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Description of collective and quasiparticle excitations in deformed actinide nuclei: The first
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The heavy shell model (HSM) [Y. Sun and C.-L. Wu, Phys. Rev. C 68, 024315 (2003)] was proposed to take
the advantages of two existing models, the projected shell model (PSM) and the fermion dynamical symmetry
model (FDSM). To construct the HSM, one extends the PSM by adding collective D pairs into the intrinsic
basis. The HSM is expected to describe simultaneously low-lying collective and quasiparticle excitations in
deformed nuclei, and still keeps the model space tractable even for the heaviest systems. As the first numerical
realization of the HSM, we study systematically the band structures for some deformed actinide nuclei, with a
model space including up to 4-quasiparticle and 1-D-pair configurations. The calculated energy levels for the
ground-state bands, the collective bands such as β and γ bands, and some quasiparticle bands agree well with
known experimental data. Some low-lying quasiparticle bands are predicted, awaiting experimental confirmation.
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I. INTRODUCTION

The interplay between collective motion and quasiparticle
excitations has been a long-standing topic in nuclear structure
physics. It is difficult to use the conventional shell model based
on a spherical basis to study heavy, deformed nuclei because
of the problem of huge dimensionality. Even with today’s
computer power and novel diagonalization algorithms, a full
shell model calculation for an arbitrarily large system seems to
be impossible. To overcome the dimensionality problem, one
needs to seek judicious truncation schemes and use more effi-
cient shell-model bases. In the literatures, the projected shell
model (PSM) [1] and the fermion dynamical symmetry model
(FDSM) [2] are two such examples. Both of them are based on
the shell model concept, but are constructed according to dif-
ferent truncation schemes, thus emphasizing different physical
aspects. It should be mentioned that Schmid and collaborators
have provided another example (the MONSTOR-VAMPIR
hierarchy) of truncation schemes based on the symmetry-
restoration method. It offers approaches to describe rotational
states with fully optimized symmetry-projected mean fields
and more sophisticated effective interactions [3].

In the PSM, shell model diagonalization is carried out in
the projected deformed basis constructed by choosing a few
quasiparticle (qp) orbitals near the Fermi surfaces and per-
forming angular-momentum and particle-number projection
on the qp configurations [1]. In this way, the PSM is able to
describe low-lying rotational bands built upon qp excitations.
The PSM has been successful for studying the rotational
states in heavy [4] and superheavy nuclei [5], as well as the
states of superdeformation [6,7]. Moreover, it has been shown
that, comparing with large-scale shell model calculations [8],
the PSM can achieve a similar accuracy in describing the
deformed 48Cr [9] and the superdeformed 36Ar [10]. However,
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the original version of the PSM was not designed to treat
collective vibrational states such as β and γ vibrations. The
lack of ingredients for collective excitations in the PSM makes
it difficult to produce these low-lying collective bands, and also
limits its applications only to well deformed nuclei. To release
the restriction of axial symmetry in the deformed basis, the
triaxial projected shell model (TPSM) was introduced [11]. A
more recent example of the TPSM application is to describe
the γ -vibrational bands in some Er isotopes [12].

On the other hand, the interacting boson model (IBM) [13]
is a successful model for the description of low-lying collective
states. In this model, the coherent S and D pairs are assumed
to be the building blocks of the low-lying collective states,
and are approximated as s and d bosons. It has been shown
that an axially symmetric rotor possesses SU(3) symmetry,
while a γ -soft rotor possesses SO(6) symmetry. The β and γ
vibrations including the scissors mode vibration in deformed
nuclei can be classified as different SU(3) or SO(6) irreducible
representations [14]. Since nucleons are fermions, the later
developed FDSM directly uses coherent nucleon S and D
pairs without a boson approximation. The FDSM actually
uses a symmetry-dedicated shell model truncation scheme to
treat nuclear collective excitations. It has been shown that the
FDSM can well describe the low-lying collective states from
the spherical to the well-deformed region [2]. However, the
FDSM has difficulties in describing single-particle excitations,
because once the unpaired single-particle degrees of freedom
are opened up, the dimension of the model space will go
up quickly just as in the conventional spherical shell model.
Moreover, the FDSM is a one-major-shell shell model.

