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Examination of the directed flow puzzle in heavy-ion collisions
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Recent STAR data for the directed flow of protons, antiprotons, and charged pions obtained within the beam
energy scan program are analyzed within the parton-hadron-string-dynamics (PHSD and HSD) transport models
and a 3-fluid hydrodynamics approach. Both versions of the kinetic approach, HSD and PHSD, are used to clarify
the role of partonic degrees of freedom. The PHSD results, simulating a partonic phase and its coexistence with a
hadronic one, are roughly consistent with data. The hydrodynamic results are obtained for two equations of state
(EoS), a pure hadronic EoS and an EoS with a crossover type transition. The latter case is favored by the STAR
experimental data. Special attention is paid to the description of antiproton directed flow based on the balance
of pp̄ annihilation and the inverse processes for pp̄ pair creation from multimeson interactions. Generally, the
semiqualitative agreement between the measured data and the model results supports the idea of a crossover type
of quark-hadron transition that softens the nuclear EoS but shows no indication of a first-order phase transition.
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I. INTRODUCTION

As has been widely recognized, the study of the particle
azimuthal distribution in momentum space with respect to
the reaction plane is an important tool to probe the hot,
dense matter created in heavy-ion collisions [1,2]. The
directed flow refers to a collective sidewards deflection of
particles and is characterized by the first-order harmonic v1

of the Fourier expansion of the particle azimuthal angular
distribution with respect to the reaction plane [3]. The second
harmonic coefficient v2, called elliptic flow, and the triangular
flow v3 have been extensively studied both theoretically and
experimentally in the last years by about 5 orders of magnitude
in the collision energy

√
sNN [4]. In contrast, apart from

first measurements in the early nineties and till recent times,
the directed flow was studied mainly theoretically although
some experimental information from the GSI Schwerionen
Synchrotron (SIS) to CERN Super Proton Synchrotron (SPS)
energies is available [5].

It is generally believed that the directed transverse flow is
generated early in the heavy-ion collision before a thermal-
ization of the degrees of freedom occurs. In particular, in the
fragmentation region (i.e., at large rapidity or pseudorapidity),
the directed flow is generated during the nuclear passage
time [6,7]. The directed transverse flow therefore probes the
onset of bulk collective dynamics during thermalization,
thus providing valuable information on the pre-equilibrium
stage [8–11]. In earlier times (at moderate beam energies) the
first flow harmonic defined as

v1(y) = 〈cos(φ − φRP)〉 = 〈
vx

/√
v2

x + v2
y

〉
(1)

with respect to the reaction plane φRP was characterized
differently, i.e., by the mean transverse momentum per particle
projected on the reaction (x-z) plane 〈px(y)/N〉 in the
center-of-mass system which differs from the v1 harmonic
component. Unfortunately, it is not possible to convert or

directly compare v1 data to the earlier px/N analysis. The
NA49 Collaboration [12] has measured the flow coefficient v1

for pions and protons at SPS energies and a negative v1(y)
slope was observed by the standard event plane method for
pions. Often, just the slope of v1(y) at midrapidity has been
used to quantify the strength of the directed flow.

At BNL Alternating Gradient Synchrontron (AGS) energies
Elab � 11.5A GeV, the v1 dependence has a characteristic
S shape attributed to the standard 〈px(y)/N〉 distribution.
The projected average momentum 〈px(y)〉 grows linearly with
rising rapidity y between the target and projectile fragmenta-
tion regions. Conventionally, this type of flow—with positive
derivative dv1/dy—is called normal flow, in contrast to the
antiflow for which dv1/dy < 0 [7,12–14]. At these moderate
energies the slope of v1(y) at midrapidity F is observed to
be positive for protons and significantly smaller in magnitude
and negative for pions [12,13,15]. The smooth falloff of this
function with beam energy is reasonably reproduced by the
available hadronic kinetic models (see the comparison in
Ref. [16]).

The shape of the rapidity dependence v1(y) is of special
interest because the directed flow at midrapidity may be
modified by the collective expansion and reveal a signature of a
phase transition from normal nuclear matter to a quark-gluon
plasma (QGP). This is commonly studied by measuring the
central rapidity region that reflects important features of the
system evolution from its initial state. The predicted v1(y) flow
coefficient is small close to midrapidity with almost no depen-
dence on pseudorapidity. However, as first demonstrated in
Refs. [17,18], the three-dimensional hydrodynamic expansion
with an equation of state (EoS) including a possible phase
transition exhibits some irregularity in the evolution of the
system. When including a first-order phase transition this leads
to a local minimum in the proton excitation function of the
transverse directed flow at Elab ≈ 8A GeV. Such a first-order
transition leads to a softening of the EoS and consequently
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to a time-delayed expansion. The existence of this “softest
point” of the EoS at a minimum of the energy density εSP

leads to a long lifetime of the mixed phase and consequently
in a prolonged expansion of matter [19]. Presently, the critical
energy density (or latent heat for a first-order transition at finite
quark chemical potential) is not well known and estimates vary
from 0.5 GeV/fm3 to 1.5 GeV/fm3 [19–23]. A softest point
at εSP ∼ 1.5 GeV/fm3 should give a minimum in the directed
flow excitation function at Elab ∼ 30A GeV [19,20]. In the case
of ideal hydrodynamics the directed proton flow px shows
even a negative v1 (“v1 collapse”) between Elab = 8A GeV
and 20A GeV [24] and with rising energy increases back to
a positive flow. The ideal hydro calculations suggest that this
“softest point collapse” is at Elab ∼ 8A GeV but this was
not confirmed by available AGS data [24]. However, a linear
extrapolation of the AGS data indicates that a collapse of the
directed proton flow might be at Elab ≈ 30A GeV. However,
this minimum in the given energy range is not supported in the
two-fluid model with a phase transition [16].

