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12C properties with evolved chiral three-nucleon interactions
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We investigate selected static and transition properties of 12C using ab initio no-core shell model (NCSM)
methods with chiral two- and three-nucleon interactions. We adopt the similarity renormalization group (SRG)
to assist convergence including up to three-nucleon (3N ) contributions. We examine the dependencies of the
12C observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged
low-lying excitation spectra. We compare results of the full NCSM with the importance truncated NCSM in
large model spaces for benchmarking purposes. We highlight the effects of the chiral 3N interaction on several
spectroscopic observables. The agreement of some observables with experiment is improved significantly by the
inclusion of 3N interactions, e.g., the B(M1) from the first J πT = 1+1 state to the ground state. However, in
some cases the agreement deteriorates, e.g., for the excitation energy of the first 1+0 state, leaving room for
improved next-generation chiral Hamiltonians.
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I. INTRODUCTION

No-core configuration interaction methods have advanced
rapidly in recent years to make it feasible to accurately
solve fundamental problems in nuclear structure and reaction
physics (e.g., see Refs. [1–11]). At the same time, significant
theoretical advances regarding the underlying Hamiltonians,
constructed within chiral effective field theory (EFT), provide
a foundation for nuclear many-body calculations rooted in
QCD [12,13]. To improve the convergence behavior of the
many-body calculations, we employ a consistent unitary
transformation of the chiral Hamiltonians. Here we use the
similarity renormalization group (SRG) [14–18] approach
that provides a straightforward and flexible framework for
consistently evolving (softening) the Hamiltonian and other
operators, including three-nucleon interactions [8,19–21].

The goal of this paper is twofold. First, we aim to
provide results for 12C spectra and other observables using
realistic chiral nucleon-nucleon (NN ) plus three-nucleon (3N )
interactions with uncertainty estimates where feasible. Second,
we provide benchmark comparisons between the full no-core
shell model (NCSM) [1–3] and the importance-truncated
no-core shell model (IT-NCSM) [7–9,21].

Previous investigations of 12C with chiral NN + 3N
interactions, softened with the SRG approach, have mainly
focused on the ground-state energy [8,20] and its convergence
properties. One of the directions in which the present work
extends these earlier efforts is by investigating a wider set
of observables including selected electromagnetic transitions
and the lowest-lying negative-parity states. Our initial results
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for the 2+ and 4+ rotational excited states were presented
in Ref. [22].

We limit our investigations to a single form of the
chiral NN + 3N interaction. We use the chiral NN inter-
action at next-to-next-to-next-to-leading order (N3LO) with
a 500 MeV/c cutoff from Ref. [23] together with the 3N
potential at next-to-next-to-leading order (N2LO) [24] in the
local form of Ref. [25] with 500 MeV/c cutoff and low-energy
constants determined entirely in the 3N sector [26]. This is also
the Hamiltonian used in Refs. [8,19–21,27]. We evolve this
Hamiltonian using the free-space SRG to three representative
flow parameters or momentum scales to examine the scale
dependence of our results. As in the earlier applications, we
retain the induced many-body interaction through the 3N level
and neglect induced four- and multinucleon interactions.

In Sec. II, we briefly review the formalism and summarize
related results from previous work. The results for selected
12C observables are presented in Sec. III. Section IV presents
benchmarks of the IT-NCSM and NCSM. Finally, Sec. V
summarizes our conclusions and provides perspectives on
future efforts.

II. THEORETICAL BACKGROUND

A. NCSM and IT-NCSM

We employ two related ab initio methods to solve for the
properties of 12C. In the first approach, the NCSM, we follow
Refs. [1–3], where, for a chosen NN and 3N interaction
(either without or with SRG evolution) we diagonalize the
resulting many-body Hamiltonian in a sequence of truncated
harmonic-oscillator (HO) basis spaces. The basis spaces are
characterized by two parameters: Nmax specifies the maximum
number of total HO quanta beyond the HO Slater determinant
with all nucleons occupying their lowest-allowed orbitals and
�� specifies the HO energy. The goal is to achieve convergence
as indicated by independence of these two basis parameters,
either directly or by extrapolation [4].