It is clear that both the PSM and the FDSM follow the
shell model philosophy, but they employ different truncation
schemes, thus describing different excitation modes. The
PSM emphasizes qp excitations, while the FDSM emphasizes
low-lying collective excitations. Experimentally, it is often
the case that quasiparticle and collective excitations coexist
in the low-lying nuclear spectrum. It is therefore desired to
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combine the advantages of these two models to form a new
shell model for heavy nuclei, which can describe both qp ex-
citations and low-lying collective excitations simultaneously.
The combination of the two models becomes possible through
the recognition [15,16] that the PSM calculations exhibit, up
to high angular momenta and excitation energies, a remarkable
one-to-one correspondence with the analytical SU(3) spectrum
of the FDSM. Motivated by this finding, it was suggested in
Ref. [17] that it is possible to treat collective and qp excitations
in a common multishell shell-model framework. One way to
realize the idea is to extend the PSM by adding the coherent
D pairs into the intrinsic basis, since it is evident from the
FDSM that it is the coherent D pairs that are responsible for
the collective excitations. With this extension, the PSM (i.e.,
the HSM) may become a more general multi-major-shell shell
model, useful not only for well deformed nuclei, but hopefully
also for transitional ones (see discussions in Ref. [17]).

The key question for implementing the HSM is how to
construct the D pairs in the PSM model space, which usually
involves three major shells for both neutrons and protons. In
Ref. [18], the D0 (D2) pair was suggested to be the linear
combination of all the 2-qp states with Kπ = 0+(Kπ = 2+)
in the PSM multi-major-shell truncated space. The structure
amplitudes are obtained from the wave function of the lowest
2-qp state after diagonalization. A testing calculation was
performed for the β band in 172Yb, and it was found that,
indeed, the collective nature of the D0 configuration can be
well reproduced from the calculation [18]. In Ref. [19], it was
shown that, by including both qp and D0 configurations, the
ground-state bands (g.s. bands) and β bands of four deformed
nuclei, 230,232Th and 232,234U in the actinide region, are also
well reproduced. In addition, the calculated B(E2) transition
rates agree well with the experimental data. The structure of the
D0 pair in the calculation does show collectivity. It is indeed a
strong mixture of many 2-qp states. All these indicate that the
suggested construction [18] of D0 pair is reasonable.

The above attempts may be regarded as an initial step
of the numeric realization of the HSM. However, in order
to describe γ bands, one needs to add the D2 pair into
the PSM basis. Furthermore, in order to have the so-called
“2-phonon states” one needs to consider 2-D-pair excitations.
As suggested by the FDSM, the 2-D-pair excitations have four
different excitation modes: D0D0, D2D0, D2D−2, and D2D2,
which will give rise to the following four 2-phonon-excitation
bands: ββ band (nγ = 0, nβ = 2, K/2 = 0), γβ band (nγ = 0,
nβ = 1, K/2 = 1), γ γ (0+) band (nγ = 2, nβ = 0, K/2 = 0),
and γ γ (4+) band (nγ = 0, nβ = 0, K/2 = 2), respectively,
where nβ , nγ , and K denote the quantum numbers of β and γ
phonons and the z component of angular momentum.

In Refs. [20,21], the rotational bands in the nuclei with Z =
100 were investigated systematically by using the cranking
shell model with the pairing correlations treated by a particle-
number conserving method. In the present paper, we study
systemically the band structure of both the low-lying qp
and collective excitations for the deformed actinide nuclei
230,232Th, 232,234,236U, and 240Pu by adding 1-D pairs into the
PSM basis.

This paper is organized as follows. A brief introduction of
HSM is given in Sec. II. In Sec. III, we discuss in detail the

structure of D0 and D2 pairs, the energy schemes, eigenfunc-
tions, and reduced B(E2) transitions for the nuclei 230,232Th,
232,234,236U, and 240Pu, respectively. Finally, a conclusion is
drawn in Sec. IV.

II. FORMULISM

The HSM is an improved version of PSM including not
only single-particle excitations but also collective excitations
in the basis. However, the PSM cannot use directly the D pair
defined in the FDSM, since the two model spaces are very
different. The structure of D pairs is suggested in Ref. [18] as
follows:

D
†
0 =

∑
ρ,μ

f K=0
ρμ [a†

ρa
†
μ]K=0, D

†
2 =

∑
ρ,μ

f K=2
ρμ [a†

ρa
†
μ]K=2,

(1)

where [a†
ρa

†
μ]K is the 2-qp creation operator with K = 0,2.

ρ and μ are the state index of the qp, and f K
ρμ is the

structure amplitude, which are determined by diagonalizing
the Hamiltonian in the 2-qp basis with given K . Having D

†
0

and D
†
2 determined, the 1-D-pair excitation will give the first

β and γ bands. They can be expressed as

|I,M〉β = P̂ I
M0D

†
0|�〉, | I,M〉γ = P̂ I

M2D
†
2|�〉, (2)

where |�〉 is the BCS vacuum and

P̂ I
MK = 2I + 1

8π2

∫
d� D̂I

MKR̂(�) (3)

is the angular momentum projection operator. In Eq. (3), DI
MK

is the irreducible representation of the rotation group and
R̂ is the rotation operator with respect to the solid angle �
that is always denoted by three Euler angles (α, β, γ ). In
our calculation, the axial symmetry in the deformed basis is
assumed, so the D function reduces to the d function and �
reduces to β. Finally, adding the collective excitations into
the PSM intrinsic basis, the HSM intrinsic basis is given. For
even-even nuclei it is

