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Testing the spin-cutoff parametrization with shell-model calculations
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The nuclear level density, an important input to Hauser-Feshbach calculations, depends not only on excitation
energy but also on angular momentum J . The J dependence of the level density at fixed excitation energy Ex is
usually parametrized via the spin-cutoff factor σ . We carefully test the statistical accuracy of this parametrization
for a large number of spectra computed using semirealistic interactions in the interacting shell model, with a
nonlinear least-squares fit of σ and finding the error bar in σ . The spin-cutoff parametrization works well as long
as there are enough states to be statistical. In turn, the spin-cutoff factor can be related to the average value of
J 2 at a fixed excitation energy, and we briefly investigate extracting 〈Ĵ 2(Ex)〉 from a thermal calculation such as
one might do via a Monte Carlo method.
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I. INTRODUCTION

An important input into compound nuclear reactions such
as statistical neutron capture is the level density [1]. The level
density is deceptively simple: the number of levels per unit of
excitation energy. But when thousands or millions of states or
more are involved, as in the statistical regime, experimental
measurement becomes challenging and theoretical calcula-
tions are also difficult if not intractable. Because of this the
level density is one of the most uncertain inputs into reaction
calculations [2]. (Note that one should be careful to distinguish
between the level density, which does not include the 2J + 1
degeneracy in M , and the state density, which does include the
2J + 1 degeneracy in M .)

For calculation of statistical neutron capture rates one needs
the density of levels ρ not only as a function of excitation
energy Ex but also as a function of parity and angular
momentum J . While there are different parametrizations
for the level density ρ(Ex), such as the back-shifted Fermi
gas [3–5] or constant temperature [4], for the dependence on
J the parametrization [6]

ρJ (Ex) = ρ(Ex)f (J ),

f (J ) = 2J + 1

2σ 2
exp[−J (J + 1)/2σ 2] (1)

is universally used, where σ 2 is called the spin-cutoff factor.
[This normalization is for the level density; for the state density
the spin-cutoff parametrization has a different normalization,
found below in Eq. (4).]

A number of other works have investigated the spin
distribution of levels, both experimentally [7–10] and theoret-
ically [11–14]. While these papers have compared the actual
spin distribution against the spin-cutoff parametrization, in this
paper we focus on quantifying the statistical goodness of the
spin-cutoff parametrization by computing the error bars on the
spin-cutoff factor.

Toward this end, we have generated a number of theoretical
nuclear spectra, as described in more detail in Sec. II. We
then put the data into energy bins and, in each energy bin,
did a nonlinear least-squares fit for σ using Eq. (1), including

deriving the error bars on σ . The fitting methodology and
results we give in Sec. III.

In general, we find the unsuprising but gratifying result
that the spin-cutoff parametrization does a good job of
describing the spin distribution and that the error bars on σ
decrease as the number of levels in a bin increase. If Eq. (1)
were wrong, the error bars would not decrease systematically.

Because Eq. (1) has only the one parameter σ , it is tempting
to try to extract the spin-cutoff factor directly rather than fitting
it, for example by relating σ 2 to the average value of J (J + 1)
at a given excitation energy. This would be useful in particular
for Monte Carlo calculations such as the so-called shell-model
Monte Carlo (SMMC) [15,16] from which state densities can
be extracted [13,14,17–22]; although a J -projected version
of SMMC has been developed [13,14], it is computationally
very intensive. By contrast, it is relatively easy to compute
thermally averaged expectation values of operators such as Ĵ 2

in SMMC. Because one needs the average as a function of
excitation energy and not temperature, one needs to extract
the energy-averaged 〈J (J + 1)(E)〉 from thermally weighted
values, in the same way one inverts the Laplace transform to
extract the state density from the thermal partition function.
This we discuss in Sec. IV.

