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Symplectic group structure of the 48Cr, 88Ru, and 92Pd ground states
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Fjordtoften 17, 4700 Næstved, Denmark

(Received 9 April 2014; revised manuscript received 25 June 2014; published 24 July 2014)

The ground states of 48Cr, 88Ru, and 92Pd are studied in the 1f7/2 or 1g9/2 shell model with effective interactions
from the literature. They are found to be composed, quite independently of the shell and the interaction, roughly
of 75% of (s,t) = (0,0) and 25% of (s,t) = (4,0), where s is the seniority and t the reduced isospin. Other irreps
of the symplectic group Sp(2j + 1), where j is the single-nucleon angular momentum, make only very small
contributions. The state χ obtained by antisymmetrization and normalization of the ground state in the stretch
scheme of Danos and Gillet [M. Danos and V. Gillet, Phys. Rev. 161, 1034 (1967)] has a very different structure
where the Sp(2j + 1) irreps other than (s,t) = (0,0) and (4,0) contribute 20% and 41% for j = 7/2 and 9/2,
respectively. The contributions of χ and the s = 0 state to the calculated states are about equal for 48Cr. For
88Ru and 92Pd the s = 0 state is unambigously a better approximation to the calculated states than χ . A state
χ ′ obtained by antisymmetrization and normalization of the product of two stretch-scheme ground states of the
system with two valence nucleons or nucleon holes of each type has much larger overlaps with the calculated
ground states than χ but a deviating Sp(2j + 1) decomposition.
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I. INTRODUCTION

In an impressive experiment, Cederwall et al. [1] measured
the γ decay of three excited states of 92Pd, which has four
neutrons and four protons less than the doubly magic 100Sn.
They interpreted the spectrum in terms of the “stretch scheme”
proposed in the 1960s by Danos and Gillet [2] to describe
deformed nuclei in the shell model. Qi et al. [3] made shell
model calculations in support of this interpretation employing
a valence space composed of the shells 2p3/2, 1f5/2, 2p1/2, and
1g7/2 as well as smaller spaces. The stretch scheme applies
to nuclei with equal even numbers of valence neutrons and
protons. All valence neutron orbits are supposed to belong
to the same j shell and so also for the protons. The valence
nucleons are divided into two “chains,” each of them formed by
half of the valence neutrons and half of the valence protons.
Within a chain the nucleonic angular momenta are coupled
to the maximal total angular momentum through pairwise
coupling of a neutron and a proton to their maximal combined
angular momentum. In the ground state the chain angular
momenta are opposite, and “rotational” excitations are formed
by a bending of them towards each other to form a nonzero total
angular momentum. Nucleon holes in a j shell may replace
valence nucleons without changing the scheme essentially.
This is its version relevant to 92Pd, which may be seen as a
system of four neutron holes and four proton holes in the 1g9/2

shell. In the following I use the term quasinucleon to denote
either a valence nucleon or a nucleon hole, and I call two
quasinucleons equivalent if either both of them are valence
nucleons or both of them are nucleon holes.

Generalizing the adaption to nuclei independently by Bohr,
Mottelson, and Pines [4] and Bogolyubov and Solov’yov [5] of
the theory of superconductivity of Bardeen, Cooper, and Schri-
effer [6], Goswami and Kisslinger [7] introduced in the 1960s
a concept of “isoscalar pairing” different from the “isovector
pairing” described by the Bardeen-Cooper-Schrieffer theory.
This concept is much discussed in the subsequent literature;
see the review by Frauendorf and Macchiavelli [8]. Referring

to predictions of isoscalar pairing in nuclei with equal numbers
N and Z of neutrons end protons, Cederwall et al. [1] state
that their results “reveal evidence for a spin-aligned, isoscalar
neutronproton coupling scheme” and “suggest that this cou-
pling scheme replaces normal superfluidity (characterized by
seniority coupling) in the ground and lowest excited states of
the heaviest N = Z nuclei.”