This finding was further developed in more detail in
the AGS-SPS energy range. It was demonstrated that at
these energies the event shape resembles an ellipsoid in
coordinate space, tilted by an angle � with respect to the
beam axis. This ellipsoid expands predominantly orthogonal
to the bouncing-off direction given by �, forming a so-called
“third component” [25] or “antiflow component” [26]. In
addition to the deep minimum at Elab ≈ 8A GeV a clear
maximum was observed at Elab ≈ 40A GeV [26] exhibiting
a characteristic “wiggle” [27] in the v1 excitation function.
For high-energy nucleus-nucleus collisions, a combination of
space-momentum correlations of radial expansion together
with the correlation between the position of a nucleon in the
nucleus and its stopping results in a very specific rapidity
dependence of directed flow: a reversal of the sign in the
midrapidity region [27], in other words, the directed flow
changes sign three times. A similar rapidity dependence of the
directed flow could be developed due to a change in the matter
compressibility if a QGP is formed [25,26,28]. Although being
in good agreement with experimental data for many global
observables, the three-fluid hydrodynamic model [29] with
a purely hadronic EoS fails to describe the directed flow at
energies above Elab ∼ 40A GeV [30].

Thus, in hydrodynamic calculations [24–26], the wigglelike
structure in the v1 excitation function appears only under the
assumption of a QGP with a first-order phase transition thus
becoming a signature of the QGP phase transition. The wiggle
structure is interpreted as a consequence of the expansion of
the highly compressed, disk-shaped system tilted with respect
to the beam direction [26]. A similar wiggle structure of the
nucleon v1(y) is predicted in transport models if one assumes
strong but incomplete baryon stopping together with strong
space-momentum correlations caused by transverse radial
expansion [27].

While the predictions for baryon directed flow are very sim-
ilar in both hydrodynamical and transport models, the situation
for the pion directed flow is less clear. Relativistic Quantum
Molecular Dynamics (RQMD) model calculations [27] for
Au + Au collisions at

√
sNN = 200 GeV indicate that shad-

owing by protons causes the pions to flow dominantly with

the opposite sign to the protons, but somewhat diffused due to
higher thermal velocities for pions. Similar Ultra-relativistic
Quantum Molecular Dynamics (UrQMD) calculations [28]
predict no wiggle for pions in the central rapidity region with
a negative slope at midrapidity as observed at lower collision
energies. It is argued that directed flow, as an odd function of
rapidity y, may exhibit a small slope flatness at midrapidity
due to a strong expansion of the fireball being tilted away from
the collision axis. If the tilted expansion is strong enough, it
can even overcome the bouncing-off motion and result in a
negative v1(y) slope at midrapidity, potentially producing a
wigglelike structure in v1(y).

Note that although the calculations [25,26] for antiflow
and/or a third flow component are found for collisions at SPS
energies, where a first-order phase transition to a QGP might
be expected [24], the direct reason for the negative slope is
the strong, tilted expansion, which may also be important
at top BNL Relativistic Heavy Ion Collider (RHIC) energies.
The directed flow at

√
sNN = 200 GeV with a tilted source as

the initial condition is predicted to be small near midrapidity
with very weak dependence on pseudorapidity. Calculations
involving a QGP phase with a first-order phase transition
suggest that v1(y) may exhibit a characteristic wiggle [24–28].
In this case—in contrast to the observed sideward deflection
pattern at lower energy, where the sign changes only at
midrapidity—the directed flow changes sign three times, not
counting a possible sign change near beam rapidities. In
these calculations the wiggle structure is interpreted as a
consequence of the expansion of the system, which is initially
tilted with respect to the beam direction; the expansion leads
to the abovementioned antiflow or third flow component.

It is an experimental challenge to measure accurately v1(y)
at RHIC energies due to the relatively small signal and a
potentially large systematic error arising from azimuthal cor-
relations not related to the reaction plane orientation (nonflow
effects). The first RHIC measurements of azimuthal anisotropy
for charged particles at

√
sNN = (62–200) GeV show that v1(y)

appears to be close to zero near midrapidity. Similar results
have been obtained by the STAR [31], PHOBOS [32], and
PHENIX Collaborations using different correlation methods.
The model analysis of these data for nonidentified hadrons is
in reasonable agreement with experiment and shows no wiggle
structure [33,34]. Generally, similar conclusions follow from
the analysis of the v1(y) excitation functions in a large energy
range carried out within different macroscopic (hydro with
hadronic, two-phase, and chiral transition EoS [33,35,36]) and
microscopic (UrQMD and multiphase transport [33,37,38])
models that definitely show that systematic measurements with
higher precision for identified hadrons and more developed
models are needed.