{|φκ〉} = {|�〉,a†
νi
a†

νj
|�〉,a†

πk
a†

πl
|�〉,

a†
νi
a†

νj
a†

πk
a†

πl
|�〉,D†

0|�〉,D†
2|�〉}, (4)

where a†
νi

and a†
πi

are the qp creation operators for neutrons
and protons with i as state index, respectively. Configurations
that contain more than two like-nucleon quasiparticles are
not included, because they have higher excitation energies
due to mutual blocking of levels and thus affect the results
little in energy ranges that interest us [1]. Therefore, the 4-qp
configurations in (4) have a particular form that consists of
two-proton and two-neutron operators only. They are expected
to play the most important role in the 4-qp excitations.

It should be stressed that the HSM truncation is carried
out in the intrinsic basis (a symmetry-breaking deformed
mean-field basis that has already contained much of the
multishell correlations due to the nuclear deformations), and
then subsequently the rotational symmetry is recovered via
the projection operator. The combination of these two is what
makes this kind of approache a very powerful truncation
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scheme, which is at variance with the traditional shell model
where the truncation is based on a spherical mean-field basis
and is unsuitable for handling multi-major-shell correlations.
Here, as also discussed in Ref. [3], an efficient truncation is
achieved by transferring the truncation hierarchy to a highly
correlated symmetry-projected basis where each state is a
significant mixing of multiple major shells.

The shell-model configuration space can then be con-
structed by the projected basis, which is

|K,κ,IM〉 = P̂ I
MK |φκ〉, (5)

where |φκ〉 denotes the intrinsic basis of HSM given in Eq. (4).
Then we can obtain the eigenenergy Eσ and the eigen wave
function ∣∣I,σ

M

〉 =
∑
K,κ

F
I,σ
K,κ |K,κ,IM〉, (6)

where σ denotes different eigenstates, by solving the following
eigenvalue equation:∑

K
′
,κ

′

(
Ĥ I

Kκ,K
′
κ

′ − Eσ N̂I
Kκ,K

′
κ

′
)
F Iσ

K
′
κ

′ = 0, (7)

where the Hamiltonian matrix element and the norm matrix
element are

Ĥ I
Kκ,K

′
κ

′ = 〈φκ |Ĥ P̂ I
KK

′ |φκ
′ 〉, (8)

N̂ I
Kκ,K

′
κ

′ = 〈φκ |P̂ I
KK

′ |φκ
′ 〉. (9)

The effective interaction employed in the HSM is the same as
that in the PSM, which takes the form

Ĥ =
∑

ξ=ν,π

Ĥξ + Ĥνπ , Ĥνπ = −χνπQ̂
ν†
2 Q̂π

2 ,

Ĥξ = Ĥ
ξ
0 − χξ

2
Q̂

ξ†
2 Q̂

ξ
2 − G

ξ
MP̂ ξ†P̂ ξ − G

ξ
QP̂

ξ†
2 P̂

ξ
2 . (10)

The first term Ĥ
ξ
0 in Eq. (10) is the spherical single-particle

Hamiltonian. The second term is the residual quadrupole-
quadrupole interaction, while the third and fourth terms are
the monopole-pairing and quadrupole-pairing interactions,
respectively. The strength of the quadrupole-quadrupole force
is related to the quadrupole deformation in the Nilsson
potential by [1,22]

χττ ′ =
2
3ε2�ωτ �ωτ ′

�ων〈Q0〉ν + �ωπ 〈Q0〉π , (11)

where τ and τ ′ mean either ν or π . The monopole-pairing
strength is given as follows:

Gn
M = (19.3 − 0.08(N − Z))/A,

(12)
G

p
M = (13.3 + 0.217(N − Z))/A,

where n denotes neutrons and p denotes protons. The
monopole-pairing strength above is determined by reproduc-
ing the experimental odd-even mass difference as Ref. [23].
In the current calculation it is multiplied by 0.87 in the cases
of both neutrons and protons. The quadrupole-pairing strength
GQ is proportional to GM and the proportional rate GQ/GM

is fixed to 0.14 in our calculation for 230,232Th, 0.13 for
232,234,236U, and 0.12 for 240Pu. The parameters we choose
are slightly different from Refs. [19] and [24,25] due to the
different spaces used in our present model. In FDSM, to
produce the SU(3) symmetry, the quadrupole-pairing strength
is equal to the monopole-pairing strength [2]. The origin of
the difference remains a very interesting topic.