In support of this suggestion, Qi et al. [3] point out that in
single-j -shell calculations for the system of two quasineutrons
and two equivalent quasiprotons in the 1f7/2, 1g9/2, or 1h11/2

shell with empirical effective interaction, the product of the
state of two quasineutrons with combined angular momentum
zero and the similar state of the two quasiprotons makes
up only a little more than half of the calculated ground
states. Consideration of this product is motivated by its
resemblance to the product of neutron and proton Bardeen-
Cooper-Schrieffer states conventionally employed to model
nuclear superfluidity. It is, however, not an eigenstate of
isospin. In a meaningful adaption of the concept of nuclear
superfluidity to the single-j -shell model of N = Z nuclei one
should rather see the unique state with isospin and seniority
zero as the manifestation of isovector pairing. I show in a
previous article [9] that this state makes up about 80% of
the calculated ground states of two quasineutrons and two
equivalent quasiprotons in the 1f7/2 or 1g9/2 shell.

The stretch-scheme ground state is not antisymmetric in
the quasineutrons or the quasiprotons. Qi et al. [3] consider
the antisymmetrized and normalized state and get overlaps of
92–95% with the calculated ground states of two quasineutrons
and two equivalent quasiprotons. This finding is essentially
confirmed by my calculations in Ref. [9]. I find, moreover,
that the overlaps are larger in the 1f7/2 shell than in the
1g9/2 shell. The overlap of the seniority zero state with the
antisymmetrized and normalized stretch-scheme state is 62%
and 52%, respectively, so to this extent seniority zero and
the stretch scheme are different visualizations of the same
physics, in this case of two quasineutrons and two equivalent
quasiprotons.
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TABLE I. Expectation values and overlaps in percentages. Due to rounding off the sum of these percentages may differ slightly from 100
and a zero only means that the percentage is less than 0.5. The operator Ps,t is the projection onto the subspace of the I = T = 0 space with
the given (s,t) and 〈Ps,t 〉a is its expectation value in state a. State ψ is the calculated ground state and states χ and χ ′ are defined by Eqs. (22)
and (23). In the lasts four columns pairs of percentages are shown. The first percentage is for a = χ and the second one is for a = χ ′. The rows
“ψ = χ” and “ψ = χ ′” show the Sp(2j + 1) decompositions of these states and the row “Dimension” shows the subspace dimension.

〈P0,0〉ψ 〈P4,0〉ψ 〈P4,2〉ψ 〈P6,1〉ψ 〈P8,0〉ψ |〈a|ψ〉|2 |〈a|P4,0|ψ〉|2
〈P4,0〉a〈P4,0〉ψ

|〈a|P6,1|ψ〉|2
〈P6,1〉a〈P6,1〉ψ

|〈a|P8,0|ψ〉|2
〈P8,0〉a〈P8,0〉ψ

48Cr
Dimension 1 2 0 2 1
SchTr, emp. 75 24 0 1 78 93 97 98
SchTr, fit 79 20 0 0 77 93 97 98
ZR I 80 20 0 0 77 92 98 98
ZR II 73 26 0 1 80 92 100 94
ψ = χ 49 30 19 2
ψ = χ ′ 67 26 6 1
(88Ru,) 92Pd
Dimension 1 2 1 5 7
SchTr, emp. 70 27 1 0 2 65 86 97 99 77 36 86 98
SchTr, fit 70 27 0 0 2 63 87 95 100 76 36 85 98
QLW 70 27 1 0 2 66 84 99 96 71 39 89 96
ZE I 83 16 0 0 1 50 80 93 100 1 93 82 99
ZE II 72 25 0 0 2 61 86 97 99 61 46 86 98
ZE III 85 14 1 0 1 44 76 100 93 36 7 89 95
ZE IV 76 22 0 0 1 61 82 99 97 60 46 88 97
CCGI 76 22 0 0 2 56 84 92 100 49 63 82 98
SLGT0 73 25 0 0 2 63 85 96 99 75 40 86 98
GF 68 28 1 0 3 67 86 97 99 83 31 87 98
Nb90 70 27 1 0 2 64 86 96 99 77 36 86 98
ψ = χ 25 34 10 20 10
ψ = χ ′ 47 36 0 6 10