The interest in the directed flow v1(y) has recently been
enhanced considerably due to new STAR data obtained in the
framework of the beam energy scan (BES) program [39]. The
directed flow of identified hadrons—protons, antiprotons, and
positive and negative pions—has been measured first with high
precision for semicentral Au + Au collisions in the energy
range

√
sNN = (7.7–200) GeV. These data provide a promising

basis for studying direct-flow issues as discussed above and
have been addressed already by the Frankfurt group [40]
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limiting themselves to the energy
√

sNN < 20 GeV where
hadronic processes are expected to be dominant. However,
the authors of Ref. [40] did not succeed in describing the data
and obtaining conclusive results which led to the notion of
the “directed flow puzzle.” Our study aims to analyze these
STAR results in the whole available energy range including in
particular antiproton data. Here we use two complementary
approaches: the kinetic transport [the parton-hadron string
dynamics (PHSD)] approach and relativistic three-fluid hy-
drodynamics (3FD) with different equations of state.

We start with a short presentation of the PHSD approach
and its hadronic version HSD (without partonic degrees of
freedom) and then analyze the BES data in terms of both trans-
port models to explore where effects from partonic degrees of
freedom show up. Furthermore, we make comparisons also
with predictions of other kinetic models in Sec. II while in
Sec. III a similar analysis is performed within a collective
model, i.e., the 3FD. Our findings are summarized in Sec. IV.

II. DIRECTED FLOW IN MICROSCOPIC APPROACHES

A. Reminder of PHSD

The PHSD model is a covariant dynamical approach
for strongly interacting systems formulated on the basis
of Kadanoff-Baym equations [41,42] or off-shell transport
equations in phase-space representation, respectively. In the
Kadanoff-Baym theory the field quanta are described in terms
of dressed propagators with complex self-energies. Whereas
the real part of the self-energies can be related to mean-
field potentials of Lorentz scalar, vector, or tensor type, the
imaginary parts provide information about the lifetime and/or
reaction rates of timelike particles [43]. Once the proper
complex self-energies of the degrees of freedom are known,
the time evolution of the system is fully governed by off-shell
transport equations for quarks and hadrons (as described in
Refs. [41,43]). The PHSD model includes the creation of
massive quarks via hadronic string decay—above the critical
energy density ∼0.5 GeV/fm3—and quark fusion forming
a hadron in the hadronization process. With some caution,
the latter process can be considered as a simulation of a
crossover transition because the underlying EoS in PHSD
is a crossover [43]. At energy densities close to the critical
energy density the PHSD describes a coexistence of this
quark-hadron mixture. This approach allows for a simple
and transparent interpretation of lattice QCD results for
thermodynamic quantities as well as correlators and leads
to effective strongly interacting partonic quasiparticles with
broad spectral functions. For a review of off-shell transport
theory we refer the reader to Ref. [43]; PHSD model results and
their comparison with experimental observables for heavy-ion
collisions from the lower SPS to RHIC energies can be
found in Refs. [34,43–45]. In the hadronic phase, i.e., for
energies densities below the critical energy density, the PHSD
approach is identical to the hadron-string-dynamics (HSD)
model [46–48].

The HSD approach formally can be written as a coupled
set of transport equations for the phase-space distributions
fh(x,p) of hadron h, which includes the real part of the scalar
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FIG. 1. (Color online) Particle abundance at midrapidity calcu-
lated for central collisions b = 2 fm in the HSD (dashed lines)
and PHSD (solid lines) models. The experimental data are from a
compilation of Ref. [51] complemented by recent data from the STAR
Collaboration [52] and the latest update of the compilation of NA49
results [53,54].

and vector hadron self-energies. The hadron quasiparticle
properties here are defined via the mass-shell constraint
with effective masses and momenta. In the HSD transport
calculations we include nucleons, �’s, N∗(1440), N�(1535),
�, �, and �� hyperons, 	’s, and 
’s as well as their
antiparticles. High-energy inelastic hadron-hadron collisions
are described by the FRITIOF model [49], where two incoming
hadrons emerge from the reaction as two excited color singlet
states, i.e., “strings.” The excitation functions for various
dynamical quantities as well as experimental observables from
SIS to RHIC energies within the HSD transport approach can
be found in Refs. [47,48,50].