II. SHELL-MODEL FRAMEWORK

We work in the framework of the configuration-interaction
shell model [23–25]. Here one defines a finite single-particle
space and has as input single-particle energies and two-body
matrix elements. We use semirealistic and semiphenomeno-
logical matrix elements, meaning that each interaction starts
from realistic fits to scattering data, is then renormalized, and
finally is tuned to reproduce binding energies and spectra
for a specified mass region (see [23,26] for details of the
methodology).

In all model spaces we assume some inert core and valence
particles. The three model spaces we work in and their
interactions are 1. sd, or the 1s1/2-0d3/2-0d5/2 valence space,
in which an inert 16O core is assumed and the interaction is
the universal sd interaction B, or USDB [26]; 2. pf , or the
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TABLE I. Table of analyzed nuclides.

sd pf p-sd5/2

22–27Na 46–52Ca 11–13C
24–29Mg 45–47,49Sc 14N
26–30Al 44–47Ti 16–17O
28–32Si 46V 20Ne
30–33P
32–34S
34–35Cl

1p1/2-1p3/2-0f5/2-0f7/2 valence space, in which an inert
40Ca core is assumed and the interaction is the monopole-
modified Kuo-Brown G-matrix interaction version 3G, or

KB3G [27,28]; and 3. the ps-d5/2, or 0p3/2-0p1/2-0d5/2-1s1/2

valence space, in which an inert 4He core is assumed and the
interaction is a hybrid of Cohen-Kurath (CK) matrix elements
in the 0p shell [29], the older universal sd interaction of
Wildenthal [30] in the 0d5/2-1s1/2 space, and the Millener-
Kurath (MK) p-sd cross-shell matrix elements [31]. We leave
out the 0d3/2 orbit to make calculations tractable. Within the p
and sd spaces we use the original spacing of the single-particle
energies for the CK and Wildenthal interactions, respectively,
but then shift the sd single-particle energies relative to the
p-shell single-particle energies to place the first 3− state in
16O at approximately 6.1 MeV above the ground state. The
rest of the spectrum, in particular the first excited 0+ state, is
not very good, but the idea is to have a nontrivial model, not
an exact reproduction of the spectrum. This model space and

FIG. 1. 26Al in the sd shell. The error bars are standard
√

ρJ statistical errors in counting the number of states in a given bin of 1.0 MeV in
energy and fixed J . The dashed line is the continuous spin distribution using σfit and the gray shading is the one-standard-deviation envelope.
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FIG. 2. Same as Fig. 1 but for 26Mg in the sd shell.

interaction allow us to consider model nuclei with both parities
and to investigate parity mixing in the HF state.

Finally, we computed the many-body spectra using
the BIGSTICK configuration-interaction (CI) diagonalization
code [32]. Table I lists the nuclides computed and the single-
particle spaces used. In this paper we display a representative
sample, but graphs for all nuclides in Table I are included in
the Supplemental Material [33].

III. RESULTS

To analyze the spin distribution of shell-model spectra,
we binned the data into 1-MeV bins (but our results were
insensitive to the size of the bins, as we discuss at the end of
this section) and did a nonlinear least-squares fit to the Ericson
formula using the MPFIT code [34,35], an implementation of

the Levenberg-Marquardt algorithm [36]. The error bar on
the least-squares-fit spin-cutoff parameter is just the standard
square root of the diagonal of the covariance matrix, which in
our case was a trivial 1 × 1 matrix. For the purpose of the fit we
estimate the error of each J -projected density ρJ in an energy
bin to be the standard counting statistical error, �ρJ = √

ρJ ;
bins with ρJ = 0 are assigned an error of 1. Our initial χ2 per
degree of freedom, or reduced χ2,

χ2
red = 1

NJ − 1

∑
J

[ρJ − ρf (J )]2/�2ρJ , (2)

nearly always fell below 1 and frequently it is �1. Because
we have only one parameter, overfitting is unlikely; instead we
suspect the errors are non-Gaussian, asymmetric (for example,
no density can be less than zero), and/or correlated. To obtain
a reduced χ2 = 1 for a given energy bin we uniformly scaled
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FIG. 3. Same as Fig. 1 but for 33P in the sd shell.

the errors �ρJ in an energy bin, in almost all cases making
them smaller.