In their analysis of calculated states of 92Pd, Qi et al. [3]
counted the numbers of pairs of 1g9/2 holes with definite
combined angular momentum. I show in Ref. [9] that for
two quasineutrons and two equivalent quasiprotons in the
1g9/2 shell, the seniority zero state has a large content
of quasinucleon pairs with high angular momenta, and the
antisymmetrized and normalized stretch-scheme state has a
large content of pairs with low angular momenta. Inferring a
pairing mode from such counts is thus not straightforward.

The present text presents an analysis similar to the one
in Ref. [9] addressing the case of 92Pd. I thus consider the
system of four quasineutrons and four equivalent quasiprotons
in a single j shell. Besides 92Pd this is the single-j -shell
configuration of its 1g9/2 cross conjugate, 88Ru, and of 48Cr
in the 1f7/2 shell. The particle-hole symmetry of the single-j -
shell model is, in the 1f7/2 shell, only approximately obeyed by
the data. Van Isacker [10], in his 1f7/2 shell model calculations,
accordingly makes an interpolation between the empirical
two-valence-nucleon and two-nucleon-hole interactions. As
seen from Table I, these interactions, denoted there by ZR I
and II, give qualitatively similar results in the present type of
analysis. Effects breaking the particle-hole symmetry are thus
apparently minorly important in this context. The situation is
somewhat different in the 1g9/2 shell because the observed 80Zr
spectrum is clearly rotational and thus not that of a closed-shell
nucleus. The nucleus 88Ru seems to the sit on the edge of

an onset of deformation with N = Z decreasing from 50, so
modeling it by the 1g9/2 shell model may be questionable. The
focus of my study as concerns the 1g9/2 shell is on 92Pd.

In the next Sec. II I describe the method used to construct
the interaction matrix in the space of isospin and angular
momentum zero and decompose the calculated ground state
into irreps of the symplectic group Sp(2j + 1), where j is
the single-nucleon angular momentum. The results of this
decomposition are shown and discussed in Sec. III. Section IV
discusses the stretch-scheme ground state. It is found that only
a small part of it belongs to the space of states antisymmetric
in the quasineutrons and in the quasiprotons. Following Qi
et al. [3] I antisymmetrize and normalize this part and
then discuss the decomposition of the antisymmetrized and
normalized state into irreps of Sp(2j + 1) and its overlaps
with the calculated states. In Sec. V a similar analysis is applied
to the state obtained by antisymmetrization and normalization
of the product of two stretch-scheme ground states of the
system of two quasineutrons and two equivalent quasiprotons.
The article is summarized in Sec. VI.

II. METHOD

The eight quasinucleons are labeled with numbers 1–8 so
that quasinucleons 1–4 are quasineutrons and quasinucleons
5–8 are quasiprotons. The angular momentum of the ith
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quasinucleon is denoted by ji , and all these angular momenta
are equal to j = 7/2 in the 1f7/2 shell and j = 9/2 in the
1g9/2 shell. States of the system with total angular momentum
I = 0 may be expanded in a basis of states:

|α〉 = |[(jeβ)n(jeγ )p]0〉 , (1)

where |jeβ〉n is a totally antisymmetric state with angular
momentum je of the quasineutrons. The index β labels a
complete, orthonormal set of such states. The definition of
|jeγ 〉p is analogous for quasiprotons. The outmost (square)
brackets in Eq. (1) followed by the value of I indicate vector
coupling with the total magnetic quantum number suppressed.
A similar notation is employed thoughout this article.

