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The polarization observables for elastic 400 and 700 MeV deuteron scattering from 12C and 16O nuclei have
been analyzed in the framework of the multiple diffraction scattering theory and the α-cluster model with
dispersion. The rigid projectile approximation with “effective” d-α scattering amplitude as well as the three-body
n + p + A model, which uses nucleon-A scattering amplitudes and the deuteron ground-state wave function
with both S and D waves, are applied for the calculations. Both approaches are compared with each other and
with the available experimental data.
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I. INTRODUCTION

The theoretical description of light-nuclei scattering from
various nuclei was a subject of numerous publications (see, for
instance Ref. [1], and references therein). In the intermediate
energy region the proper description of such processes requires
considering both the incident nucleus internal structure and the
structural features of the target nuclei. Moreover, in the consid-
eration of the nucleus-nucleus scattering the influence of the
nuclear environment, in which nucleons are placed, can play an
important role [2]. In this case, solution of the many-body scat-
tering problem is highly complicated, because the nucleons or
clusters of the incident nuclei interact both with each other and
with the target nucleus structural components. This interaction
distorts the standard “elementary” free scattering amplitudes
and leads to introduction of effective amplitudes [3–6].

From this point of view, the deuteron as the lightest
complex nucleus is a unique object for theoretical treatment
by itself and also as a test nucleus for validation of different
theoretical models. So, on the one hand, its complex structure
can imply the necessity of using “effective” amplitudes to
describe deuteron-nucleus interaction. On the other hand,
taking into account the small binding energy of the deuteron
and the successful description of polarized proton scattering
observables at intermediate energies on the basis of the
multiple diffraction scattering theory (MDST) [7] variants
using “free” nucleon-nucleon (or nucleon-cluster) amplitudes,
one can expect that such MDST models should also be
sufficiently accurate for calculations of deuteron scattering
observables in this energy region.

The frequently used models for deuteron scattering at
energies of about several tens of MeV are various versions
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of the folding model [8,9], the microscopic optical model
with the effective Skyrme interaction [10,11], the three-body
n + p + A Faddeev-like scattering model with nonlocal and
local optical potentials [12,13], and the diffraction model
[14,15]. For the deuteron energy range Ed = 100–200 MeV
the phenomenological optical model with the global deuteron
optical potential [16,17] is adopted. We should also specially
mention the continuum-discretized coupled channels (CDCC)
method, which was successfully employed for studying the
deuteron-nucleus scattering and reactions in a wide energy
range from tens to hundreds of MeV during recent decades
[18–22]. The CDCC formalism is a three-body approach,
which describes the deuteron-nucleus interaction in terms of
the nucleon-target optical potentials and explicitly includes
effects of the deuteron virtual breakup channels, which can be
important for such weakly bound projectiles as deuterons. The
approaches suitable for use at the intermediate energies (Ed =
200–700 MeV) are the distorted wave impulse approximation
[23–26], relativistic and nonrelativistic optical models with
various nucleon-nucleus optical potentials [27,28], as well as
the multiple diffraction scattering models [29–34].

The main purpose of this paper is to develop an approach
for describing the deuteron-nucleus scattering using the
MDST variant that is based on the consideration of cluster
degrees of freedom of the target nuclei. This approach seems
to be rather attractive, as compared with the usual MDST
variant making use of NN amplitudes and the single-nucleon
description of the target nuclei, owing to the fact that it
allows for nucleon-nucleon correlations of alpha-particle
type and correlations between the alpha particles themselves
in the used multicluster densities of target nuclei, and the
nucleon-α amplitude as an elementary building block of the
model effectively takes into account different processes of
many-body interactions of incident particles with nucleons of
the α cluster. It was shown in [35] that this cluster approach
yielded a more accurate description of the polarization
observables for p-12C and p-16O scattering.
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Recently [36,37] such an approach based on the use of
the α-cluster model with dispersion [35,38] was employed
to describe the elastic deuteron scattering from 12C and 16O
nuclei. In these calculations two models were considered.
The first of them is the rigid projectile (RP) approximation
[39,40], which treats the incident nucleus as an elementary
object. In this approximation the total deuteron-nucleus
scattering amplitude was constructed in the MDST from
“effective” deuteron-cluster amplitudes in the same way as
the p-A scattering amplitude from proton-cluster amplitudes
in Refs. [35,38]. The second approach is the three-body
n + p + A (TB) model [41], which incorporates the α-cluster
structure of the target nuclei by using the elastic p-12C and
p-16O scattering amplitudes calculated in Refs. [35,38].

The calculations revealed that, while the cross sections
and analyzing powers Ay were in reasonable agreement with
experimental data, the tensor analyzing powers Ayy had some
discrepancies with experiment. A possible cause of such dis-
crepancies are the approximations employed in these calcula-
tions: in the TB model we neglected the D wave in the deuteron
ground state [36], and in the RP model the spin-spin terms in
the “effective” deuteron-α amplitude were omitted [37].

In the present paper, to calculate the elastic d-12C and d-16O
scattering observables, we use the RP approximation with an
“effective” full-form spin-dependent d-α scattering amplitude
(Sec. III) as well as the TB model, in which we include the
deuteron ground-state wave function with both S and D waves
(Sec. IV). The general formulas used in these calculations
are given in Sec. II and in the Appendix, and the results of
comparisons of both approaches with each other and with the
available experimental data are presented in Sec. V.