Figure 1 illustrates how the hadron multiplicity dN/dy(y =
0) at midrapidity is reproduced within the PHSD (solid
lines) and HSD (dashed lines) kinetic approaches. We point
out that the antiproton abundance is a crucial issue. In the
AGS-SPS low-energy range (�20 GeV) both models agree
quite reasonably with experiment, including the antiproton
yield. The enhancement of the proton and antiproton yield at√

sNN = 62 GeV in PHSD relative to HSD can be traced back
to a larger baryon/antibaryon fraction in the hadronization
process. At lower energies this agreement is reached by
taking into account the pp̄ annihilation to three mesons (e.g.,
π , ρ, and ω) as well as the inverse channels employing
detailed balance as worked out in Ref. [55]. These inverse
channels are quite important; in particular, at the top SPS
energy this inverse reaction practically compensates the loss
of antiprotons due to their annihilation [55]. At lower SPS and
AGS energies the annihilation is dominant due to the lower
meson abundancies; however, the backward channels reduce
the net annihilation rate. We mention that the multiple-meson
recombination channels are not incorporated in the standard
UrQMD transport model [56]. The proton multiplicities are
reproduced rather well in the PHSD and HSD approaches
but the multiplicity of charged pions is slightly overestimated
for

√
sNN � 10 GeV. This discrepancy is observed also in
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other transport models [57,58] and is the subject of separate
investigations.

B. Directed flow from microscopic dynamical models

The whole set of directed flow excitation functions for
protons, antiprotons, and charged pions from the PHSD and
HSD models is presented in Fig. 2 in comparison to the
measured data [39] including early STAR results for the
two highest energies. The initial states in the PHSD and
HSD are simulated on an event-by-event basis taking into
account fluctuations in the position of the initially colliding
nucleons and fluctuations in the reaction plane. This procedure
is identical to that in the study of the elliptic flow in Ref. [44].
The average impact parameter for the selected events is
b = 7 fm. In the simulations the experimental acceptance
0.2 � pT � 2 GeV/c is taken into account for all hadrons [39].
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FIG. 2. (Color online) The directed flow v1(y) for protons, an-
tiprotons as well as negative pions from 10 to 40% central Au + Au
collisions at different collision energies from

√
sNN = 7.7 to 200 GeV

from HSD (dashed lines) and PHSD (solid lines). Experimental data
are from the STAR Collaboration [39].

At first glance, both models—in particular the PHSD—
correctly reproduce the general trends in the differential v1(y)
with bombarding energy: the v1(y) slope for protons is positive
at low energies (

√
sNN � 20 GeV) and approaches zero with

increasing energy while antiprotons and pions have negative
slopes, respectively, in the whole energy range. In more detail:
for protons the directed flow distributions are in reasonable
agreement with the STAR measurements in the whole range
of the collision energies considered (except for

√
sNN = 11.5

and 200 GeV). However, v1(y) for antiprotons agrees with the
data only for the highest energies where baryon-antibaryon
pairs are dominantly produced by hadronization. This becomes
evident from a comparison to the HSD results with v1(y) ≈ 0.
The shape of the v1(y) distribution for antiprotons starts
progressively to differ from the measured data if we proceed
from

√
sNN = 11.5 to 7.7 GeV. In the lower energy range

the HSD and PHSD results get very close which indicates
the dominance of hadronic reaction channels (absorption and
recreation). The direct flow distributions for negative and
positive pions are close to each other and also begin to disagree
with experiment in the same range of low collision energies as
for antiprotons (see Fig. 2). Again the PHSD results are very
close to the experimental measurements at higher energies
while the HSD results deviate more sizeably, thus stressing
the role of partonic degrees of freedom in the entire collision
dynamics. The clear overestimation of the p̄ and π− slopes at√

sNN = 7.7 GeV demonstrates that the heavy-ion dynamics
is not yet fully understood within the string/hadron picture at
the lower energies.

The characteristic slope of the v1(y) distributions at
midrapidity, dv1

dy
|y=0 = F , is presented in Fig. 3 for all cases

considered in Fig. 2. In a first approximation the v1 flow in the
center-of-mass system may be well fitted by a linear function
v1(y) = F y within the rapidity interval −0.5 < y < 0.5. A
cubic equation is also used,

v1(y) = Fy + Cy3, (2)

to obtain an estimate of the uncertainty in extracting the
coefficient F . The error bars in Fig. 3 just stem from the
different fitting procedures. Note that the energy axis in Fig. 3
is extended by adding experimental results for

√
sNN = 62

and 200 GeV [39]. This representation is more delicate as
compared to v1(y) in Fig. 2. For protons there is a qualitative
agreement of the HSD and PHSD results with the experiment
measurements: the slope F > 0 at low energies, however,
exceeding the experimental values by up to a factor of about
2; the slope crosses the line F = 0 at

√
sNN ∼ 20 GeV,

which is twice larger than the experimental crossing point,
and then stays negative and almost constant with further
energy increase. However, the absolute values of the calculated
proton slopes in this high energy range are on the level of
−(0.01–0.02), while the measured ones are about −0.005. The
standard UrQMD model results, as cited in the experimental
paper [39] and in the more recent theoretical work [40], are
displayed in Fig. 3 by the wide and narrow shaded areas,
respectively. These results for protons are close to those from
the HSD model and essentially overestimate the slope for
energies below ∼30 GeV but at higher energy become negative

014903-4



EXAMINATION OF THE DIRECTED FLOW PUZZLE IN . . . PHYSICAL REVIEW C 90, 014903 (2014)