The states |jeβ〉n may be expanded on a basis of states:

|j12j34〉je
= |[(j1j2)j12(j3j4)j34]je〉, (2)

with even j12 and j34. To determine the subspaces with a given
symmetry of the span of this basis one can use that the sum of
transpositions

K4 =
∑

1�i<k�4

(ik) (3)

is in the symmetric group S(4), a class sum, and therefore
within each irrep a constant dependent only on the irrep.
Because the states (2) carry the irrep [12] × [12] of the product
of the S(2) of quasinucleons 1 and 2 and quasinucleons 3 and
4, the Young frames of the irreps of S(4) present in their span
have at most two columns. Let such a frame have column
lengths λ and μ. One can calculate its K4 by evaluating in
Yamanouchi’s [11] realization of the irrep the diagonal matrix
element of the sum (3) in the tableau where the indices 1–4
appear successively from top to bottom in the columns from
left to right. The result, which I denote by just K because it is
not limited to the case n = λ + μ = 4, is

K = n − n2/4 − d(d + 1), (4)

with d = (λ − μ)/2. Because K as given by this expression
decreases with d, different (λ,μ) with the same n have different
K . Indicating by a prime the restriction of operators to the span
of the states (2) with a given je, we have

K ′
4 = −2 + 4(23)′. (5)

The subspaces of definite symmetry are thus the eigenspaces
of (23)′. The totally antisymmetric states |jeβ〉n, which have
(λ,μ) = (4,0), in particular form a basis for the eigenspace
with eigenvalue −1. They are therefore obtained by diago-
nalization of (23)′ in the basis (2). The matrix elements are

〈j12j34|(23)′|j ′
12j

′
34〉je

= 〈j12j34|j ′
12j

′
34〉jjjjje

(6)

in terms of what Zamick and Escuderos [12] call the unitary
nine-j symbol:

〈ef |gh〉abcdi = 〈[(ab)e(cd)f ]i|[(ac)g(bd)h]i〉. (7)

A charge-independent interaction of two quasinucleons in
the same j shell can be written

V =
∑

J

cJ PJ , (8)

with

PJ =
∑

1�i<k�8

Pjik=J , (9)

where Pjik=J denotes the projection onto the eigenspace with
eigenvalue J of the combined angular momentum jik of the
ith and kth quasinucleons. Indicating by a double prime the
restriction of operators to the span of the states (1), we have

P ′′
J = 12P ′′

j12=J + 16P ′′
j15=J . (10)

In the basis of states

|j12j34j56j78je〉 = |[(j12j34)je
(j56j78)je

]0〉 (11)

the projection Pj12=J is diagonal with matrix elements δj12J .
The projection Pj15=J has the matrix elements

〈j12j34j56j78je|Pj15=J |j ′
12j

′
34j

′
56j

′
78j

′
e〉

= δj34j
′
34
δj78j

′
78

∑

j26,jd

〈j12j56je|Jj26jd〉j34j78

×〈j ′
12j

′
56j

′
e|Jj26jd〉j34j78 , (12)

with

〈j12j56je|Jj26jd〉j34j78

= 〈jeje|jdjd〉j12j34j56j780〈j12j56|Jj26〉jjjjjd
. (13)

Because the states (1) carry the irrep [14] × [14] of the
product of the quasineutron and the quasiproton S(4), the
Young frames of the irreps of S(8) present in their span have
at most two columns. In Eq. (4) we now have n = 8, and d is
the isospin T . By the relation

K ′′
8 = −12 + 16(15)′′, (14)

where

K8 =
∑

1�i<k�8

(ik), (15)

the subspaces with definite T are thus obtained by diagonaliza-
tion of (15)′′. In particular the T = 0 space has (15)′′ = 1/4.
The matrix elements of (15)′′ are obtained from

(15)′′ = −
∑

J

(−)J P ′′
j15=J (16)

and the restriction of Eq. (12) to the span of the states (1).
Each eigenspace of T is the intersection with the I = 0

space of an irrep of the unitary group U(2j + 1) characterized
by n and T , and these irreps split into irreps of Sp(2j + 1)
characterized by a seniority s and a reduced isospin t [13].
Racah’s seniority operator [14], generalized to jj coupling
and nuclei by Edmonds and Flowers [15],

Q = (2j + 1)P0 (17)

is within each such irrep a constant dependent for a given j
only on the U(2j + 1) and Sp(2j + 1) irreps. Edmonds and
Flowers [15] derive a closed expression which can be written