(To understand in detail the true nature of our errors
is beyond the scope of this investigation. Inspired by our
observation, however, that reducing the errors led to reduced
χ2 = 1, we tried a different model for errors, namely �ρJ =
ρ

1/4
J . The resulting reduced χ2 values were scattered about

1, but the best-fit spin-cutoff factors and uncertainties in
σ changed by less than 5%. Therefore, although we have
some ambiguities in understanding our uncertainties, we stand
behind our conclusion that the Ericson parametrization of ρJ

is statistically a very good model.)
We analyzed spectra from a wide range of nuclides in three

different model spaces and considered even-even, odd-odd,
and odd-A nuclei. We will show representative plots from

a number of different calculations; additional graphs can be
found in the Supplemental Material [33].

We begin in the sd shell, where we consider 26Al, 26Mg, and
33P in Figs. 1, 2, and 3, respectively, showing the distribution
of states as a function of J . Similar graphs for all nuclides
listed in Table I can be found in [33]. Because we extract error
bars on our spin-cutoff factors, we display not only the least-
squares fit but also the one-standard-deviation envelope (the
dark gray band in the figures). The points represent our binned
CI shell-model data and the error bars represent the statistical
error

√
ρJ on the counts in a 1.0-MeV bin. Not only do the

error bars on the CI data get smaller, as the number of counts
in the bins increase, but our error on σ decreases as well.

In Fig. 4 we show the evolution of the spin-cutoff factor as
a function of excitation energy for these nuclides as well as

014315-4
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FIG. 4. Evolution with excitation energy of fit spin-cutoff factors for selected sd-shell nuclides, using 1-MeV bins.

several additional sd-shell nuclides. Figure 5 shows the same
for pf -shell nuclides, while Fig. 6 shows the evolution for both
positive and negative parities in the p-sd5/2 space. Additional
graphs encompassing all nuclides listed in Table I can be found
in [33]. The error bars are larger for the last case because the
statistics are smaller, and the values of the level density in all
cases are no doubt an underestimate because intruders are left
out. We remind the reader that our goal is not to determine
the “true” or experimental value of the spin-cutoff factor but
to compare the statistical goodness derived from semirealistic
calculations.

Figures 4, 5, and 6 show that as excitation energy increases
the distribution in angular momentum is better described by the
spin-cutoff parametrization, Eq. (1), consequently resulting in
the reduction of the error on the extracted spin-cutoff factor.

The pattern of improvement in the fit is observed in all analyzed
nuclides, and it can be seen by examining the root mean square
error (RMSE) between the CI data and the fit:

(
ρJ

ρ

)
RMSE

=
〈[(

ρJ

ρ

)
shell

−
(

ρJ

ρ

)
fit

]2〉1/2

J

. (3)

The degree of improvement in (ρJ /ρ)RMSE appears to
be independent of any structural differences in the sd- and
pf -shell nuclides, as illustrated in Fig. 7. The cross-shell
nuclides in the p-sd5/2 space, Fig. 8, exhibit a similar
improvement in (ρJ /ρ)RMSE, though because the levels are
split between parities the level density is lower than that of the
sd- and pf -shell nuclides, and thus the improvement occurs
at higher excitation energies than with the latter.
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FIG. 5. Evolution with excitation energy of fit spin-cutoff factors for selected pf -shell nuclides, using 1-MeV bins.

We also investigated the dependence upon the bin size.
While the above results were for standard bin sizes of 1.0 MeV,
we also used bins of 0.5 and 2.0 MeV. The best-fit values were
insensitive to the bin size, as illustrated in Fig. 9, although the
error bars depended upon the bin size, which is primarily an
effect of the number of levels in a bin.

We therefore conclude that the spin-cutoff factor is a
statistically effective parametrization of the J dependence of
the level density, particularly at high energy.