In Eq. (10), the one-body operator takes the following form:

Q̂μ =
∑
α,α

′
Qμαα

′ c†αcα
′ ,

P̂ † = 1

2

∑
α

c†αc
†
ᾱ,

P̂ †
μ = 1

2

∑
α,α

′
Qμαα

′ c†αc
†
ᾱ

′ . (13)

In the above equations, Qμαα
′ is the matrix element of the one-

body quadrupole operator, namely 〈α|Q̂2μ|α′ 〉 in which α rep-
resents the spherical single-particle state denoted by {nljm}.
c†α is the particle creation operator on the corresponding state
and its time reversal is defined as cᾱ = (−1)j−mcnlj−m.

When the eigenvalue equation [Eq. (7)] is solved, the
eigenstates can be determined. Correspondingly, the electric
quadrupole transition probabilities between the states |Iσ 〉
and |I

′
σ

′ 〉 can be calculated by the quadrupole operator
[Eq. (13)]:

B(E2,Iσ → I
′
σ

′
) = 2I

′ + 1

2I + 1
|〈I

′
σ

′ ‖Q̂2‖Iσ 〉|2, (14)

where the reduced matrix element is defined as

〈I
′
σ

′ ‖Q̂2‖Iσ 〉 =
∑

KK
′
,κκ

′
,ν

(IK
′ − ν,2ν|I ′

K
′
)

×〈�κ
′ |Q̂2νP̂

I
K

′ −ν,K
|�κ〉F I

′
σ

′

K
′
κ

′ F Iσ
Kκ .

(15)

An effective charge of 0.5e is used to compute the B(E2)
values.

III. RESULTS

In the calculation, Nilsson’s parameters (κ , μ) for 230,232Th,
232,234,236U, and 240Pu are taken from Refs. [26,27], and the
shapes of the Nilsson’s deformed field for each nucleus are
fixed. They are described by ε2 and ε4 for quadrupole and
hexadecapole deformations which are listed in Table I. The
ε2 value (bear in mind that the relation between ε2 and β2

is approximately ε2 = β2 × 0.95) is fixed for each nucleus

TABLE I. The quadrupole and hexadecapole deformation param-
eters for 230,232Th, 232,234,236U, and 240Pu, respectively.

230Th 232Th 232U 234U 236U 240Pu

ε2 0.212 0.234 0.238 0.240 0.254 0.260
ε4 0.013 0.018 0.012 0.027 0.030 0.040
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TABLE II. The chemical potentials of neutron and proton for
230,232Th, 232,234,236U, and 240Pu. The unit is MeV.

230Th 232Th 232U 234U 236U 240Pu

λn 53.42 53.69 53.20 53.38 53.52 53.21
λp 39.76 39.49 39.97 39.76 39.54 39.54

changing from 0.212 to 0.260. We see from Table I that
the ε2 values of quadrupole deformations increase as the
numbers of valence nucleons increase. They are approximately
in accordance with the results of nonrelativistic mean-field
calculation with the Gogny force [28] and the relativistic mean-
field (RMF) calculation [29]. Meanwhile, the hexadecapole
deformation parameter ε4 is nearly one order smaller than ε2.

Particle number is conserved at the BCS level. In the present
model, the right average particle number is obtained by adding
the term −λN̂ to the Hamiltonian

H ′ = H − λN̂, (16)

where the Lagrange multiplier λ is fixed by the condition [30]

〈BCS|N̂ |BCS〉 = 2
∑

k

v2
k = N. (17)

In Table II, we list the obtained Lagrange multipliers for all
nuclei studied in the present paper.

The difference between the current HSM and PSM is that
the collective excitations described by the D0 and D2 pair are
included in the basis space [see Eq. (4)]. The first thing we
need to check is the collectivity of the D0 and D2 pair. In
the single-particle space (three major shells, N = 4,5,6 for
protons and N = 5,6,7 for neutrons), the numbers of K = 0
and K = 2 2-qp states are about 60 and 80, respectively, in
the case of truncation energy 5 MeV. The main components
(percentages are larger than 2%) of the D0 and D2 pair are
listed in Tables III and IV for 232,234Th, 232–236U, and 240Pu,
respectively.

In Table III, we notice that for neutron configurations,
except the 2-qp state 5

2

+
[633]ν − 5

2

+
[622]ν , all the others are

composed of one qp state and its time reversal partner. The
basis 1

2
+

[631]ν − 1
2

+
[631]ν plays an important role for all the

nuclei studied. On the other hand, for all the nuclei except

TABLE III. The main configurations of the D0 pairs constructed
as in Eq. (1) for 230,232Th, 232,234,236U, and 240Pu, respectively.

