletb.2010.05.022
http://dx.doi.org/10.1016/j.physletb.2010.05.022
http://dx.doi.org/10.1016/j.physletb.2010.05.022
http://dx.doi.org/10.1016/j.physletb.2012.07.032
http://dx.doi.org/10.1016/j.physletb.2012.07.032
http://dx.doi.org/10.1016/j.physletb.2012.07.032
http://dx.doi.org/10.1016/j.physletb.2012.07.032
http://dx.doi.org/10.1016/j.physletb.2014.01.001
http://dx.doi.org/10.1016/j.physletb.2014.01.001
http://dx.doi.org/10.1016/j.physletb.2014.01.001
http://dx.doi.org/10.1016/j.physletb.2014.01.001
http://dx.doi.org/10.1063/1.3701228
http://dx.doi.org/10.1063/1.3701228
http://dx.doi.org/10.1063/1.3701228
http://dx.doi.org/10.1063/1.3701228
http://dx.doi.org/10.1142/S0217751X12501783
http://dx.doi.org/10.1142/S0217751X12501783
http://dx.doi.org/10.1142/S0217751X12501783
http://dx.doi.org/10.1142/S0217751X12501783
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1016/S0375-9474(00)00378-X
http://dx.doi.org/10.1140/epja/i2005-10145-8
http://dx.doi.org/10.1140/epja/i2005-10145-8
http://dx.doi.org/10.1140/epja/i2005-10145-8
http://dx.doi.org/10.1140/epja/i2005-10145-8
http://dx.doi.org/10.1103/PhysRevC.86.065206
http://dx.doi.org/10.1103/PhysRevC.86.065206
http://dx.doi.org/10.1103/PhysRevC.86.065206
http://dx.doi.org/10.1103/PhysRevC.86.065206


ELECTROMAGNETIC TRANSITION FORM FACTORS OF . . . PHYSICAL REVIEW C 90, 015201 (2014)

[66] J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev.
D 86, 010001 (2012).

[67] M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

[68] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).
[69] B. Borasoy, P. C. Bruns, U.-G. Meißner, and R. Lewis, Phys.

Lett. B 641, 294 (2006).
[70] S. Scherer and H. W. Fearing, Phys. Rev. D 52, 6445 (1995).
[71] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael,

Phys. Lett. B 223, 425 (1989).
[72] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255

(1966).
[73] Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).
[74] D. Djukanovic, M. R. Schindler, J. Gegelia, G. Japaridze, and

S. Scherer, Phys. Rev. Lett. 93, 122002 (2004).
[75] D. Djukanovic, J. Gegelia, and S. Scherer, Int. J. Mod. Phys. A

25, 3603 (2010).

[76] R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
[77] M. J. G. Veltman, Physica 29, 186 (1963).
[78] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[79] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).
[80] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189

(1984).
[81] J. Gegelia and S. Scherer, Eur. Phys. J. A 44, 425 (2010).
[82] I. G. Aznauryan, Phys. Rev. C 76, 025212 (2007).
[83] A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006).
[84] G. Passarino, C. Sturm, and S. Uccirati, Nucl. Phys. B 834, 77

(2010).
[85] V. Bernard, N. Kaiser, and U.-G. Meißner, Nucl. Phys. B 457,

147 (1995).
[86] R. Mertig, M. Bohm, and A. Denner, Comput. Phys. Commun.

64, 345 (1991).
[87] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118,

153 (1999).

015201-9

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRev.110.1178
http://dx.doi.org/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1016/j.physletb.2006.08.057
http://dx.doi.org/10.1016/j.physletb.2006.08.057
http://dx.doi.org/10.1016/j.physletb.2006.08.057
http://dx.doi.org/10.1016/j.physletb.2006.08.057
http://dx.doi.org/10.1103/PhysRevD.52.6445
http://dx.doi.org/10.1103/PhysRevD.52.6445
http://dx.doi.org/10.1103/PhysRevD.52.6445
http://dx.doi.org/10.1103/PhysRevD.52.6445
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRevLett.16.255
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRev.147.1071
http://dx.doi.org/10.1103/PhysRevLett.93.122002
http://dx.doi.org/10.1103/PhysRevLett.93.122002
http://dx.doi.org/10.1103/PhysRevLett.93.122002
http://dx.doi.org/10.1103/PhysRevLett.93.122002
http://dx.doi.org/10.1142/S0217751X10049736
http://dx.doi.org/10.1142/S0217751X10049736
http://dx.doi.org/10.1142/S0217751X10049736
http://dx.doi.org/10.1142/S0217751X10049736
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1063/1.1703676
http://dx.doi.org/10.1016/S0031-8914(63)80277-3
http://dx.doi.org/10.1016/S0031-8914(63)80277-3
http://dx.doi.org/10.1016/S0031-8914(63)80277-3
http://dx.doi.org/10.1016/S0031-8914(63)80277-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1016/0146-6410(95)00041-G
http://dx.doi.org/10.1016/0550-3213(84)90231-1
http://dx.doi.org/10.1016/0550-3213(84)90231-1
http://dx.doi.org/10.1016/0550-3213(84)90231-1
http://dx.doi.org/10.1016/0550-3213(84)90231-1
http://dx.doi.org/10.1140/epja/i2010-10955-5
http://dx.doi.org/10.1140/epja/i2010-10955-5
http://dx.doi.org/10.1140/epja/i2010-10955-5
http://dx.doi.org/10.1140/epja/i2010-10955-5
http://dx.doi.org/10.1103/PhysRevC.76.025212
http://dx.doi.org/10.1103/PhysRevC.76.025212
http://dx.doi.org/10.1103/PhysRevC.76.025212
http://dx.doi.org/10.1103/PhysRevC.76.025212
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.007
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.013
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.013
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.013
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.013
http://dx.doi.org/10.1016/0550-3213(95)00526-9
http://dx.doi.org/10.1016/0550-3213(95)00526-9
http://dx.doi.org/10.1016/0550-3213(95)00526-9
http://dx.doi.org/10.1016/0550-3213(95)00526-9
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://dx.doi.org/10.1016/S0010-4655(98)00173-8