0

0.05

0.1 (a) proton STAR
E895/NA49
PHSD
HSD
UrQMD

F

-0.2

-0.1

0
(b) antiproton

 [GeV]NNs
10 210

-0.06

-0.04

-0.02

0

-π(c) pion 

FIG. 3. (Color online) The beam energy dependence of the di-
rected flow slope at midrapidity for protons, antiprotons, and
charged pions from semicentral Au + Au collisions. The shaded
band corresponds to the UrQMD results as cited in Ref. [39]. The
experimental data are from the STAR Collaboration [39] along with
results of prior experiments using comparable cuts [12,59].

and relatively close to the experiment. The predictions for the
pure hadronic version of the transport model HSD [dotted
lines in Fig. 3(a)] slightly differ from the PHSD results, which
overpredict the negative proton slope at higher RHIC energies.

For the antiproton slopes we again observe an almost
quantitative agreement with the BES experiment [39]: with
increasing collision energy the HSD and PHSD slopes grow
and then flatten above 20–30 GeV. The HSD results saturate
at v1(0) = 0, while the PHSD predictions stay negative and
in good agreement with experiment [see Fig. 3(b)]. It is
noteworthy to point out that these PHSD predictions strongly
differ from the UrQMD results which no longer describe
the data for

√
sNN � 20 GeV but are in agreement with the

measurements for higher energies. This disagreement might be

attributed to a neglect of the inverse processes for antiproton
annihilation [55] in UrQMD as described above.

The differences between the calculations and experimental
data become apparent for the charged pion slopes at

√
sNN �

11 GeV: the negative minimum of the charged pion slope is
deeper than the measured one. The HSD and PHSD results
practically coincide at low energy (due to a minor impact of
partonic degrees of freedom) but dramatically differ from those
of the UrQMD model for

√
sNN � 20 GeV [see Fig. 3(c)]. This

difference might be attributed again to a neglect of the inverse
processes for antiproton annihilation in UrQMD.

As noted before, we have taken into account fluctuations
of the reaction plane which have an influence on the deter-
mination of the v1 slopes. The influence of reaction plane
fluctuations on the slope is illustrated in Fig. 4 for the case of
antibaryons and improves the agreement with experiment [39].
The correction due to fluctuations is not large enough, although
it acts in the right direction. We note in passing that in the
case of protons and charged pions this effect is even smaller.
Furthermore, as is seen from the same figure, the use of a linear
or cubic approximation for the fit of the v1(y) distributions
around midrapidity practically does not influence the slopes F
but changes the error bars.

The appearance of negative v1 slopes can be explained
by the evolution of the tilted ellipsoidlike shape of the
participant zone. This situation is illustrated in Fig. 5 by PHSD
calculations and was assumed in Refs. [25,26]. Snapshots of
the velocity profile are shown for times t = 3 and 6 fm/c
for semiperipheral Au + Au (11.5 GeV) collisions in the
background of baryon density distributions where also parton
blobs can be identified. Indeed, among the scattered particles
there are many which move perpendicularly to the stretched
matter (antiflow) and their multiplicity increases with time.

However, this component is weak and it is not clear whether
these snapshots will result in observable effects for the final
slope. The solution of this question is shown in Fig. 6. Here it is
seen that the collective flow steeply rises within the first fm/c

 [GeV]NNs
10 210

pF

-0.2
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0

(y) = Fy1PHSD: v
3(y) = Fy + Cy1  v

  event plane fluct.

FIG. 4. (Color online) Excitation function of the antiproton slope
calculated in the PHSD model with (dotted line) and without (solid
line) including fluctuations of the reaction plane. The dotted line
corresponds to a use of the cubic equation (2) for the slope calculation.
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FIG. 5. (Color online) Snapshots of the baryon energy density
distribution in the PHSD model at the time t = 3 and 6 fm/c for
Au + Au collisions and

√
sNN = 11.5 GeV. The energy density scale

is given on the right side in GeV/fm3. The solid curves display parton
density levels for 0.6 and 0.01 partons/fm3. The arrows show the local
velocity of baryonic matter (in relative units).

and decreases again in time. While the flow for partons (dotted
line) stays small throughout time, the baryon flow drops to
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FIG. 6. (Color online) Evolution of the average momentum pro-
jection on the reaction plane for protons, pions, and quarks at
the shifted rapidity y = 0.25 ± 0.05. The results are given for
8.7 × 104 PHSD events of Au + Au collisions at

√
sNN = 11.5 GeV.

some constant positive value and the pion flow turns negative
after ∼8–10 fm/c in accordance with the results in Fig. 3.

Thus, in agreement with the STAR experimental data, in the
considered energy range the PHSD model predicts for protons
a smooth F (

√
sNN) function that is flattening at

√
sNN �

10 GeV and reveals no signatures of a possible first-order phase
transition as expected in Refs. [17,18,24]. For antiprotons the
slope at midrapidity manifests a wide but shallow negative
minimum for

√
sNN ≈ 30 GeV while the measured slope is

a monotonically increasing function. It is noteworthy that the
new STAR data are consistent with the PHSD results, which
include a crossover transition by default due to a matching of
the EoS to lattice QCD results.