2-qp basis 230Th 232Th 232U 234U 236U 240Pu

5
2

−
[503]ν − 5

2

−
[503]ν <2% <2% 7.4% 2.3% 2.2% <2%

1
2

−
[501]ν − 1

2

−
[501]ν 71.2% 65.7% 24.3% 57.0% 46.9% 2.5%

5
2

+
[633]ν − 5

2

+
[622]ν <2% <2% 2.3% <2% <2% <2%

13
2

+
[606]ν − 13

2

+
[606]ν <2% <2% 4.3% <2% <2% <2%

1
2

+
[631]ν − 1

2

+
[631]ν 4.7% 10.2% 8.4% 14.5% 22.2% 26.6%

5
2

+
[622]ν − 5

2

+
[622]ν <2% <2% <2% <2% 8.6% 48.7%

5
2

−
[752]ν − 5

2

−
[752]ν 6.1% <2% 2.0% <2% <2% <2%

7
2

−
[743]ν − 7

2

−
[743]ν <2% 10.2% 37.3% 11.3% 7.3% 10.6%

TABLE IV. The same as Table III, but for D2 pairs.

2-qp basis 230Th 232Th 232U 234U 236U 240Pu

3
2

−
[501]ν + 1

2

−
[501]ν 25.8% 24.7% 26.3% 25.4% 23.5% <2%

5
2

−
[503]ν − 1

2

−
[501]ν 50.1% 47.6% 52.2% 50.9% 50.1% <2%

3
2

+
[631]ν + 1

2

+
[631]ν 2.9% 3.3% 3.1% 2.8% <2% <2%

5
2

+
[633]ν − 1

2

+
[631]ν 5.4% 7.4% 7.1% 6.3% 2.6% <2%

5
2

+
[622]ν − 1

2

+
[631]ν <2% 3.4% <2% 2.5% 11.6% 98.3%

7
2

−
[743]ν − 3

2

−
[761]ν 2.4% <2% <2% <2% <2% <2%

3
2

+
[402]π + 1

2

+
[400]π <2% 2.5% <2% <2% 2.1% <2%

240Pu, the basis 1
2

−
[501]ν − 1

2
−

[501]ν has a very large percent-

age. Except for 230Th, the configuration 7
2

−
[743]ν − 7

2
−

[743]ν
has obvious distributions in the D0 pairs. The percentages of
1
2

+
[631]ν − 1

2
+

[631]ν and 5
2

+
[622]ν − 5

2

+
[622]ν increase as

the neutron number increases due to the shift of the fermi
surface. The bases from the proton shell do not play such an
important role as those from the neutron shell.

A similar phenomena happens for the structure of D2 pairs
as listed in Table IV. The 2-qp state 3

2
−

[501]ν + 1
2

−
[501]ν has

a percentage of about 25% for both 230,232Th and 232,234,236U.
For 230,232Th and 232,234,236U, the configuration 5

2

−
[503]ν −

1
2

−
[501]ν plays a very important role with a percentage of

about 50%, but less than 2% for 240Pu. The 2-qp configuration
5
2

+
[622]ν − 1

2
+

[631]ν has a percentage of 98.3% for 240Pu
and 11.6% for 236U, but very small for the other nuclei. The
structure of D2 pairs agrees well with the results in Ref. [31],
where the structures of γ -vibrational states were investigated
for rare-earth and actinide-region nuclei by quasiparticle and
quasiboson approximation. From Tables III and IV, we see
that the D pairs are composed of several 2-qp bases for all
the studied nuclei except 240Pu, indicating the collectivity
of D pairs we constructed. Although there is only one main
component of 2-qp state in D2 pairs for 240Pu, it is a collective
combination of several shell-model sp states.

When one solves Eq. (7), the angular momentum projected
energies are then mixed through the diagonalization of the
shell model Hamiltonian in Eq. (8). The comparison of the
projected energies and the bandhead energies is helpful to
identify each band’s configuration. As an example, in Fig. 1,
we plot the bandhead energies before and after diagonalization
for different projected states with (Iπ ,Kπ ) = (0+,0+) and
(Iπ ,Kπ ) = (2+,2+) of 232U, respectively. We see from Fig. 1
that both the BCS vacuum state and the D0 pair have very low
energies, while the latter one is about 500 keV higher. After
the diagonalization, the ground state becomes nearly 300 keV
lower, which indicates that to some extent the vacuum state
mixes with the multi-qp states. Similar phenomena happen
for the other Kπ = 0+ states. For the Kπ = 2+ states, the
diagonalization does not make a big difference as that of
theKπ = 0+ states does. In other words, the Kπ = 2+ states
do not mix so much with each other. The energies of D0 and
D2 pairs before diagonalization have very little difference with
the β- and γ -bandhead energies, respectively. Therefore it can
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FIG. 1. Comparison of the angular momentum projected energies
and the bandhead energies for (Iπ ,Kπ ) = (0+,0+) and (Iπ ,Kπ ) =
(2+,2+) states of 232U, respectively. The projected energies represent
the values of HI=0

0κ,0κ/N
I=0
0κ,0κ and HI=2

2κ,2κ/N
I=2
2κ,2κ , respectively. The

bandhead energies indicate the energies after the diagonalization of
Hamiltonian matrix [see Eq. (8)].

be concluded the method to construct the collective pairs as
Eq. (1) is very effective.