In the second approach, the IT-NCSM, we follow
Refs. [7–9,21], where subspaces of the Nmax-truncated spaces
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are dynamically selected according to a measure derived
from perturbation theory. The IT-NCSM uses this derived
importance measure κν for the individual many-body basis
states and retains only states with |κν | above a threshold κmin

in the model space. Through a variation of this threshold and
an a posteriori extrapolation κmin → 0 the contribution of
discarded states is recovered. We use the sequential update
scheme discussed in Refs. [7,21], which connects to the full
NCSM model space and, thus, to the exact NCSM results in
the limit of vanishing threshold. In the following we report
threshold-extrapolated results of the IT-NCSM at each Nmax

including an estimate for the extrapolation uncertainties. In
addition, we compare the IT-NCSM results with the NCSM
results in model spaces where we evaluate results from both
approaches.

B. Chiral N N + 3N interactions

Chiral EFT has developed into a standard approach for
the construction of NN and 3N interactions with low-energy
constants (LECs) fitted to NN and 3N data. As mentioned
above, we adopt the chiral EFT potential at N3LO with a
500 MeV/c cutoff from Ref. [23] together with an 3N potential
at N2LO [24] in the local form of Ref. [25] as this Hamiltonian
was adopted for a range of ab initio calculations of light- and
medium-mass nuclei and, in particular, was used in previous
works for 12C. For the LECs introduced by the 3N interaction
at N2LO, we adopt the values fitted to the A = 3 binding
energies and tritium half-life [26]. That is, we adopt cD = −0.2
and cE = −0.205 for a cutoff of 500 MeV/c.

The first paper to report results for 12C with chiral NN +
3N interactions (with a different choice for cD and cE) is
Ref. [28]. That work employed the NCSM with the Okubo-
Lee-Suzuki (OLS) transformation method [29,30] to improve
convergence and presented natural parity results up through
Nmax = 6 basis spaces. We considerably extend this span of
basis spaces with the present work and include the lowest
unnatural parity states. Moreover, we use the SRG evolution
to soften the interaction instead of the OLS transformation.
The SRG-evolved chiral NN + 3N Hamiltonian adopted here
was first applied in IT-NCSM calculations for the ground-state
and excitation spectra of 12C in Ref. [8].

C. SRG evolution

In the SRG framework the unitary transformation of an
operator, e.g., the Hamiltonian, is formulated in terms of a
flow equation,

d

dα
Hα = [ηα,Hα], (1)

with a continuous flow parameter α. The initial condition for
the solution of this flow equation is given by the “bare” chiral
Hamiltonian. The physics of the SRG evolution is governed by
the anti-Hermitian generator ηα . A specific form widely used
in nuclear physics [17,31] is given by

ηα = m2
N [Tint,Hα], (2)

where mN is the nucleon mass and Tint is the intrinsic kinetic-
energy operator. This generator drives the Hamiltonian towards

a diagonal form in a basis of eigenstates of the intrinsic kinetic
energy, i.e., towards a diagonal in momentum space.

Along with the reduction in the coupling of low-momentum
and high-momentum components by the Hamiltonian, the
SRG induces many-body operators beyond the particle rank of
the initial Hamiltonian. In principle, all the induced terms up to
the A-body level are to be retained so that the transformation
remains unitary and the spectrum of the Hamiltonian in an
exact A-body calculation is independent of the flow parameter.
In practice we have to truncate the evolution at a low particle
rank (typically, two or three nucleons), which violates formal
unitarity. In this situation we can use the flow parameter
as a diagnostic tool to quantify the contribution of omitted
many-body terms [8,21].

Throughout this work, we employ the SRG evolution at
the three-nucleon level and neglect four- and multinucleon-
induced interactions. For the application in the NCSM it
is convenient to solve the flow equation for the three-body
system using a HO Jacobi-coordinate basis [21,32]. The
intermediate sums in the three-body Jacobi basis are truncated
at Nmax = 40 for channels with J � 5/2 and ramp down
linearly to Nmax = 24 for J � 13/2. Based on this and the
corresponding solution of the flow equation in two-body space
(using either a partial-wave momentum representation or HO
representation) we extract the irreducible two- and three-body
terms of the Hamiltonian for the use in A-body calculations.
A detailed discussion of the SRG evolution in the 3N sector
with benchmarks of the truncations involved can be found in
Ref. [21].