III. DIRECTED FLOW IN A MACROSCOPIC APPROACH

A. The 3FD model

The 3FD model [29] is a straightforward extension of
the two-fluid model with a radiation of direct pions [60–62]
and the (2+1)-fluid model [63,64]. These models have been
extended to treat the baryon-free fluid on an equal footing
with the baryon-rich ones. A certain formation time, τ , is
allowed for the fireball fluid, during which the matter of the
fluid propagates without interactions. The formation time τ is
associated with the finite time of string formation and decay
and is incorporated also in the kinetic transport models such
as PHSD and HSD.

The 3FD model [29] treats a nuclear collision from the very
beginning, i.e., from the stage of the incident cold nuclei to
the final freeze-out stage. Contrary to the conventional hydro-
dynamics, where a local instantaneous stopping of projectile
and target matter is assumed, the specific feature of the 3FD
is a finite stopping power resulting in a counterstreaming
regime of leading baryon-rich matter. The basic idea of a
3FD approximation to heavy-ion collisions [65,66] is that at
each space-time point a generally nonequilibrium distribution
of baryon-rich matter can be represented as a sum of two
distinct contributions initially associated with constituent
nucleons of the projectile and target nuclei. In addition, newly
produced particles, populating predominantly the midrapidity
region, are associated with a fireball fluid. Therefore, the 3FD
approximation is a minimal way to simulate the finite stopping
power at high incident energies.

Different EoS’s can be implemented in the 3FD model
in contrast to the PHSD that incorporates only a crossover
transition. In particular, in this work we apply a purely hadronic
EoS [67] and an EoS with a crossover transition as constructed
in Ref. [68]. In the latter case the transition is very smooth
and the hadronic fraction (which can be treated as the order
parameter) survives up to very high densities as illustrated
in Ref. [69]. The physical input of the 3FD calculations is
described in detail in Ref. [69]. No tuning (or change) of
3FD-model parameters has been done in the present study as
compared to that stated in Ref. [69].

The particle yield at midrapidity calculated within the 3FD
model is presented in Fig. 7. Both the hadronic EoS (dashed
lines) and crossover EoS results (solid lines) for the proton and
pion abundancies at

√
sNN � 20 GeV are in good agreement
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FIG. 7. (Color online) Particle abundance at midrapidity calcu-
lated for central collisions (b = 2 fm) in the 3FD model with an
EoS for a pure hadronic phase (dashed lines) and for the case of a
crossover transition (solid lines). The experimental data are the same
as in Fig. 1.

with the experimental data and, in the case of charged pions, in
even better agreement than in the HSD and PHSD approaches
(cf. Fig. 1). The purely hadronic EoS definitely overestimates
the antiproton yield at midrapidity in this energy range, while
the EoS with the crossover transition quite reasonably agrees
with the experimental data. Note that the antiprotons are
mainly produced from the fireball (baryonless) fluid [29].
To a certain extent, this may be interpreted as being due to
multimeson formation of pp̄ in equilibrium in analogy to HSD
and PHSD approaches where these channels are not in full
equilibrium. The difference between the two EoS’s is clearly
seen at higher energies

√
sNN � 20 GeV, where the crossover

EoS is favorable for all hadronic species rather than only for
antibaryons (p̄,�̄,	̄+) as pointed out in Ref. [70].

B. Directed flow in the 3FD model

In recent works [69–72] an analysis of the major part of bulk
observables has been performed: the baryon stopping [69],
yields of different hadrons, their rapidity and transverse mo-
mentum distributions [70,71], and the elliptic flow excitation
function [72]. This analysis has been carried out for the
hadronic EoS and two types of EoS with deconfinement
transitions: a first-order phase transition and a crossover. It
was found that scenarios with deconfinement transitions are
preferable especially at high collision energies, though they
are not perfect.

In this study we consider only two of the abovementioned
scenarios, i.e., the purely hadronic scenario and the crossover
one. The reason is primarily technical: It turned out that
calculations of the directed flow are demanding and require
a high numerical accuracy. In contrast to other observables,
the directed flow is very sensitive to the step width of
the computational grid and the number of test particles.1

1A numerical “particles-in-cell” scheme is used in the present
simulations; see Ref. [29] and references therein for more details.
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FIG. 8. (Color online) Rapidity distributions of the directed flow
for protons, antiprotons, and positive and negative pions from 10
to 40% central Au + Au collisions at different collision energies
calculated within the 3FD model. The experimental data are from the
STAR Collaboration [39]. The dashed lines correspond to a hadronic
EoS while the solid lines stand for a crossover transition.

Therefore, accurate calculations require very high memory
and CPU time and, accordingly, calculations for a first-order-
transition EoS have not been completed yet. In particular, for
the same reason we have failed so far to perform calculations
for energies above

√
sNN = 30 GeV. Note that the change of

other observables, analyzed so far [69–72], is below 15% as
compared to results of previous calculations.