Based on the collectivity of D pairs, we obtain a more
powerful HSM by extending the PSM basis with collective
excitations, which is a multishell model and is valid for both qp
excitations and low-lying collective excitations such as β and
γ vibration. We solve the eigenvalue Eq. (7) in the basis space
given by Eq. (4) and get the energy levels and wave functions.
Then the B(E2) transitions are calculated by Eq. (14). As a
first systemic numerical realization of HSM, we calculate the
β and γ bands, some 2-qp and 4-qp rotational bands, and the
B(E2) transition rates for 230,232Th, 232,234,236U, and 240Pu,
respectively.

For 230Th, we see from Fig. 2 that the ground band
agrees well with the experimental data at low spins and
has some deviation at spins higher up to Iπ = 18+. The
agreement between the β band and the γ band with the
corresponding experimental values is also quite good. Our
calculation predicts five 2-qp rotational bands at 985, 1504,
1726, 1661, and 1578 keV with Kπ = 0+, Kπ = 3+, Kπ =

FIG. 2. Comparison of the calculated and experimental
g.s. bands, and β and γ bands of 230Th. Some 2-qp and 4-qp rotational
bands are also given as a theoretical prediction. The experimental
energies are from the National Nuclear Data Center, Ref. [32] and
references therein.

FIG. 3. Same as Fig. 2, but for 232Th.

4+,Kπ = 5+, and Kπ = 6+, respectively. A Kπ=0+ 4-qp
rotational band is given at 2437 keV with the configuration
1
2

−
[501]ν − 1

2
−

[501]ν + 1
2

−
[530]π − 1

2
−

[530]π .
In Fig. 3, we plot for 232Th several low-lying multi-qp

excited bands and collective bands from HSM and from some
available experiment data. We find that the ground band is
in good agreement with the experimental values up to spin
Iπ = 18+. The calculated β band is lower than the observed
one, obviously, while the case for the γ band is in contrast.
The not-very-good reproduction of the γ band may be due
to the nonaxial deformation and softness of the realistic
potential of this nucleus. It will be discussed at the end of
this section. Another Kπ = 0+ band is predicted at 850 keV
with the configuration 7

2
−

[743]ν − 7
2

−
[743]ν . Also, there are

two Kπ = 3+ bands at 1037 and 1533 keV with the con-
figuration 5

2

+
[622]ν + 1

2
+

[631]ν and 5
2

−
[503]ν + 1

2
−

[501]ν ,
respectively. At 1718, 1631, and 1640 keV, three bands with
Kπ = 4+, Kπ = 6+, and Kπ = 7+ are predicted, respectively.
In our calculation, one 4-qp Kπ = 0+ rotational band is
predicted at 2862 keV, with the configuration 1

2
+

[631]ν −
1
2

+
[631]ν + 1

2
+

[400]π − 1
2

+
[400]π .

The energy scheme of 232U is given in Fig. 4. We find
that the calculation well reproduces the ground band, and
β and γ bands. According to the calculation, five 2-qp
rotational bands emerge at 960, 1367, 1587, 1481, and
1487 keV with Kπ = 0+, Kπ = 3+, Kπ = 4+, Kπ = 6+,
and Kπ = 7+, respectively. A low-lying 4-qp rotational band

FIG. 4. Same as Fig. 2, but for 232U.

014321-5



CUI, ZHOU, CHEN, SUN, WU, AND GAO PHYSICAL REVIEW C 90, 014321 (2014)

FIG. 5. Same as Fig. 2, but for 234U.

with Kπ = 0+ is predicted at 2520 keV with the configuration
7
2

−
[743]ν − 7

2
−

[743]ν + 5
2

−
[523]π − 5

2

−
[523]π .

The spectrum is shown in Fig. 5 for 234U. For the ground
band, there are visible deviations between the observed values
and calculated ones when the spin is larger than 12+, but at low
spin the calculation agrees quite well with experimental data.
The calculated β and γ bands at 740 and 1012 keV have some
differences, although not large, with the experimental ones
which are at 810 and 927 keV, respectively; and moreover, the
deviations become larger as the spins increase. A Kπ = 0+

band with the configuration 1
2

−
[501]ν − 1

2
−

[501]ν is given
at 952 keV, and the observed one is at 1044 keV. A Kπ =
2+ 2-qp band with the configuration 5

2

+
[622]ν − 1

2
+

[631]ν
is given at 1150 keV in our calculation, which is nearly the
same as the observed value 1125 keV. At 1136 and 1584 keV
there are two bands both with Kπ = 3+ compared with two
observed ones at 1496 and 1502 keV, respectively. The Kπ =
6+ and Kπ = 7+ bands at 1611 and 1617 keV are also given
as a prediction. A Kπ = 0+ 4-qp rotational band is given
at 2633 keV with the configuration 1

2
−

[501]ν − 1
2

−
[501]ν +

5
2

−
[523]π − 5

2

−
[523]π .