D. Computational aspects of the many-body calculations

In our many-body calculations, the size of the largest
feasible model space is constrained by the total number of
three-body matrix elements required, as well as by the number
of many-body matrix elements that are computed and stored
for the iterative Lanczos diagonalization procedure. Through
a JT -coupled scheme and an efficient on-the-fly decoupling
during the calculation of the many-body Hamilton matrix
[8,21,33,34], the limit arising from handling the 3N matrix
elements has been pushed to significantly larger many-body
model spaces. At present, for mid-p-shell nuclei the number
of nonzero many-body matrix elements defines the maximum
Nmax that can be reached in NCSM calculations.

For the full NCSM calculations we employ the MFDn code
[35–38] that is highly optimized for parallel computing. The
calculations were performed on the Cray XE6 Hopper at
the National Energy Research Scientific Computing Center
(NERSC), using up to about 100 TB of memory across 76 320
cores; and on the Cray XK6 Jaguar at the Oak Ridge National
Laboratory (ORNL), using 180 TB of memory across 112 224
cores, taking about 40 min per �� value at Nmax = 8 for eight
converged eigenvalues. MFDn has been demonstrated to scale
well on these platforms for these types of runs; scaling runs
have been performed up to 261 120 cores on the Cray XK6
Jaguar [39].

The IT-NCSM calculations are performed with a dedicated
code [7,21] that has been developed to accommodate the
specific demands of an importance-truncated calculation in
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a framework optimized for parallel performance. Owing to
the reduction of the model-space dimension resulting from the
importance truncation, typically by two orders of magnitude,
the many-body Hamiltonian matrix is significantly smaller
and the memory needs are drastically reduced. An IT-NCSM
run targeting eight positive-parity states of 12C in an Nmax = 8
space for α = 0.0625 fm4 and �� = 20 MeV takes about 10 h
wall time on 160 nodes on the Cray XE6 Hopper at NERSC and
needs a total of 2.5 TB of memory for storing the many-body
Hamiltonian matrix in the largest importance-truncated space.
This run includes the construction of the importance-truncated
space, the computation of the many-body Hamiltonian matrix,
and the separate solution of the eigenvalue problems for 15
different values of the importance threshold κmin. Further
details on the setup of the IT-NCSM calculations are discussed
in Sec. IV.

III. RESULTS

A. Excitation spectra of 12C

We first investigate the dependence of the excitation spectra
of 12C on the SRG flow parameter. Starting from the initial
chiral NN + 3N interaction, we evolve the Hamiltonian up
to a specific flow parameter α, consistently including two-
and three-body terms, but neglecting SRG-induced four- and
multinucleon interactions. Note that even in cases, where
we omit the initial chiral 3N interaction for comparison
purposes, we always include the SRG-induced 3N terms in
our calculations, leading to the so-called NN + 3N -induced
Hamiltonian.

Figure 1 shows the behavior of the excitation ener-
gies obtained in the full NCSM with increasing Nmax

for three values of the SRG flow parameter α =
(0.04,0.0625,0.08) fm4, corresponding to momentum scales
λSRG = α−1/4 = (2.24,2.0,1.88) fm−1. The spread of con-
verged results with the SRG flow parameter will provide
an indication of the relevance of the neglected SRG-induced
four- and multinucleon interactions. The absolute ground-state
energy starts to show a non-negligible flow-parameter depen-
dence for 12C as discussed in detail in Refs. [8,21]. The excita-
tion energies at fixed �� are rather insensitive to the choice of
the flow parameter. The ground-state and excitation energies,
as well as additional observables, are provided in Table I.

In Fig. 2 we display the excitation spectra of 12C at two
values of �� as a function of Nmax. The spread of the results
with �� indicates the lack of convergence with respect to
increasing Nmax. However, the movement of the excitation
energies with increasing Nmax is consistent with eventual
convergence.