As a final note, there is both experimental [9] and
theoretical [13] evidence of an odd-even staggering relative
to the Ericson parametrization, i.e., suppression of odd-J
densities and enhancement of even-J densities in even-Z,
even-N nuclides. We found no consistent evidence for such

odd-even staggering in our calculations, for, while some select
energy bins did appear to exhibit it (for example as in Fig. 2),
neighboring energy bins showed the opposite trend. Our lack
of odd-even staggering might be due in part to our modest
model space, necessary for full-configuration diagonalization,
compared to the larger model spaces used in [13].

IV. MONTE CARLO CALCULATIONS

We attained our level densities above through laborious
diagonalization of shell-model Hamiltonians, but such calcu-
lations are not practical for large model spaces. Therefore we
consider other techniques to compute the level density and the
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FIG. 6. Evolution with excitation energy of fit spin-cutoff factors for selected p-sd5/2-shell nuclides, using 1-MeV bins, for both positive
parity (left-hand figures) and negative parity (right-hand figures).

FIG. 7. (ρJ /ρ)RMSE [defined in Eq. (3)] for all analyzed sd and
pf shell nuclides organized by structure.

spin-cutoff factor, in particular SMMC [13–22]. In this section,
unlike the previous sections, we use the state density, which
includes the 2J + 1 degeneracy in MJ , because it arises more
naturally for SMMC. The normalized Ericson function for the
state density is

fstate(J ) = 2J + 1√
8πσ 3

exp[−J (J + 1)/2σ 2]. (4)

Most theoretical calculations of the density of states start
from thermodynamics, as the partition function is the Laplace
transform of the density of states:

Z(β) = tr e−βĤ

=
∫

e−βEρstate(E)dE

=
∑

i

(2Ji + 1) exp(−βEi), (5)
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FIG. 8. (ρJ /ρ)RMSE [defined in Eq. (3)] for all analyzed p-sd52

cross-shell nuclides.

where the trace and the sum are over many-body states and
one can interpret β as inverse temperature. The density of
states itself can be written as ρstate(E) = ∑

i(2Ji + 1)δ(E −
Ei). The Laplace transform can be inverted with reasonable
reliability through the saddle-point approximation [5], and so
now one has the problem of computing the nuclear partition
function.

One avenue to compute the many-body partition function
is to use auxiliary-field path integrals to evaluate exp(−βĤ ).
While such an approach has been successful, it requires a
nontrivial amount of computing time; furthermore, because
one must evaluate the resulting integrals through Monte Carlo
sampling, one has to use a well-posed interaction that is free
or mostly free of the sign problem [13,15,16].

The spin-cutoff factor can be related directly to the average
value of J (J + 1) in an energy bin. One can either assume the
nucleon spins add together randomly [21] or simply replace
the discrete Ericson function (4) by a continuous function of
J and integrate. Then one finds [21,37]

3σ 2 ≈ 〈J (J + 1)〉 + 1
4 , (6)

where 〈. . .〉 indicates an average over the state density, that is,

〈J (J + 1)〉 =
∑

i∈�E Ji(Ji + 1)(2Ji + 1)∑
i∈�E(2Ji + 1)

, (7)

where i ∈ �E refers to a sum over states in an energy bin �E.
Using our densities, we found that this approximation worked
well, as illustrated in Fig. 10, although our fit σ tended to be
a little higher than the σapprox found using (6). If we used the
level density rather than the state density we got a better fit,
but the state density is natural for SMMC calculations.

The authors of [21] relate the spin-cutoff factor to the
moment of inertia by way of the spin response function in
imaginary time. In fact, in the SMMC it is straightforward to
compute the thermal average of the expectation value of the
angular momentum,

〈Ĵ 2(β)〉 = tr [exp(−βĤ )Ĵ 2]

Z(β)

= Z(β)−1
∑

i

exp(−βEi)(2Ji + 1)Ji(Ji + 1). (8)

This is just the Laplace transform of the sum of J (J + 1) in
an energy bin; that is, if we define the average as

〈J (J + 1)(E)〉 =
∑

i(2Ji + 1)Ji(Ji + 1)δ(E − Ei)