Q = f (j,n,T ) − f (j,s,t), (18)

with

f (j,x,y) = (j + 2)x − x2/4 − y(y + 1). (19)
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Using Flowers’s method [13] one finds that (n,T ) = (8,0) is
composed for j � 7/2 of (s,t) = (0,0), (2,1), (4,0), (4,2),
(6,1), and (8,0). These are seen from Eqs. (18) and (19)
to have distinct Q. The corresponding subspaces of the
I = T = 0 space are therefore obtained by diagonalization
of the restriction of the operator (17). Because (s,t) = (2,1)
is composed of I = 2,4, . . . ,2j − 1 [13], its intersection with
the I = T = 0 space is the null space.

III. Sp(2 j + 1) DECOMPOSITIONS OF CALCULATED
GROUND STATES

Calculations were made with the same effective 1f7/2 and
1g9/2 interactions as in Ref. [9]. Thence I repeat a brief
description of each of them. The interactions SchTr are from
the appendix of the classic study by Schiffer and True [16]
with “emp.” referring to the empirical matrix elements and
“fit” to those derived from a universal interaction fitted to
the data. ZR I and II are Models I and II of Zamick and
Robinson [17]. They were derived from the spectra of 42Sc and
54Co, respectively. QLW is 0g9/2 of Qi, Liotta, and Wyss [18].
It was extracted from an interaction for the 2p1/2 + 1g9/2

configuration space provided by Johnstone and Skouras [19].
ZE I–IV are from Zamick and Escuderos [20]. Specifically,
ZE I and II are their INTc and INTd. The former consists
of a T = 1 part from the spectrum of 98Cd and a T = 0
part from a δ interaction. The latter has a lower c9. ZE
III and IV are from the spectrum of 90Nb with different
choices of the 1+ level. CCGI is adapted from the Vlow-k of
Coraggio, Covello, Gargano, and Itaco [21]. This is not charge
independent. To conserve isospin, I use their neutron-proton
matrix elements in all channels. SLGT0, GF, and Nb90
(named Nb90ZI in Ref. [9]) are from Zerguine and Van
Isacker [22]. Specifically, SLGT0 and GF were constructed
by renormalization to the 1g9/2 subspace of interactions for
the 2p1/2 + 1g9/2 configuration space provided, respectively,
by Serduke, Lawson, and Gloeckner [23] and Gross and
Frenkel [24], and Nb90 is from the spectrum of 90Nb with
yet another choice of 1+ level.

Table I shows for each interaction the decomposition of
the ground state into Sp(2j + 1) irreps. It is seen that quite
independently of the shell and the interaction the ground
state is composed roughly of 75% of (s,t) = (0,0) and 25%
of (s,t) = (4,0). Other irreps make only small contributions,
which tend, however, to be somewhat larger in the 1g9/2 shell
than in the 1f7/2 shell. The typical contribution of about 75%
of the s = 0 state found here for n = 8 is slightly less than
the typical 80% found in Ref. [9] for n = 4. Yet this state,
which, as explained in the Introduction, may be conceived
of as the manifestation of perfect isovector pairing in the
single-j -shell model of N = Z nuclei, remains a fairly good
first approximation also for n = 8.

Comparison with the case n = 4 studied in Ref. [9] reveals
a striking similarity: In that case only (s,t) = (0,0) and
(s,t) = (4,0) occur; for n = 8 they dominate the calculated
states in about the same ratio. A hint to an understanding of this
similarity may conceivably be found in Qi’s calculations [25]
with the interaction QWL of multihole states in the 1g9/2 shell,
which show that the antisymmetrized and normalized product

of a pair of 96Gd ground states makes up in this model 96% of
the 92Pd ground state. (Clearly from comparison with Ref. [3]
the quantity denoted by x2 in Table I of Ref. [25] is just x.)