From Figs. 1 and 2 one sees that the convergence patterns
are sufficiently established to conclude that the JπT = 2+0
and 4+0 rotational states are reasonably well reproduced [22].
This is not so surprising in light of recent successful ab initio
descriptions of collective motion in light nuclei [31,43,44].
However, the 1+0 is at least 3 MeV too low, as seen in
previous 12C works using the NCSM with chiral NN + 3N
interactions [8,28]. In addition, we reconfirm the issue that our
basis spaces are insufficient to reproduce the first excited 0+0
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FIG. 1. (Color online) Excitation spectra of 12C with the chiral
NN + 3N interactions for three different SRG evolution scales as
a function of Nmax at �� = 20 MeV compared with experiment.
The solid line for each calculated level represents results with
α = 0.0625 fm4. The long-dashed line represents NCSM results with
α = 0.08 fm4 and the short-dashed line represents NCSM results
with α = 0.04 fm4.

state, the Hoyle state [45,46]. Whether the third excited state at
Nmax = 8, our first excited 0+0 state, continues its downward
trend towards the Hoyle state at higher Nmax values remains a
challenge for the future.

We note that recent lattice simulations with chiral EFT
interactions through N2LO observe the Hoyle state at ap-
proximately the correct excitation energy [47,48]. It will be
interesting to see if the lattice-simulated Hoyle state remains
in good agreement with experiment at chiral N3LO and with
a range of lattice spacings. In addition, it will be interesting
to see where the other low-lying states appear in comparison
with experiment.

To examine the role of the 3N interaction, we compare in
Fig. 3 the 12C spectra at SRG evolution scale α = 0.0625 fm4

and �� = 20 MeV obtained without and with initial chiral
3N interactions. In both cases the SRG evolution is performed
up to the three-body level: Without the initial 3N interaction
this leads to the NN + 3N -induced Hamiltonian while with
the initial 3N we obtain the NN + 3N -full Hamiltonian as
used above. We observe that the impact of the initial chiral
3N interaction is very different for the various excited states.
Whereas the excitation energies of most states are shifted by
about 1 MeV, some states exhibit a much stronger sensitivity
to the initial 3N interaction. Among the latter are the first 1+0
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TABLE I. Calculated and experimental total energies E, excitation energies Ex, point-proton rms radii rp , quadrupole moments Q, as well
as E2 transitions B(E2), and M1 transitions B(M1) of 12C. The first three columns correspond to results for the initial chiral NN interaction
(still including SRG-induced 3N terms) while the next three columns correspond to chiral NN + 3N interaction using an SRG evolution scale
α = 0.0625 fm4 (λSRG = 2.0 fm−1) and �� = 20 MeV. Columns of theoretical results are labeled by pairs of natural and unnatural parity
basis spaces characterized by their Nmax values. The first row of each observable is obtained with the NCSM, while the second row is obtained
from the IT-NCSM. The uncertainty extracted from the threshold extrapolation of the IT-NCSM results as discussed in the text are quoted in
parentheses; for Nmax = (4,5) the full space was used. The experimental values are taken from Refs. [40–42].

Nmax Chiral NN Chiral NN + 3N Experiment

(4,5) (6,7) (8,9) (4,5) (6,7) (8,9)

E(0+
1 0) (MeV) − 68.123 − 73.483 − 76.617 − 85.756 − 92.182 − 95.761 − 92.161

− 68.123 − 73.544(40) − 76.238(90) − 85.756 − 92.229(16) − 95.662(45)
rp(0+

1 0) (fm) 2.217 2.263 2.305 2.120 2.136 2.149 2.35(2)
2.217 2.264(1) 2.284(10) 2.120 2.136(1) 2.140(9)

Q(2+
1 0) (e fm2) 4.735 5.107 5.451 3.936 4.136 4.321 6(3)

4.735 5.129(30) 5.191(200) 3.936 4.155(27) 4.232(160)

Ex(2+
1 0) (MeV) 2.918 2.926 2.943 3.939 3.960 3.962 4.439

2.918 2.921(6) 2.881(12) 3.939 3.962(4) 3.980(19)
Ex(0+

2 0) (MeV) 15.008 14.655 14.430 14.122 13.402 12.812 7.654
15.008 14.667(15) 14.436(26) 14.121 13.426(16) 13.066(38)

Ex(1+
1 0) (MeV) 11.886 12.056 12.288 9.017 8.948 8.998 12.710

11.886 12.050(13) 12.116(23) 9.018 8.951(9) 8.891(20)
Ex(4+

1 0) (MeV) 10.704 10.676 10.670 14.250 14.044 13.860 14.083
10.704 10.682(7) 10.703(10) 14.250 14.052(8) 14.015(33)