II. THE SPIN-DEPENDENT MDST SCATTERING
AMPLITUDE AND OBSERVABLES

In the general case of nucleus-nucleus collision, the MDST
scattering amplitude is [7]

F (q) = ikin

2π

∫
d2b exp(iqb)〈�f ,ϕf |δ(Rin)δ(Rt )

×
{

1 − Ẑ

N∏
i=1

Nin∏
j=1

[1 − ωij (b − ri + ρj )]

}
|�i,ϕi〉,

(1)

where Nin and N are the numbers of subunits in the incident and
target nuclei respectively, kin is the wave vector of the incident
particle, ϕi,f ({ρj }) and �i,f ({ri}) are the wave functions of
initial and final states of the incident particle and target nucleus,
ρj and ri are the radius vectors of the scattered subunits of the
colliding nuclei, b is the impact parameter, q is the momentum
transfer, δ(r) is the Dirac delta function, Rin and Rt are the
center-of-mass radius vectors

Rin = 1

Nin

Nin∑
j=1

ρj , Rt = 1

N

N∑
i=1

ri , (2)

ωij (b) are the profile functions, describing interaction between
the j th structure component of the incident particle and the
ith structure component of the target nucleus, and Ẑ is the

Z-ordering operator. The profile functions ωij (b) are given
by the inverse Fourier transform of “elementary” scattering
amplitudes fij (q),

ωij (b) = 1

2πikj

∫
d2q exp (−iqb)fij (q). (3)

In the case of deuteron scattering on zero-spin nuclei, the
scattering amplitude (1) becomes a matrix in the spin space
and we can write its matrix elements as

[F (q)]M ′M = 〈χ1M ′ | F̂(q) |χ1M〉 , M,M ′ = −1,0,1, (4)

where the elastic scattering amplitude operator F̂(q) is
introduced, and χ1M are the basis spin functions for the spin
S = 1.

The expression for operator F̂(q) formally coincides with
the expression (1) where the profile functions now should be
understood as spin operators ω̂ij , and in the wave functions
ϕi,f only the coordinate parts should be taken into account.

For deuteron scattering from zero-spin nuclei, the scattering
amplitude operator F̂(q), complying with the requirements of
P and T invariance, has four independent terms with different
spin structure, and its possible representation is

F̂(q) = A1(q) + A2(q)(Sn) + A3(q)(Sn)2

+A4(q)(Sk̂d )(Sk̂′
d ), (5)

where S is the deuteron spin operator, n = (kd × k′
d )/|kd ×

k′
d |, kd and k′

d are the vectors of initial and final deuteron
momenta, and Ai(q) are the invariant scalar amplitudes.

Besides the representation (5), there are also other con-
venient representations for the operator F̂(q). In particular,
experimental measurements of polarization observables are
commonly performed using the individual spiral coordinate
systems for incident and scattered particles. In this case,
instead of the spin-matrix amplitude representation (5), it is
more expedient to use the products χi ′χ

†
j of the basis spin

functions as basis matrices (here, i ′ = x ′,y ′,z′ and j = x,y,z
denote the Cartesian components of the spin functions in
the spiral systems of the scattered and incident deuterons).
Rewriting (5) in this representation, we obtain

F̂(q) = a(q)χx ′χ
†
x + b(q)χy ′χ

†
y + c(q)χz′χ

†
z + d(q)χz′χ

†
x

+ e(q)χx ′χ
†
z . (6)

Here d(q) = −e(q) and, as in (5), we still have four
independent invariant amplitudes

a(q) = A0(q) cos θ + iA2(q) sin θ, (7)

b(q) = A1(q) + A4(q) cos θ, (8)

c(q) = a(q) − A4(q), (9)

d(q) = −e(q) = A0(q) sin θ − iA2(q) cos θ, (10)

where

A0(q) = A1(q) + A3(q) + A4(q) cos θ. (11)

The full set of observables, completely determining the am-
plitude of deuteron scattering from zero-spin nuclei, includes
the differential cross section dσ (θ )/d� and, for example, four
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analyzing powers Ay(θ ), Ayy(θ ), Axx(θ ), Axz(θ ) and three

polarization transfer coefficients Kz′z′
zz (θ ), Kx ′z′

zz (θ ), K
y ′z′
z (θ ).

In the representation (6) these observables are determined
by

dσ

d�
= 1

3
[|a|2 + |b|2 + |c|2 + 2|d|2], (12)

3Ay

dσ

d�
= 2 Im[(a + c)d∗], (13)

3Ayy

dσ

d�
= |a|2 − 2|b|2 + |c|2 + 2|d|2, (14)

3Axx

dσ

d�
= −2|a|2 + |b|2 + |c|2 − |d|2, (15)

3Axz

dσ

d�
= 3Re[(a − c)d∗], (16)

3Kz′z′
zz

dσ

d�
= |a|2 + |b|2 + 4|c|2 − 4|d|2, (17)

3Kx ′z′
zz

dσ

d�
= −3 Re[(a − 2c)d∗], (18)

3Ky ′z′
z

dσ

d�
= 3 Im[bd∗]. (19)

III. RP APPROXIMATION

In the rigid projectile (RP) approximation [39,40] the
incident nucleus is treated as an elementary object, and the
MDST nucleus-nucleus scattering amplitude is constructed
from “effective” amplitudes of the incident particle scattering
on the components of the target nucleus. The purpose of
introducing the RP approximation is to reduce the problem
of nucleus-nucleus collision to the usual MDST approach, i.e.,
a pointlike particle scattering from multiple scattering centers.