Because a two-quasinucleon interaction can break at most
two J = 0 pairs, its matrix elements between Sp(2j + 1) irreps
differing by more than four in s vanish. In an expansion
where the terms in the interaction (8) other than the pairing
force, J = 0, are treated as perturbations, the ground state
components with s > 4 are therefore of second order. This
explains their small size. That the (s,t) = (4,2) components
in the 1g9/2 shell are much smaller than the (s,t) = (4,0)
components is due to smaller matrix elements from s = 0.
For j = 7/2 all matrix elements involving (s,t) = (6,1), and
therefore this component, vanish within the numeric accuracy
for all the interactions. Some fundamental selection rule thus
seems to be active in this case. The same is not true for j = 9/2
and I have no explanation for this apparent partial conservation
of seniority, which bears a resemblance to the much discussed
case of j = 9/2, n = 2T = s = 2t = 4, and I = 4 and 6; see
Van Isacker and Heinze [26] and references therein.

IV. STRETCH-SCHEME GROUND STATE

The stretch-scheme ground state is

|σ 〉 = |{[(j1j5)j̄d (j2j6)j̄d ]jd [(j3j7)j̄d (j4j8)j̄d ]jd}0〉, (20)

with j̄d = 2j and jd = 4j − 2. Its image by the projection P
onto the span of the states (1) has the components

〈α|σ 〉 = 〈β|j̄ej̄e〉je
〈γ |j̄ej̄e〉je

〈jeje|jdjd〉j̄e j̄e j̄e j̄e0

×〈j̄ej̄e|j̄d j̄d〉2
jjjjjd

, (21)

with j̄e = 2j − 1. The squared norm ‖P |σ 〉‖2 is 1.5% for
both j . This is much less than for n = 4 [9], where the
corresponding squared norm is about 50%. It means that
98.5% of |σ 〉 carries irreps of the quasineutron × quasiproton
S(4) × S(4) other than [14] × [14]. Several factors reduce
‖P |σ 〉‖2. First the unitary nine-j symbol 〈j̄ej̄e|j̄d j̄d〉jjjjjd

in
Eq. (21) is about 0.7 for both j ’s and enters the squared norm to
the power of 4. Second 〈β|j̄ej̄e〉je

vanishes for odd je because
a totally antisymmetric |jeβ〉n is symmetric in j12 and j34.
This gives another factor of about (1/2)2. Third the totally
antisymmetric part of |j̄ej̄e〉je

for even je is typically about
1/3. With the product 〈β|j̄ej̄e〉je

〈γ |j̄ej̄e〉je
in Eq. (21) this factor

enters ‖P |σ 〉‖2 to the power of 2.
Following Qi et al. [3] I consider the state χ obtained by

normalization of P |σ 〉, that is,

|χ〉 = P |σ 〉
‖P |σ 〉‖ . (22)

Quite generally antisymmetrization in the quasiprotons and in
the quasineutrons of a product of T = 0 states gives a T = 0
state because each factor in the product has a symmetry [2q]
and the only S(n) irrep with a Young frame with at most two
columns containing a product of such S(2q) irreps is [2n/2]. In
particular because each pair of quasinucleons with indices i
and i + 4 in the state (20) has T = 0 (symmetry [2]) the state
χ has T = 0.
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The Sp(2j + 1) decomposition of χ is shown in Table I.
It is seen to be for both j ’s markedly different from those
of the calculated states ψ . In particular the irreps other than
(s,t) = (0,0) and (4,0), which are almost absent from ψ ,
contribute 20% and 41%, respectively, of χ , and (s,t) = (6,1),
which makes only very small contributions to ψ—for j = 7/2
vanishing within the numeric accuracy—gives for both j the
largest of these contributions to χ , about 20% of the total.
While the calculated states are distributed in an approximate
ratio 3 : 1 on (s,t) = (0,0) and (4,0), these irreps have more
equal weights in χ with the contribution of (s,t) = (4,0) being
for j = 9/2 even the larger of the two. With 49% and 25%,
respectively, for the two j , the overlap of χ with the s = 0
state is considerably less for n = 8 than for n = 4, where it
amounts to 62% and 52%, respectively, as mentioned in the
Introduction.