The directed flow v1(y) as a function of rapidity y at
BES-RHIC bombarding energies is presented in Fig. 8 for
pions, protons, and antiprotons. As seen, the 3FD model does
not perfectly describe the v1(y) distributions. However, we
can definitely conclude that the description of the STAR data
is better with the crossover EoS than that with the purely
hadronic EoS. Note that the negative slope at midrapidity does
not necessarily assume a QGP EoS [27] once a combination
of space-momentum correlations—characteristic of radial
expansion together with the correlation between the position
of a nucleon in the fireball and its stopping—may result in a
negative slope in the rapidity dependence of the directed flow

The matter transfer due to pressure gradients, friction between fluids
and production of the fireball fluid, is computed on a fixed grid (the
so-called Euler step of the scheme). An ensemble of Lagrangian test
particles is used for the calculation of the drift transfer of the baryonic
charge, energy, and momentum (the so-called Lagrangian step of the
scheme).
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FIG. 9. (Color online) The beam energy dependence of the di-
rected flow slope at midrapidity for protons. The lines are calculated
within the 3FD model with a hadronic (dotted lines) and a crossover
(solid lines) EoS. For comparison the results of calculations in other
collective models are taken from Ref. [40]. The experimental data
are from the STAR measurements [39] and prior experiments with
comparable acceptance cuts [12,59,73]. Note the different scales as
compared to Fig. 3.

in high-energy nucleus-nucleus collisions. Apparently, this is
the case at

√
sNN = 27 GeV with the hadronic EoS.

The excitation functions for the slopes of the v1 distributions
at midrapidity are presented in Fig. 9. As noted above,
the discrepancies between experiment and the 3FD model
predictions are larger for the purely hadronic EoS (dashed line)
and, in addition, some weak substructure is observed here for
protons and pions (for example, at

√
sNN = 19.8 GeV). Indeed,

the agreement with the 3FD model for the crossover EoS looks
better (solid line in Fig. 9) though it is far from being perfect.
Similarly to the kinetic approaches, hydrodynamics has a
problem with the description of the low-energy behavior of

the directed flow; however, the boundary of this disagreement
shifts down to 8 GeV as compared to

√
sNN ∼ 20 GeV in the

case of PHSD (cf. Fig. 3).
In Ref. [36] an essential part of the STAR data (for√

sNN � 20 GeV) is analyzed within collective approaches: the
one-fluid (1F) hydrodynamical model with a first-order phase
transition simulated by the bag model (BM) and a crossover
chiral transition (χ -over), as well as within a modern hybrid
model combining hydrodynamics with a kinetic model in the
initial and final (after-burner) stages of the collision using
both EoS’s mentioned above. The results of this work are also
displayed in Fig. 9 for comparison (the open circles and stars).

The 3FD model predicts reasonable results for the proton
slopes in the range

√
sNN < 20 GeV for the crossover EoS;

the pure hadronic EoS results in a similar energy dependence
but with slopes Fp exceeds the experimental ones by ∼0.2. A
similar behavior is observed for the pion slope function (see
Fig. 9). In the case of antiprotons the slope for the crossover
EoS (solid line in Fig. 9) is well described above 10 GeV
but it sharply goes down with decreasing energy. For the pure
hadronic EoS the 3FD functional dependence of the antiproton
slope (dashed line in Fig. 9) looks similar but is shifted by
almost 2–10 GeV towards higher energies.

The results of Ref. [40] for the proton slopes in the
1FD model overestimate the measured ones by an order of
magnitude for both chiral (χ -over) and BM EoS’s; appropriate
results for antiprotons are not reported. The calculational
results are more definite for the hybrid model [40]: the shaded
region in Fig. 9, which covers predictions for both EoS’s, is
quite close to the 3FD results with the pure hadronic EoS for
protons and antiprotons rather than to the experiment. One
can conclude that the fluid dynamical calculations presented
in Ref. [36] are not able to explain the observed directed flow
of identified hadrons.

C. Longitudinal fluctuations

The 3FD approach describes the evolution of participants
that are defined by the initial geometry. Along with the par-
ticipants there are also spectators, i.e., nucleons that emerged
from the colliding nuclei and do not take part in any reaction
with other nucleons during the collision process and move with
their initial momenta. The number of spectators from each of
the nuclei changes event-by-event and, due to this fluctuation,
the center-of-mass (c.m.) of the participant system does not
coincide with the collider center-of-mass system. These event-
by-event fluctuations of yc.m. are included automatically in the
kinetic approach but not in the hydrodynamic case. As noted
in Refs. [74,75] these fluctuations in the longitudinal c.m.
rapidity might be especially significant in peripheral collisions
and influence noticeably the flow characteristics.

To shed some light on this issue let P (δyc.m.) be the
probability of a fluctuation of the c.m. rapidity δyc.m. with
respect to its mean value 〈yc.m.〉 = 0. Then

〈(δyc.m.)
2〉 =

∫ ∞

−∞
(δyc.m.)

2 P (δyc.m.) dδyc.m.. (3)

The v1 flow at fixed δyc.m. is well fitted by

v1(y − δyc.m.) = F (y − δyc.m.) + C(y − δyc.m.)
3. (4)
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Then the v1 flow due to fluctuations is

v
f l
1 =

∫ ∞

−∞
v1(y − δyc.m.) P (δyc.m.) dδyc.m.. (5)

Thus

vfl
1 = F + 3C〈(δyc.m.)