Ex(1+
1 1) (MeV) 14.819 14.786 14.788 15.787 15.812 15.841 15.110

14.819 14.774(15) 14.712(32) 15.787 15.820(8) 15.833(23)
Ex(2+

2 0) (MeV) 13.834 13.787 13.803 15.206 15.012 14.865 (15.44)
13.834 13.784(9) 13.719(10) 15.206 15.017(4) 14.950(29)

Ex(2+
1 1) (MeV) 15.781 15.916 16.030 15.304 15.416 15.521 16.106

– – – 15.305 15.419(9) 15.430(40)
Ex(0+

1 1) (MeV) 15.359 15.189 15.088 18.978 18.850 18.691 17.760
15.359 15.182(9) 15.020(40) – – –

E(3−
1 0) (MeV) − 55.010 − 61.249 – − 70.460 − 77.336 – − 82.520

− 55.010 − 61.182(150) − 62.883(400) − 70.460 − 77.464(120) − 79.961(400)
Ex(3−

1 0) (MeV) 13.113 12.234 – 15.296 14.846 – 9.641
13.113 12.362(170) 13.355(450) 15.297 14.765(150) 15.701(450)

Ex(1−
1 0) (MeV) 16.079 15.079 – 17.703 17.089 – 10.844

16.079 15.217(170) 15.937(450) 17.703 16.999(150) 17.688(450)
Ex(2−

1 0) (MeV) 17.081 16.182 – 17.937 17.429 – 11.828
17.080 16.304(170) 17.059(450) 17.937 17.305(150) 17.905(450)

Ex(4−
1 0) (MeV) 16.944 16.122 – 19.030 18.579 – (13.352)

16.943 16.282(170) 17.348(450) 19.030 18.508(150) 19.482(450)

B(E2; 2+
1 0 → 0+

1 0) (e2 fm4) 5.001 5.834 6.689 3.558 3.885 4.210 7.59(42)
5.001 5.844(18) 6.504(90) 3.558 3.894(8) 4.080(75)

B(M1; 1+
1 0 → 0+

1 0) (μ2
N ) 0.0032 0.0030 0.0030 0.0080 0.0079 0.0078 0.0145(21)

0.0032 0.0030(1) 0.0032(2) 0.0079 0.0078(1) 0.0082(3)
B(M1; 1+

1 1 → 0+
1 0) (μ2

N ) 0.388 0.343 0.304 1.157 1.139 1.109 0.951(20)
0.388 0.343(1) 0.329(6) 1.157 1.135(5) 1.143(36)

B(E2; 2+
1 1 → 0+

1 0) (e2 fm4) 0.308 0.293 0.241 0.437 0.442 0.436 0.65(13)
– – – 0.437 0.440(7) 0.444(18)

and the first 0+1 states. The excitation energy of the first 1+0
is reduced by more than 3 MeV by the 3N interaction and the
excitation energy of the first 0+1 state is increased by more
than 3 MeV. These large shifts indicate that these states are
strong candidates for sensitive probes of chiral 3N interactions,
particularly for the next-generation consistent chiral NN +
3N Hamiltonians at N3LO [49]. Note, however, that these

excitation energies are not yet converged as seen in the Nmax

and �� dependence of Fig. 2.
Another noteworthy effect of including the full 3N inter-

action seen in Fig. 3 is to increase the excitation energies
of the lowest rotational excitations, the 2+0 and 4+0, by
about 30%. This increase may be understood as a similar
decrease in the moment of inertia brought about by the increase
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FIG. 2. (Color online) Excitation spectra of 12C with the chiral
NN + 3N interactions, for two different �� values, as a function of
Nmax at α = 0.0625 fm4 compared with experiment. The solid line
for each calculated state represents results with �� = 20 MeV. The
long-dashed line represents results with �� = 16 MeV.

in binding energy. Indeed, the ground-state rms radius and
quadrupole moments are decreased by the inclusion of the full
3N interaction, as discussed below.

We note that the results at Nmax = 6 are similar, both in the
locations of excited states and in the changes with the inclusion
of the chiral 3N interaction, with the previous Nmax = 6 results
of Ref. [28]. This similarity is remarkable considering the
different �� values and the different renormalization schemes;
Ref. [28] used �� = 15 MeV and the OLS transformation.