For the case of deuteron scattering, this RP approximation
coincides with the approach used for the proton scattering
from 12C and 16O nuclei on the basis of the α-cluster model
with dispersion [35,38]. Following the approach given in
Refs. [35,38] and using the relation (1), in which we have
to put Nin = 1, the scattering amplitude operator F̂(q) can be
presented in the form

F̂(q) =
N∑

m=1

αmF̂m(q), (20)

where N is the number of clusters constituting the target
nucleus (N = 3 for 12C and N = 4 for the 16O nucleus), m
is the scattering order, and αm are the following coefficients:
α = {3,−3,1} for the 12C nucleus and α = {4,−6,4,−1} for
the 16O nucleus.

Within the framework of the α-cluster model with disper-
sion, the operators F̂m in (20) are

F̂m(q) = ikd

2π

∫
d2b

⎛
⎝N−1∏

j=1

d3ξj

⎞
⎠ exp(i qdb)ρ ({ξ i})

m∏
j=1

×
[

1

2πikd

∫
d2qj exp[−i qj (b − rj )]f̂dα(qj )

]
,

(21)

where kd is the wave vector of the incident deuteron, f̂dα(q)
is the deuteron-α scattering amplitude, ξ i are the Jacobi
coordinates of the α clusters, and ρ({ξ i}) are the multicluster
densities of the 12C and 16O nuclei [35,38]:

ρ({ξ i}) = C

∫ N−1∏
j �=i

δ(ξ ′
iξ

′
j )

N−1∏
l=1

{
δ(ξ ′

l − λld)

× exp

[
−μl(ξ l − ξ ′

l)
2

2�2

]
d3ξ ′

l

}
. (22)

Here d is the mean distance between the α clusters in the 12C
and 16O nuclei, the parameter � characterizes the probability
of α-cluster displacement from their most probable positions
at the vertices of the equilateral triangle and tetrahedron, C are
the normalization constants [ρ({ξ i}) are normalized to unity],
and coefficients λi , μi are the following:

λ1 = 1, λ2 =
√

3

2
, λ3 =

√
2

3
, (23)

μ1 = 1, μ2 = 4

3
, μ3 = 3

2
. (24)

The values of the parameters d and � were determined in
[35,38] from the fitting of the charge form factors calculated
for the target nuclei by the α-cluster model with dispersion
to the corresponding experimental data. The obtained values
of these parameters are d = 2.98 fm, � = 0.346 fm for the
12C nucleus and d = 3.16 fm, � = 0.643 fm for the 16O
nucleus.

It is convenient to represent the deuteron-α scattering
amplitude fdα(q) in the following form:

fdα(q) = f1(q) + qf2(q)(Sn) + q2f3(q)(Sn)2

+ q2f4(q)(Sq̂)2. (25)

By analogy with the approach given in Ref. [35], the
invariant amplitudes fi(q) can be approximated as two-
Gaussian functions:

fi(q) = kd

2∑
j=1

G
(i)
j exp

(−β
(i)
j q2

)
. (26)

According to this approach, here the parameters G
(i)
1

and β
(i)
1 of the effective deuteron-α amplitude fdα(q) are

considered as fitting ones, and the remaining parameters in (26)
have been derived from the requirement that the terms with G

(i)
2

must coincide with the leading terms of the double scattering
part of the deuteron-4He amplitude, calculated in the MDST
approach with the Gaussian deuteron-nucleon amplitude and
the single-nucleon density of the 4He nucleus taken in the
oscillator form. This leads to the following relations:

G
(i)
2 = 3iG

(1)
1 G

(i)
1 β

(1)
1

8
(
β

(1)
1 + β

(i)
1

)2 , β
(i)
2 = β

(1)
1 β

(i)
1

β
(1)
1 + β

(i)
1

. (27)

Finally, executing the integration in (21), we obtain the
relations for the elastic d-12C and d-16O scattering amplitude
operator F̂(q) in the form (5). The corresponding analytical
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FIG. 1. Differential cross section σ (θ ) ≡ dσ (θ )/d� (mb/sr) and analyzing powers Ay(θ ), Ayy(θ ) for the elastic deuteron scattering from
16O nuclei at 400 and 700 MeV, calculated in the RP approximation. The solid curves have been calculated using the deuteron-α scattering
amplitude fdα(q) in the form (25), and the dashed curves were obtained in Ref. [37], allowing only for the first two terms in (25). The
experimental data are from Ref. [43].

expressions for the invariant scalar amplitudes Ai(q) are given
in the Appendix.

The results of such calculations are presented in Fig. 1 by
solid curves. The dashed curves in this figure were calculated
in Ref. [37], allowing only for the first two terms in (25).

The set of adjustable parameters G
(i)
1 and β

(i)
1 , obtained from

fitting the experimentally measured elastic d-16O scattering
observables dσ (θ )/d�, Ay(θ ), and Ayy(θ ), is given in Table I.