ρstate(E)
(9)

[where we deliberately use the notation Ĵ 2 for the thermal av-
erage and J (J + 1) for the energy average, to help distinguish
the two notationally] then

Z(β)〈Ĵ 2(β)〉 =
∫

e−βEρstate(E)〈J (J + 1)(E)〉dE. (10)

In the same way one can invert the Laplace transform
via the method of steepest descent, one can also extract
〈J (J + 1)(E)〉, or rather extract ρ(E)〈J (J + 1)(E)〉, and then
divide by the level density, as follows. First, find the saddle
point, which yields the effective temperature for a given target
excitation energy:

E = −∂ lnZ(β) + ln〈Ĵ 2(β)〉
∂β

∣∣∣∣
β=βeff

. (11)

FIG. 9. (Color online) Dependence of fit spin-cutoff factors on energy bin size for 28Al in the sd shell (left) and for 47Ti in the pf shell.
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FIG. 10. Comparison of the spin-cutoff factor extracted by least-squares fit (σfit) against the spin-cutoff factor extracted from the average
value of J (J + 1) in an energy bin (σapprox), for several representative nuclides.

For a given effective temperature Teff = 1/βeff , the energy E is
different from that for the saddle-point condition for the level
density, because of the additional term.

One must also compute the second derivative:

C = ∂2 lnZ(β) + ln〈Ĵ 2(β)〉
∂β2

∣∣∣∣
β=βeff

. (12)

The final result of the method of steepest descent is

ρstate(E)〈J (J + 1)(E)〉 = Z(βeff)〈Ĵ 2(βeff)〉 exp(βeffE)√
2πC

.

(13)

The state density itself is computed by using the exact same
kind of inversion, only without the 〈Ĵ 2(β)〉 term in the
derivatives. Although we did not carry out any Monte Carlo
calculations, we modeled such a calculation by computing
several exact and complete spectra, namely 22Na and 33S in the
sd shell and 44Ti in the pf shell, each of which has dimensions
of 4000–7000; from those spectra we constructed the partition
function as well as the thermal average of J (J + 1). We then
inverted using Eq. (13) and found that the average value of
J (J + 1) in an energy bin is well reconstructed, as shown in
Figs. 11 and 12. (Note that, although in nature one expects
the average J (J + 1) to increase with excitation energy, with

finite model spaces it must turn over at some point, as seen
here for 44Ti.)

Although a practical J -projection scheme for level densities
has been implemented [13], by computing an M-projected
density and taking ρJ = ρM=J − ρM=J−1, simply computing
〈Ĵ 2(β)〉 is significantly computationally cheaper and appears
to be effective in arriving at the spin-cutoff factor.

FIG. 11. Comparison of the average value of J (J + 1) in 1-MeV
energy bins, calculated directly from the shell-model diagonalization
spectrum for 22Na in the sd shell (SM; histogram) and from inverting
the thermal average, Eq. (8), using Eq.(13) (Inversion; dashed line).
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FIG. 12. Same as Fig. 11 but for 33S in the sd shell and 44Ti in the pf shell (right). The turnover for 44Ti is due to the finite model space;
the other nuclides also display a turnover, but at higher excitation energies.

V. CONCLUSIONS

We have carried out a detailed investigation into the spin-
cutoff parametrization Eq. (1) of the J dependence of the level
density, with particular attention paid to the error bars in the
fit to σ . We confirmed that the spin-cutoff parametrization is a
good one and that as the statistics improve the error bars on σ
decrease. There was no qualitative difference in behavior for
different nuclides, and the best-fit values were insensitive to
bin size.

We also showed that a simple energy average, 〈J (J +
1)(Ex)〉, gives a good value for the spin-cutoff parameter and

that one can extract the energy average from a thermal average
〈Ĵ 2(β)〉 which one might get naturally out of a quantum Monte
Carlo calculation. Such an approach would be computationally
more efficient than directly calculating J -projected densities,
although the latter are achievable.
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