The overlaps of ψ with χ are in the 1f7/2 shell about the
same as their overlaps with the s = 0 state, 78% and 77%
on average over the interactions. In the 1g9/2 shell they are
60% on average over the interactions and the s = 0 state is
unambiguously a better approximation to ψ than χ . The result
|〈χ |ψ〉|2 = 66% for the interaction QLW agrees with Ref. [3].

When the subspace of the I = T = 0 space belonging to
a given Sp(2j + 1) irrep has a dimension larger than one,
one may ask whether the images of χ and ψ by projection
onto this subspace have the same directions. This question
is addressed in the last three columns in Table I. Due to the
numeric vanishing, mentioned in the last paragraph of Sec. III,
of the (s,t) = (6,1) components of ψ for j = 7/2, this case
is omitted. It is seen that the directions are very much the
same for (s,t) = (4,0) and almost as much so for (s,t) = (8,0)
in the 1g9/2 shell, while the situation is more ambiguous for
(s,t) = (6,1) in the 1g9/2 shell with almost exactly orthogonal
projected states for the interaction ZE I. Once more a similarity
with the case n = 4 studied in Ref. [9] is revealed: There, as
well, the (s,t) = (4,0) components of ψ and χ have almost
exactly the same directions.

V. PRODUCT OF STRETCH-SCHEME GROUND STATES

In a 1f7/2 shell-model calculation for 48Cr with an interac-
tion interpolated from ZR I and II, Van Isacker [10] finds that
the state

|χ ′〉 = P |σ ′〉
‖P |σ ′〉‖ , (23)

with

|σ ′〉 = |[(j1j5)j̄d (j2j6)j̄d ]0〉×|[(j3j7)j̄d (j4j8)j̄d ]0〉, (24)

makes up 92.7% of the calculated ground state. The factors
in the product (24) are recognized as stretch-scheme ground
states of the n = 4 system considered in Ref. [9]. Like χ the
state χ ′ has T = 0. The components of P |σ ′〉 in the basis (1)
are

〈α|σ ′〉 =
∑

jajb

〈β|jajb〉je〈γ |jajb〉je
〈jeje|00〉jajbjajb0

×〈jaja|j̄d j̄d〉jjjj0〈jbjb|j̄d j̄d〉jjjj0 , (25)

which gives ‖P |σ ′〉‖2 = 0.9% and 1.0% for j = 7/2 and 9/2,
respectively. Properties of χ ′ are displayed in Table I. The
overlaps |〈χ ′|ψ〉|2 are seen to be considerably larger than
|〈χ |ψ〉|2, about 93% and 85% in the 1f7/2 and 1g9/2 shells,
respectively. The overlaps calculated with the interactions
ZR I and II are consistent with Van Isacker’s [10] with the
interpolated interaction. The overlap of χ ′ with the s = 0
state is also closer to the one found in Ref. [9] for the n = 4
antisymmetrized and normalized stretch-scheme ground state.
Like χ the images of χ ′ by projection onto the (s,t) = (4,0)
and (8,0) spaces have practically the same directions as
those of ψ . Its Sp(2j + 1) decomposition deviates, however,
significantly from that of ψ , especially in the 1g9/2 shell,
although not quite as much as that of χ . In particular χ ′ has like
χ fairly large components of the irreps other than (s,t) = (0,0)
and (4,0), which are almost absent in ψ .

The relative success of χ ′ in reproducing ψ might be
understood from Qi’s [25] observation that the 92Pd ground
state is well described in the 1g9/2 shell model as an
antisymmetrized and normalized product of two 96Gd ground
states. Because the 96Gd ground states have in this model a
very large overlap with the corresponding antisymmetrized
and normalized stretch-scheme ground state [3,9,10,22], one
would then anticipate that an antisymmetrized and normalized
product of copies of the latter has also a large overlap with the
calculated 92Pd ground states. That χ ′ is a better approximation
to ψ in the 1f7/2 than in the 1g9/2 shell is in this understanding
consistent with the finding in Ref. [9] that the same holds
for n = 4 in the comparison of the calculated states and the
antisymmetrized and normalized stretch-scheme ground state.
The n = 8 overlaps are indeed fairly close to the squares of
the n = 4 overlaps.