Figure 1 shows that using the full-form spin-dependent d-α
scattering amplitude (25) in the RP-model we can significantly

improve the agreement between the calculated and measured
scattering observables as compared with the similar approach
that takes into account only the terms linear in the deuteron
spin operator S [37].

The observed differences between the observables calcu-
lated in this approach and the experimental data may be
ascribed to the fact that in the region of momentum transfer
q � 3 fm−1 (θ � 25◦ for the deuteron energy of 700 MeV and
θ � 30◦ for 400 MeV), the conditions of applicability of the
α-cluster model with dispersion are violated [35,38].
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TABLE I. The parameters of d-α amplitude at 400 and 700 MeV.

Parameters Energy (MeV)

400 700

G
(1)
1 (fm2) −0.758 + i2.162 −0.521 + i1.619

β
(1)
1 (fm2) 1.627 + i0.899 1.015 − i0.265

G
(2)
1 (fm3) 0.289 + i1.131 0.211 + i0.795

β
(2)
1 (fm2) 0.688 + i0.316 0.604 − i0.140

G
(3)
1 (fm4) 0.211 − i0.082 0.034 − i0.003

β
(3)
1 (fm2) 1.199 − i0.152 0.184 + i0.110

G
(4)
1 (fm4) 0.011 + i0.011 −0.145 − i0.086

β
(4)
1 (fm2) 0.163 − i0.700 0.510 + i0.132

IV. TB APPROXIMATION

Within the three-body n + p + A (TB) model, the d-
A amplitude is constructed using known nucleon-nucleus
scattering amplitudes. The advantage of this approach, as
compared with the RP approximation, lies in the fact that
the nucleon-nucleus scattering amplitudes and the deuteron
ground-state wave function can be incorporated into the
model from an independent analysis and, therefore, this TB
approximation contains no free adjustable parameters.

In the TB approximation, the operator F̂(q) can be
represented in the following general form [41]:

F̂(q) = ikd

2π

∫
d2b exp(iqb)〈�0|�̂

×
(

b + 1

2
r⊥,b − 1

2
r⊥

)
|�0〉, (28)

�̂(bp,bn) = ω̂p(bp) + ω̂n(bn) − ω̂p(bp)ω̂n(bn), (29)

where r⊥ is the projection of the internal deuteron coordinate
r = rn − rp onto the plane perpendicular to the incident beam,
�0 is the deuteron ground-state wave function, and ω̂p(r) and
ω̂n(r) are the profile functions for the proton and neutron
scattering from the target nuclei.

The operator F̂(q) can be presented as

F̂(q) = F̂1(q) + F̂2(q), (30)

where the single and double scattering amplitude operators
F̂i(q) are

F̂1(q) = kd

k
〈�0|f̂p(q) + f̂n(q)|�0〉, (31)

F̂2(q) = ikd

2πk2

∫
d2q ′〈�0| exp(iq′r)f̂p(q1)f̂n(q2)|�0〉,

(32)

and q1,2 = 1
2 q ∓ q′.

The amplitudes f̂p,n(q), describing the elastic proton (neu-
tron) scattering from zero-spin target nuclei, can be presented
in the form

f̂p,n(q) = f (p,n)
c (q) + qf (p,n)

s (q)(σp,nn), (33)

where n = (k × k′)/|k × k′| and k, k′ are the initial and final
nucleon momenta, and σ are the Pauli matrices.

TABLE II. The parameters of p-α amplitude at 200 and 350 MeV.

Parameters Energy (MeV)

200 350

G
(1)
1 (fm2) −0.188 + i0.829 −0.092 + i0.857

β
(1)
1 (fm2) 0.258 − i0.010 0.309 − i0.116

G
(2)
1 (fm3) 0.129 + i0.705 0.206 + i0.397

β
(2)
1 (fm2) 0.705 + i0.289 0.498 + i0.098

Within the α-cluster model with dispersion the scalar
amplitudes f

(p,n)
i (q) (i = c,s) in (33) are determined from

the MDST expressions for the incident nucleon scattering on
the α clusters of the target nuclei. General formulas for such
calculations are given by Eqs. (20) and (21), in which we have
to replace the deuteron-α scattering operators f̂dα(qj ) by the
nucleon-α operators f̂Nα(qj ).

We take the operators f̂Nα(qj ) in the form

f̂Nα(q) = f1(q) + qf2(q)(σNn), (34)

where the amplitudes fi(q) are determined by Eqs. (26) and
(27).

We have derived the values of the adjustable parameters
G

(i)
1 and β

(i)
1 of the amplitudes fi(q) from an independent

analysis of the p-4He elastic scattering data, and the obtained
numerical values of these parameters are given in Table II.

Finally, neglecting the differences between the proton- and
neutron-nucleus scattering amplitudes, we use for the scalar
amplitudes f

(p,n)
i (q) in (33) the same relations as for the

elastic p-12C and p-16O scattering amplitudes calculated in
Refs. [35,38].