In Fig. 6, the energy scheme for 236U is plotted and
compared with the available experimental values. The cal-
culated ground band agrees well with the observed values
up to spin Iπ = 18+. However, the calculated β and γ
bands have some deviations, although not large, from the
experimental values. A Kπ = 0+ 2-qp band with configuration

FIG. 6. Same as Fig. 2, but for 236U.

FIG. 7. Same as Fig. 2, but for 240Pu.

5
2

+
[622]ν − 5

2

+
[622]ν is plotted at 920 keV as a prediction.

Another four 2-qp rotational bands are given at 1129, 1556,
1658, and 1665 keV with Kπ = 3+, Kπ = 4+, Kπ = 6+,
and Kπ = 7+, respectively. A Kπ = 0+ 4-qp rotational band
is given at 2867 keV, with the configuration 5

2

+
[622]ν −

5
2

+
[622]ν + 5

2

−
[523]π − 5

2

−
[523]π .

The energy scheme of 240Pu is shown in Fig. 7. Both the
calculated ground band, β and γ bands, and K = 3+ band
agree well with the experimental data. In the calculation, the
most important configuration of the γ band is 5

2

+
[622]ν −

1
2

+
[631]ν which is shown in the structure of the D2 pair

in Table IV, and that makes almost no difference with the
results of Ref. [31]. The calculation also well reproduces 2-qp
rotational bands with Kπ = 0+ and Kπ = 3+ at 1029 and
1094 keV compared to the experimental values 1089 and 1031
keV, respectively. Moreover, the configuration of the Kπ = 3+

band is 5
2

+
[622]ν + 1

2
+

[631]ν in our calculation, which is
the same as that suggested in Ref. [32]. Another calculated
Kπ = 2+ band with the configuration 5

2

−
[503]ν − 1

2
−

[501]ν
is predicted bandhead energy 1666 keV.

In Ref. [33], 240Pu is studied in the framework of the
three-dimensional relativistic Hartree-Bogoliubov calculation
with the density-dependent, point-coupling energy density
functional, and in the β-γ plane the minimum of binding
energy is at the point with γ = 0◦ and β2 = 0.280, which
indicates the axial symmetry shape. The current HSM is
constructed under the assumption of axial symmetry, and the
ε2 (0.260) we choose is very close to the shape suggested in
Ref. [33].

When the wave functions of the initial and final states are
acquired, we calculate the reduced B(E2) transition proba-
bilities between them according to Eq. (14). The interband
B(E2) value is a quantity that indicates the K mixing in
different bands. In Table V, the calculated intraband B(E2)
values of ground bands, and from β and γ bands to ground
states are listed and compared with the available observed
values in Weisskopf units (W.u.). For the nuclei 230Th, 232U,
and 240Pu, the calculated B(E2)’s from 2+

g to 0+
g agree well

with the experimental values, while for the other nuclei
there exists some difference between the calculation and
experimental data, especially for 232Th. For 230,232Th and
236U, the calculated B(E2) transitions from 4+

g to 2+
g cannot
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TABLE V. Comparison of the B(E2) values (in W.u.) between the calculated results and the experimental data. The experimental data are
from Ref. [32].

B(E2) 230Th 232Th 232U 234U 236U 240Pu

Ii → If expt. calc. expt. calc. expt. calc. expt. calc. expt. calc. expt. calc.

4+
g → 2+

g 265(9) 289.7 286(24) 347.8 376.5 379.6 357(23) 409.3 439.6

2+
g → 0+

g 196(6) 202.0 198(11) 242.7 241(21) 263.1 236(10) 265.0 250(10) 285.8 287(11) 307.3

2+
β → 0+

g 2.7(9) 0.37 2.8(12) 0.55 0.64 <1.3 0.54 0.45 0.10

2+
γ → 0+

g 2.9(9) 1.27 2.9(4) 1.16 1.32 2.9(5) 1.28 0.56 0.02

2+
γ → 0+

β 0.10 0.04 1.1 0.01 0.04 0.05

reproduce the experimental data very well. The interband
transition probabilities are very small, nearly forbidden. For
example, for 230,232Th and 234U the 2+

β to 0+
g values are 0.37,

0.55, and 0.54 compared to the experimental ones 2.7, 2.8,
and 1.3, respectively. Furthermore, for these three nuclei, the
experimental B(E2)’s from 2+

γ to 0+
g are all 2.9, but the

calculated ones are just 1.27, 1.16, and 1.28, respectively.
Therefore, on the whole, the calculated interband transition
probabilities are smaller than the experimental data for the
transitions from the β or γ band to the ground state. It indicates
that in realistic nuclei, the potentials in both β and γ directions
are stiffer than those assumed in the HSM, according to the
discussion in Ref. [34,35]. The calculated B(E2) transitions
from 2+

γ to 0+
β are also very small.