VI. SUMMARY

In the 1f7/2 or 1g9/2 shell model with effective interaction
from the literature, I calculated the ground states of the system
of four neutrons and four protons or four neutron holes and four
proton holes, briefly four quasineutrons and four equivalent
quasiprotons. This is the single-j -shell configuration of the
nuclei 48Cr, 88Ru, and 92Pd. The calculated states ψ were
decomposed into the irreps of the symplectic group Sp(2j +
1), which are characterized by the seniority s and the reduced
isospin t . Here j is the single-nucleon angular momentum,
equal in the shells considered to 7/2 and 9/2, respectively. The
states ψ are found to be composed roughly of 75% of (s,t) =
(0,0) and 25% of (s,t) = (4,0) independently of the shell and
the interaction. This is similar to the case of two quasineutrons
and two equivalent quasiprotons studied in Ref. [9], where the
corresponding parts are about 80% and 20%. Other Sp(2j + 1)
irreps, which may occur for n = 8, make only very small
contributions. This was understood from the exact vanishing
of the matrix elements of any two-quasinucleon interaction
between irreps with a difference in s larger than 4 and small
matrix elements between (s,t) = (0,0) and (4,2) in the 1g9/2

shell. For j = 7/2 also all matrix elements involving (s,t) =
(6,1), and therefore these ground state components, vanish
within the numeric accuracy.
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The ground state in the stretch scheme of Danos and
Gillet [2] was antisymmetrized in the quasineutrons and in
the quasiprotons. The antisymmetrized state is found to make
up 1.5% of the total for both j ’s. Following Qi et al. [3],
I considered the state χ given by normalization of this
antisymmetrized state. It is found to contain 20% and 41%
of Sp(2j + 1) irreps other than (s,t) = (0,0) and (4,0) for
j = 7/2 and 9/2, respectively, much unlike ψ . For both j ’s
the major part of this contribution, about 20% of the total
in both cases, resides in (s,t) = (6,1). Unlike ψ the irreps
(s,t) = (0,0) and (s,t) = (4,0) contribute roughly equally to
χ and (s,t) = (4,0) makes for j = 9/2, the larger of these two
contributions.

The overlaps of ψ with χ are found to be for 48Cr similar
to their overlaps with the s = 0 state. For 88Ru and 92Pd
they are significantly less, so that the s = 0 state is there
unambiguously a better approximation to ψ than χ . For 92Pd
and the interaction employed by Qi et al. in Ref. [3], their
result for |〈χ |ψ〉|2 is confirmed.

The Sp(2j + 1) irreps (s,t) = (4,0) and (s,t) = (6,1) have
for both j intersections of dimensions larger than one with

the space with angular momentum and isospin zero. So does
the irrep (s,t) = (8,0) for j = 9/2. The images of ψ and χ
by projection onto these multidimensional spaces are found
to have in a good approximation the same directions for
(s,t) = (4,0) and (8,0), whereas for j = 9/2 and (s,t) = (6,1)
the result in this respect varies with the interaction. As to
(s,t) = (4,0), this is similar to the case of two quasineutrons
and two equivalent quasiprotons studied in Ref. [9]. Due
to the aforesaid vanishing for j = 7/2 of the (s,t) = (6,1)
components of ψ , no comparison of directions is possible in
this case.

The state χ ′ obtained by antisymmetrization and nor-
malization of the product of two stretch-scheme ground
states of the system of two quasineutrons and two equiva-
lent quasiprotons was discussed briefly. It has much larger
overlaps with ψ than χ but a deviating Sp(2j + 1) de-
composition. The large overlaps |〈χ ′|ψ〉|2 might be un-
derstood from Qi’s observation [25] that the 92Pd ground
state is well described in the 1g9/2 shell model as an
antisymmetrized and normalized product of two 96Gd ground
states.
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