The deuteron ground state wave function �0 with allowance
for both the S and D waves is

�0 = 1√
4πr

{
u(r) + 1√

8
w(r)S12

}
χ1M, (35)

where S12 = 3(σ p r̂)(σ nr̂) − σ pσ n.
Following Ref. [42], the radial parts u(r) and w(r) of the

deuteron ground state wave function �0 we take in the form

u(r) = N

n∑
i=1

Ci exp(−αir), (36)

w(r) = Nρ

n∑
i=1

Di exp(−βir)

{
1 + 3

βir
+ 3

(βir)2

}
, (37)

TABLE III. Parameters of the deuteron ground-state wave function.

k αk (fm−1) Ck βk (fm−1) Dk

1 0.2316 1.0 0.2316 1.0
2 1.82007 −136.26749 1.07145 287.15485
3 1.83181 135.26749 1.03542 −288.15485

ρ = 0.033
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where

N =
⎧⎨
⎩

n∑
i,j=1

[
CiCj

αi + αj

+ ρ2 DiDj

βi + βj

]⎫⎬
⎭

− 1
2

, n = 3. (38)

Note that in Ref. [42] such wave functions were obtained from analyzing the experimentally measured electromagnetic
deuteron form factors, and the corresponding values of the deuteron ground-state wave function parameters are given in Table III.

Substituting (35)–(38) into (31) and (32), we obtain the following expressions for the single and double scattering amplitudes
F̂i(q):

F̂1(q) = 2kd

k

{
fc(q)

[
S1

(q

2

)
+ 8S2

(q

2

)]
+ fs(q)

[
S3

(q

2

)
+ S4

(q

2

)]
(Sn) − 12fc(q)S2

(q

2

)
(Sq̂)2

}
, (39)

F̂2(q) = ikd

2πk2

∫
d2q ′

{
fc(q1)fc(q2)F̂ (cc)(q,q ′) + 2

q2
fc(q1)fs(q2)F̂ (cs)(q,q ′) + 1

q1q2
fs(q1)fs(q2)F̂ (ss)(q,q ′)

}
, (40)

where

F̂ (cc)(q,q ′) = S1(q ′) + 8S2(q ′) − 12S2(q ′) sin2 ϕ′(Sn)2 − 12S2(q ′) cos2 ϕ′(Sq̂)2, (41)

F̂ (cs)(q,q ′) = {
S3(q ′) + S4(q ′)

} [q

2
+ q ′ cos ϕ′

]
(Sn), (42)

F̂ (ss)(q,q ′) = {
S1(q ′) + 8S2(q ′)

} [
q ′2 − q2

4

]
+ 2

{
S1(q ′)

(
q2

4
− q ′2 cos2 ϕ′

)
+ 2S2(q ′)

[
q2 − 4q ′2 cos2 ϕ′

+ 3

(
q ′2 − q2

4

)
sin2 ϕ′

]}
(Sn)2 − 2

{
S1(q ′)q ′2 sin2 ϕ′ + 2S2(q ′)

[
4q ′2 sin2 ϕ′ − 3

(
q ′2 − q2

4

)
cos2 ϕ′

]}
(Sq̂)2.

(43)

In (39)–(43) we introduce the structure form factors Si(q):

S1(q) =
∫

dr{u2(r) + w2(r)}j0(qr), (44)

S2(q) = 1√
8

∫
dr

{
u(r)w(r) − 1√

8
w2(r)

}
j2(qr), (45)

S3(q) =
∫

dr

{
u2(r) + 1

4
w2(r)

}
j0(qr), (46)

S4(q) = 1√
8

∫
dr

{
2u(r)w(r) + 1√

8
w2(r)

}
j2(qr), (47)

where jk(x) are the spherical Bessel functions.
After some algebraic transformations the above formulas

allow us to obtain the elastic d-A scattering amplitude
operator F̂(q) (30) in the form (5), but, in contrast to the
RP approximation, in the TB-approach when performing final
calculations it is necessary to use numerical integration.

V. RESULTS AND DISCUSSION

On the basis of the above TB and RP approximations,
we have calculated the complete set of observables for the
elastic deuteron scattering from 12C and 16O nuclei at 400 and
700 MeV. The results of such calculations are given in Figs. 2
and 3 by solid and dashed curves, respectively. The dot-dashed
curves in these figures are calculated in the TB approximation
with only the S wave included [36,37].

As is seen from Figs. 2 and 3, the results obtained are
in reasonable agreement with the existing experimental data,
especially for the differential cross sections and analyzing

powers Ay . The using of the RP approach provides a somewhat
better description of the behavior of analyzing powers Ayy as
compared to the approach that uses the TB approximation. In
addition, the agreement between the calculated and measured
observables at an incident deuteron energy of 700 MeV is
somewhat better than that at 400 MeV.

For the deuteron scattering at 400 MeV the discrepancies
between the calculation results and experimental data can be
explained by the fact that for lower energies the conditions of
validity of the MDST are violated, and the transition from a
predominantly diffraction scattering mechanism for essential
refractive ones is expected [43].

Considering the TB approximation, we can point out that
introduction of the D wave appears to be most essential for
small scattering angles (θ � 10◦). In this case, incorporation of
the D wave into the model provides a more correct behavior
of the analyzing powers Ayy(θ ) in this region of scattering
angles (Figs. 2 and 3, solid curves) in comparison with the TB
approach which uses only the S wave [36,37] (Figs. 2 and 3,
dot-dashed curves).

Figures 2 and 3 also show noticeable differences in the
behavior of other polarization observables calculated in the
TB and RP approaches. These differences can be explained
by the existing ambiguities in determining the “effective”
d-α amplitude parameters, which have been found in the RP
approach from the fitting of the d-16O elastic scattering data.
Such ambiguities arise owing to the lack of a complete set of
measured d-A scattering observables.