In the case of the SU(3) limit, according to the FDSM or
IBM, the ground state and the degenerated β- and γ -vibrational
states belong to different irreducible representations (irrps)
of the SU(3) group. The β and γ bands are distinguished
by different K values, which means in this case B(E2)
transitions between the inter-bands are forbidden. However,
both the calculated interband B(E2)’s and experimental data
are nonzero, which indicates the mixing of the spaces with
different irrps.

In Refs. [36,37], the benchmark

S(J )

= {E[J+
γ ] − E[(J − 1)+γ ]}− {E[(J − 1)+γ ] − E[(J − 2)+γ ]}

E[2+
g ]

,

(18)

is defined to estimate the nonaxiality and softness of the
γ deformation. In the equation above, E[J+

γ ] is the energy
level of γ bands with spin J , and E[2+

g ] is the energy of
the first excited state of the ground band. In the case of
an axially symmetric rotor, S(J ) is equal to 0.333, and the
staggering around this value indicates the nonaxial effect.
In the microscopic viewpoint, the staggering indicates the
mixing of bases with different Kπ ’s [33]. In Fig. 8, we plot
the S(J ) values of both the observed and calculated γ bands
as a function of spin for all the six nuclei we studied. For
230Th, the calculated S(J ) values have small deviations from
experimental data except at Jπ = 9+ and 10+. For 234U, the
observed and calculated S(J ) values are nearly the same,
and moreover, the staggering is still small. According to our
calculation, the S(J )’s for 232U and 240Pu nearly keep constant

at 0.333 at low spins, well reproducing one experimental
datum. The calculated S(J )’s nearly keep constant at low spins
for 232Th. However, the staggering of experimental S(J ) data
is obvious, indicating the nonaxial shapes of 232Th, and this
may explain why the HSM calculation does not well reproduce
the experimental γ band for this nucleus. Moreover, for 236U,
the staggering of the calculated values is very small, which
indicates a good axial shape.

IV. CONCLUSION

In order to describe simultaneously the single-particle and
low-lying collective excitations for heavy nuclei, the PSM
is extended to the HSM by adding the collective degrees of
freedom, namely the D-pairs excitations, into PSM intrinsic
basis. The study of the structure of D pairs indicates that the
method to construct the D0 and D2 pair is reasonable by the
linear combination of all the 2-qp states with Kπ = 0+(Kπ =
2+) in the PSM truncated space. In this way, the D0 and D2

pair does show collectivity.
Based on the collectivity of D pairs, the energy levels

and B(E2) transitions for the g.s. band, for 2-qp and 4-qp
excitations, and for collective β bands and γ bands are
described simultaneously in HSM for deformed actinide
nuclei 230,232Th, 232,234,236U, and 240Pu, respectively. The

FIG. 8. Comparison of the calculated S(J ) values of γ -
vibrational bands with experimental data for 230,232Th, 232,234,236U,
and 240Pu, respectively.
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calculation well reproduces the g.s. bands, β and γ bands, and
some quasiparticle bands compared with the observed values,
although for 232Th the deviations between the calculated and
observed γ bands is big due to the nonaxial deformations.
In addition, some low-lying quasiparticle bands are predicted,
awaiting experimental confirmation. For all the nuclei studied,
the calculated B(E2) values in the g.s. bands from 2+

g to 0+
g

and from 4+
g to 2+

g and the interband ones agree with the
experimental values.

We demonstrate that the HSM can describe simultaneously
low-lying collective and quasiparticle excitations in deformed
nuclei by adding collective 1-D-pair configurations (D0 and
D2), and still keep the model space tractable for heavy
nuclear systems. HSM could also study 2-phonon excita-
tions by adding 2-D pairs and 2qp-plus-1-D configurations
(a†

i a
†
jD

†
K |� >) into the intrinsic basis of PSM, which will be

our future work. Along this line, HSM will become a powerful

multi-major-shell shell model, useful for both well deformed
nuclei and transitional ones.

The symmetry-restoration method discussed in the present
paper provides a way to truncate the Hilbert space generally.
The method can therefore be applied beyond nuclear physics.
In fact, the application of this technique can be found in
condensed matter physics [38] and quantum chemistry [39,40],
especially for describing electronic states in the Hubbard
model [41–44].
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