2〉y + Cy3, (6)

and the effective slope becomes F fl = F + 3C〈(δyc.m.)2〉. As
a rule, F and C are of the same order and opposite in sign.
Therefore, to significantly change F fl (as compared to F ) one
needs 3〈(δyc.m.)2〉 ∼ 1, i.e., δyc.m. ∼ 0.5. In Ref. [75] it was
estimated that δyc.m. < 0.1 for midcentral Au + Au collisions,
which does not produce a noticeable effect.

In Fig. 10 the rapidity distributions calculated for the PHSD
at energy

√
sNN = 11.5 GeV are presented for the average

over many events and an individual event. Note that at this
energy the PHSD [42] and 3FD [70] predict similar results in
an approximate agreement with experiment. We calculate the
yc.m. fluctuations within the PHSD approximating the result
by a Gaussian distribution,

P (δyc.m.) = 1

σ
√

2π
exp

(
−δy2

c.m.

2σ 2

)
. (7)

As is seen from Fig. 11 the PHSD calculations of the c.m.
rapidity fluctuations at

√
sNN = 11.5 GeV give a standard

deviation σ = 0.057 which slowly increases with energy
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FIG. 10. (Color online) Rapidity distribution of nucleons
(dashed lines) and all hadrons (solid lines) for the average over many
events and for a single event in PHSD. The shaded strips correspond
to the spectator region.
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FIG. 11. (Color online) Particle distribution in center-of-mass
rapidity fluctuation in PHSD. The smooth curve is the Gaussian
approximation (7).

reaching σ = 0.08 at 17.3 GeV. Nevertheless, influence
of fluctuations on the slope of the v1 distribution remains
negligible.

IV. CONCLUSIONS

In this study the PHSD approach has been applied for the
analysis of the recent STAR data on the directed flow of iden-
tified hadrons [39] in the energy range

√
sNN = 7.7–200 GeV.

The excitation functions for the directed flows of protons,
antiprotons, and charged pions turn out to be smooth functions
in bombarding energy without wigglelike irregularities as
expected before in Refs. [17–26]. Our results differ from
the standard UrQMD model at lower bombarding energies
as included in Ref. [39] and the recent theoretical analysis
in Ref. [40]. The microscopic PHSD transport approach
reproduces the general trend in the differential v1(y) excitation
function and leads to an almost quantitative agreement for
protons, antiprotons, and pions especially at higher energies.
We attribute this success to the Kadanoff-Baym dynamics
incorporated in PHSD (with more accurate spectral functions)
as compared to a Boltzmann-like on-shell transport model
(UrQMD) and the account for parton dynamics also in this
“moderate” energy range. The latter is implemented in PHSD
in line with an equation of state from lattice QCD [76].
The formation of the parton-hadron mixed phase softens the
effective EoS in PHSD and describes a crossover transition
(in line with the lattice QCD EoS). Accordingly, the PHSD
results differ from those of HSD where no partonic degrees of
freedom are incorporated. A comparison of both microscopic
models has provided detailed information on the effect of
parton dynamics on the directed flow (cf. Fig. 2).

Antiprotons have been shown to be particularly interesting.
In HSD and PHSD we include antiproton annihilation into
several mesons while taking into account also the inverse pro-
cesses of pp̄ creation in multimeson interactions by detailed
balance [55]. Related kinetic models (including UrQMD) that
neglect the inverse processes for antiproton annihilation at
lower energies do not describe the data on the directed flow
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of hadrons v1(y). It is noteworthy that 3FD demonstrates high
sensitivity to the nuclear EoS and provides the best results with
a crossover for the quark-hadron phase transition being in a
reasonable agreement with the STAR results in the considered
energy range

√
sNN <30 GeV. Note also that a crossover

transition is implemented by default in PHSD.
Still sizable discrepancies with experimental measurements

in the directed flow characteristics are found for the micro-
scopic kinetic models at

√
sNN � 20 GeV and are common

for both HSD and PHSD (and UrQMD [50]) because the
partonic degrees of freedom are subleading at these energies.
We recall that the flow observables are not only ones where
the kinetic approaches have a problem in this energy range.
Another long-standing issue is the overestimation of pion
production as seen in Fig. 1 in the energy regime around the
“horn” in the K+/π+ meson ratio [48,77], which before has
been related to a first-order phase transition or to the onset of
deconfinement [78]. Our flow analysis shows no indication of a

first-order transition. However, we have found further strong
evidence that the dynamics of heavy-ion reactions at lower
SPS and AGS energies is far from being understood especially
on the hadronic level. We speculate that extended approaches
including consistently chiral partners as well as a restoration
of chiral symmetry at high baryon density and/or temperature
might lead to a solution of the problem as well as precise
experimental studies at the Facility for Antiproton and Ion
Research (FAIR) and Nuclotron-based Ion Collider Facility
(NICA) [5].
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