In the present paper we also compare the results obtained
in the RP and TB approaches for the elastic d-4He scattering
observables. When performing the calculations in the TB
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FIG. 2. Differential cross section σ (θ ) ≡ dσ (θ )/d�, analyzing powers Ay(θ ), Ayy(θ ), Axx(θ ), Axz(θ ), and polarization transfer coefficients
Kz′z′

zz (θ ), Kx′z′
zz (θ ), Ky′z′

z (θ ) for the elastic deuteron scattering from 16O and 12C nuclei at 700 MeV. The solid and dot-dashed curves were
calculated in the TB approximation with the D and S waves included [see relations (35)–(39)], respectively, and the dashed curves were
obtained in the RP approximation and coincide with the solid curves in Fig. 1. The experimental data are from Refs. [43,44].

approximation we have used the relations (28)–(32) with
the amplitudes f̂p(q) = f̂n(q) ≡ f̂Nα(q) in the form (34).
In the RP approximation we have employed the amplitude
fdα(q) in the form (25) with the parameters given in
Table I.

Figure 4 shows the predicted behavior of the d-4He elastic
scattering observables calculated in these two approaches. The
notation of the curves is the same as in Figs. 2 and 3.

As is seen from Fig. 4, in the case of the d-4He elastic
scattering the RP and TB approaches lead to more evident
discrepancies between the calculated observables as compared
to those for the d-12C and d-16O scattering. These differ-
ences presumably arise for the same reasons as discussed
above.

We should also note that the elementary amplitudes, which
are used in the MDST calculations under consideration, can
be modified by possible effects of the nuclear medium, as
compared with the projectile scattering on the free α particles.
The character of these effects requires a special investigation.
However, in our previous works (see, for example, [35]) it was
shown that the use of free N -α amplitudes for analyzing the
proton elastic scattering on light α-cluster nuclei on the basis of

the analogous approach yielded a fairly good description of the
complete set of experimental observables at energies of several
hundreds of MeV, which justifies neglecting the medium
effects at such energies. Moreover, the effective elementary
d-α amplitude with adjustable parameters, which is used in
the RP approximation, can implicitly take account of some of
the medium effects.

It should be stressed that the MDST variants based on
cluster models seem to be rather attractive. Such approaches
include the internal nucleon-nucleon correlations both in the
incident and target nuclei, essentially reduce the maximum
multiplicity of integration, and in many cases (for example,
in the RP approximation) permit an accurate analytical
calculation of the MDST series. A substantial problem of
the RP approach is the lack of complete set of nucleus-
nucleus scattering observables, which complicates a reliable
determination of the “effective” amplitudes used in such a
model. On the other hand, the TB approximation, being a more
consistent microscopic approach than the RP approximation,
does not use additional fitting parameters, but implies nu-
merical integration, which does not allow obtaining analytical
expressions for the resulting amplitudes.
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FIG. 3. The same as in Fig. 2, but for 400 MeV. The experimental data are from Ref. [43].

FIG. 4. The same as in Figs. 2 and 3, but for the d-4He scattering.
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APPENDIX: MULTIPLE SCATTERING AMPLITUDES IN THE RIGID PROJECTILE APPROXIMATION

In the RP approximation, using the α-cluster model with dispersion and MDST with the elementary d-α scattering amplitude
in the form (25), the scattering amplitude operator F̂(q) (5) can be rewritten in the following convenient form:

F̂(q) = Ã1(q) + Ã2(q)(Sn) + Ã3(q)(Sn)2 + Ã4(q)(Sq̂)2, (A1)

where the invariant amplitudes Ãl(q) for the projectile scattering from 12C nuclei are determined by

Ãl(q) = kd

{
3
∑̂(l)

1
F̂ (i)

1 (q) + 3i
∑̂(l)

2
F̂ (i,j )

2 (q) −
∑̂(l)

3
F̂ (i,j,l)

3 (q)

}
, (A2)

and those from 16O nuclei are

Ãl(q) = kd

{
4
∑̂(l)

1
F̂ (i)

1 (q) + 6i
∑̂(l)

2
F̂ (i,j )

2 (q) − 4
∑̂(l)

3
F̂ (i,j,l)

3 (q) − i
∑̂(l)

4
F̂ (i,j,l,m)

4 (q)

}
. (A3)

Using the “effective deformation” approximation [45], the general form for the amplitude operators F̂l(q) is given as

F̂l(q) = �(n) exp
(−χ (n)

q q2 − χ
(n)
d d2

)
j0(qd

√
�(n)), (A4)

where the coefficients �, χ , and � for the corresponding scattering order n are as follows:

(i) the single scattering, �(1) = Gi :

χ (1)
q = βi + 1

6�2, χ
(1)
d = 0, �(1) = 1

3 , ⇒12C,
(A5)

χ (1)
q = βi + 3

16�2, χ
(1)
d = 0, �(1) = 3

8 , ⇒16O;

(ii) the double scattering, �(2) = GiGj/γ1:

χ (2)
q = 1

24
�2 + 1

4
α1 − α2

2γ1
, χ

(2)
d = 1

3γ1
, �(2) = ϕ2

1 + 1

12
, ⇒12C,

(A6)

χ (2)
q = 1

16
�2 + 1

4
α1 − α2

2γ1
, χ

(2)
d = 1

3γ1
, �(2) = ϕ2

1 + 1

8
, ⇒16O;

(iii) the triple scattering, �(3) = 4GiGjGl/(3γ1γ2):

χ (3)
q = 1

9
(βi + βj + βl) − 2α2

5

9γ1
− 3α2

4

2γ2
, χ

(3)
d = 1

3γ1
+ 1

3γ2
+ 4α2

9γ 2
1 γ2

, �(3) = ϕ2
2 + 3

4
ϕ2

3 , ⇒12C

(A7)

χ (3)
q = 1

16
�2 + 1

9
(βi + βj + βl) − 2α2

5

9γ1
− 3α2

4

2γ2
, χ

(3)
d = 1

3γ1
+ 1

3γ2
+ 4α2

9γ 2
1 γ2

, �(3) = ϕ2
2 + 3

4
ϕ2

3 + 1

24
; ⇒16O

(iv) the quadruple scattering, �(4) = 3GiGjGlGm/(8γ1γ2γ3):

χ (4)
q = 1

16
(βi + βj + βl + βm) − α2

5

8γ1
− 3α2

10

2γ2
− α2

11

4γ3
, χ

(4)
d = 1

3γ1
+ 1

3γ2
+ 1

16γ3
+ 4α2

9γ 2
1 γ2

+ α2
12

6γ3
+ α2

9

2γ 2
2 γ3

,

�(4) = ϕ2
4 + 3

4
ϕ2

5 + 2

3
ϕ2

6 . (A8)

In (A2) and (A3) the summation operators
∑̂(l)

n for various scattering orders are equal to to following:

(i) the single scattering:

∑̂(1)

1
=

2∑
i=1

,
∑̂(2)

1
= q

4∑
i=3

,
∑̂(3)

1
= q2

6∑
i=5

,
∑̂(4)

1
= q2

8∑
i=7

; (A9)

(ii) the double scattering:

∑̂(1)

2
=

2∑
i,j=1

,
∑̂(2)

2
= 2

2∑
i=1

4∑
j=3

D̂1 + 2
4∑

i=3

6∑
i=5

D̂1D̂2,
∑̂(3)

2
= 2

2∑
i=1

6∑
j=5

D̂2
1 +

4∑
i,j=3

D̂5 +
6∑

i,j=5

D̂2
1D̂3,

(A10)∑̂(4)

2
=

4∑
i,j=3

D̂4 + 2
2∑

i=1

8∑
j=7

D̂2
1 +

8∑
i,j=7

D̂2
1D̂3;
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(iii) the triple scattering:

∑̂(1)

3
=

2∑
i,j,l=1

,
∑̂(2)

3
= 3

2∑
i,j=1

4∑
l=3

D̂6 + 6
2∑

i=1

4∑
j=3

6∑
l=5

D̂6D̂9 +
4∑

i,j,l=3

D̂6D̂10 + 3
4∑

i=3

6∑
j,l=5

D̂6D̂9D̂10,

∑̂(3)

3
= 3

4∑
i,j=3

2∑
l=1

D̂8 + 3
2∑

i,j=1

6∑
l=5

D̂2
6 + 3

2∑
i=1

6∑
j,l=5

D̂2
6D̂11 + 3

4∑
i,j=3

6∑
l=5

D̂2
6D̂10 +

6∑
i,j,l=5

D̂2
6D̂11D̂12, (A11)

∑̂(4)

3
= 3

4∑
i,j=3

2∑
l=1

D̂7 + 3
2∑

i,j=1

8∑
l=7

D̂2
6 + 3

2∑
i=1

8∑
j,l=7

D̂2
6D̂11 +

8∑
i,j,l=7

D̂2
6D̂11D̂12;

(iv) the quadruple scattering:

∑̂(1)

4
=

2∑
i,j,l,m=1

,

∑̂(2)

4
= 4

2∑
i,j,l=1

4∑
m=3

D̂13 + 12
2∑

i,j=1

4∑
l=3

6∑
m=5

D̂13D̂16 + 4
4∑

i,j,m=3

2∑
l=1

D̂13D̂17 + 12
2∑

i=1

4∑
j=3

6∑
l,m=5

D̂13D̂16D̂19

+ 4
4∑

i,j,l=3

6∑
m=5

D̂13D̂16D̂17 + 4
4∑

i=3

6∑
j,l,m=5

D̂13D̂16D̂17D̂19,

∑̂(3)

4
= 6

4∑
i,j=3

2∑
l,m=1

D̂15 +
4∑

i,j,l,m=3

D̂16D̂15 + 6
2∑

i,j=1

6∑
l,m=5

D̂2
13D̂18 + 12

4∑
i,j=3

2∑
l=1

6∑
m=5

D̂2
13D̂17 (A12)

+ 4
2∑

i,j,l=1

6∑
m=5

D̂2
13 + 4

6∑
i,j,m=5

2∑
l=1

D̂2
17D̂

2
13 + 6

4∑
i,j=3

6∑
l,m=5

D̂15D̂16D̂17 +
6∑

i,j,l,m=5

D̂15D̂
2
16D̂17

∑̂(4)

4
= 6

4∑
i,j=3

2∑
l,m=1

D̂14 +
4∑

i,j,l,m=3

D̂16D̂14 + 4
2∑

i,j,l=1

8∑
m=7

D̂2
13 + 6

2∑
i,j=1

8∑
l,m=7

D̂2
13D̂18

+ 4
8∑

i,j,m=7

2∑
l=1

D̂2
17D̂

2
13 +

8∑
i,j,l,m=7

D̂14D̂
2
16D̂17.

Here the differential operators D̂i are defined as follows:

D̂i = λq2 +
n∑

j=1

μj

∂

∂αj

+
m∑

k=1

νk

∂2

∂βk∂γk

≡ D̂(λ; μ1,α1; · · · ; μn,αn; ν1,β1,γ1; · · · ; νm,βm,γm). (A13)

For example, using the notation (A13) we have

D̂(1; 1,α) = q2 + ∂

∂α
, (A14)

and the relation for other operators D̂i can be obtained in a similar way.
In (A9)-(A12) we use the following operators:

D̂1 = 1

q
D̂

(
1

2
; 1,α

)
, D̂2 = D̂

(
1

4
; 2,γ1

)
, D̂3 = D̂

(
1

4
; −2,γ1; −1,α

)
,

D̂4 = D̂

(
0; 2,γ1;

1

q2
,α,α

)
, D̂5 = D̂

(
1

4
; − 1

q2
,α,α

)
,

D̂6 = 1

3q
D̂ (1; 2,α4) , D̂7 = D̂

(
0; 2,γ1; −2

3
,γ2;

9

4q2
,α5,α5; − 1

9q2
,α4,α4

)
,

D̂8 = D̂

(
1

9
; −2

9
,α4; − 9

4q2
,α5,α5;

1

9q2
,α4,α4

)
, D̂9 = D̂

(
1

9
; −1,α;

1

2
,α5;

4

3
,γ2;

1

9
,α4

)
,
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D̂10 = D̂

(
1

9
; 2,γ1; −2

3
,γ2; −2

9
,α4

)
, D̂11 = D̂

(
1

9
; −2,γ1; −2

3
,γ2; 1,α; 1,α5; −2

9
,α4

)
,

D̂12 = D̂

(
1

9
; −2,γ1; −2

3
,γ2; −1,α; −1,α5; −2

9
,α4

)
,

D̂13 = 1

q
D̂

(
1

4
;

3

4
,α11

)
,

D̂14 = D̂

(
0;

1

6
,α9; 2,γ1; −2

3
,γ2; − 1

16
,γ3;

4

q2
,α5,α5; − 1

9q2
,α10,α10; − 1

16q2
,α11,α11; − 1

6q2
,α10,α11

)
,

D̂15 = D̂

(
1

16
; −1

6
,α10; −1

8
,α11; − 4

q2
,α5,α5;

1

9q2
,α10,α10;

1

16q2
,α11,α11;

1

6q2
,α10,α11

)
,

D̂16 = D̂

(
1

16
; −1,α;

1

2
,α9;

1

6
,α10;

1

8
,α11;

3

16
,γ3

)
,

D̂17 = D̂

(
1

16
;

1

6
,α9; −1

8
,α10; −1

8
,α11; 2,γ1; −2

3
,γ2; − 1

16
,γ3

)
,

D̂18 = D̂

(
1

16
; −1

3
,α9;

1

3
,α10; −1

8
,α11; −8

3
,γ2; − 1

16
,γ3

)
,

D̂19 = D̂

(
1

16
; −1,α;

1

2
,α5;

1

2
,α8; − 1

12
,α9;

1

12
,α10; −1

8
,α11;

4

3
,γ2; − 1

16
,γ3

)
. (A15)

In the above formulas we introduce the notation

α = βi − βj , α1 = βi + βj , α2 = βi + βj + 4βl, α3 = βi + βj − 2βl,

α4 = 2

9
α3 − 4αα5

9γ1
, α5 = α8 = α, α6 = βi + βj + βl + 9βm,

α7 = βi + βj + βl − 3βm, α9 = −1

6
α3 + αα8

3γ1
, α10 = 1

6
α3 − αα5

3γ1
,

α11 = 1

8
α7 − α5α8

4γ1
+ 3α9α10

γ2
, α12 = α8

2γ1
+ 2αα9

γ1γ2
, (A16)

γ1 = 2α1 + �2, γ2 = 2

3
α2 − 4α2

3γ1
+ �2, γ3 = 1

16
α6 − α2

8

8γ1
− 3α9

2γ2
+ 3

16
�2,

ϕ1 = α

γ1
, ϕ2 = 2α5

3γ1
− 2αα4

γ1γ2
, ϕ3 = 2α4

γ2
, ϕ4 = α

2γ1
− 2αα10

γ1γ2
− α11α12

2γ3
,

ϕ5 = 2α10

γ2
+ α9α11

γ2γ3
, ϕ6 = 3α11

8γ3
.

Taking into account the relation

(Sq̂)2 = 2 cos2 θ

2
+ i

2
sin θ (Sn̂) − cos2 θ

2
(Sn̂)2 − (Sk̂)(Sk̂′), (A17)

after some algebraic transformations we can easily represent the amplitude operator F̂(q) (A1) in the form (5).
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