B. Survey of observables

In addition to the spectra shown in the figures above, we
present in Table I the ground-state energy, selected excitation
energies and a survey of electromagnetic observables in 12C for
one choice of SRG flow parameter, α = 0.0625 fm4, and one
choice of HO basis frequency, �� = 20 MeV. While many
cases were generated to perform our systematic survey and
prepare the figures, we have chosen this one representative
case, with a moderate value of the SRG evolution scale,
to present in more detail. We tabulate these results to
stimulate detailed comparisons with other methods and other
Hamiltonians. In addition, we specify the IT-NCSM results for
the benchmark comparison discussed in detail in Sec. IV.

To more completely understand the basis space (Nmax, ��)
dependence as well as the flow-parameter dependence of two
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FIG. 3. (Color online) Excitation spectra of 12C without and
with initial chiral 3N interaction for two different Nmax values,
compared with experiment. These NCSM results are calculated at
�� = 20 MeV for flow parameter α = 0.0625 fm4.

selected electromagnetic observables, we present these results
as a function of Nmax in Figs. 4 and 5.

The example of the B(M1) from the 1+1 to the ground
state has previously been identified as receiving about a factor
of three enhancement when 3N interactions are included
[50]. This earlier work used the Tucson-Melbourne TM’(99)
interaction [51] in NCSM calculations up through Nmax = 6
to establish this enhancement. This enhancement has been
confirmed with chiral NN + 3N interactions in NCSM calcu-
lations also through Nmax = 6 using the OLS renormalization
approach [28]. In Fig. 4 we reconfirm this result with chiral
NN + 3N interactions up through Nmax = 8 and show the
sensitivity to the SRG flow-parameter and to the basis-space
parameters (Nmax,��). Clearly, these dependencies are weak
enough that the general conclusion remains; this B(M1) is
strongly enhanced by 3N interactions and the amount of en-
hancement is roughly independent of the adopted Hamiltonian.

Contrasting the favorable convergence picture for the
B(M1), other observables that are sensitive to the extent of
the wave function, such as rms radii, quadrupole moments,
and B(E2)s, are not well converged (see Table I). Of course,
the radial extent is sensitive to the binding energy relative to
the first threshold, which is the 3α threshold at about 7 MeV
experimentally. This allows an intuitive interpretation of our
results for the B(E2) from the lowest 2+0 to the ground state;
see Fig. 5. One of the effects of the inclusion of the chiral
3N interaction is that the 3α threshold is pushed to higher
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FIG. 4. (Color online) Reduced magnetic dipole transition ma-
trix element from the 1+1 to the ground state of 12C (in units of μ2

N )
as a function of Nmax at three different SRG evolution scales and three
different HO basis frequencies. The solid and dashed lines present
the results obtained with and without the initial chiral 3N interaction,
respectively.

excitation energies. Without the chiral 3N interaction, both
4He and 12C are underbound and we find the 3α threshold
at too-low excitation energies. The inclusion of the 3N
interaction increases the binding energy of 4He and of 12C such
that the 3α threshold is pushed to higher excitation energies.
Not surprisingly, the changes in the B(E2)s are well correlated
with the changes in the binding and threshold energies. Also,

FIG. 5. (Color online) Reduced electric quadrupole transition
matrix element from the 2+0 to the ground state of 12C (in units
of e2 fm4) as a function of Nmax at three different SRG evolution
scales and three different HO basis frequencies. The solid and dashed
lines present the results obtained with and without the initial chiral
3N interaction, respectively.

the changes in the B(E2)s are well correlated with the changes
in the ground-state rms radius and the quadrupole moment of
the first 2+0.

One has to keep in mind, however, that two components
are still missing in the present, state-of-the-art calculations of
electromagnetic observables: First, we should transform the
electromagnetic operators consistently with the Hamiltonian
in the SRG evolution. However, so far we only employ the bare
operators. Second, we should include the two-body currents
derived in chiral EFT. However, so far we only employ the
one-body part. These two corrections are not likely to affect the
qualitative discussion present here, but they will play a role in
future precision calculations of electromagnetic observables.

C. Negative-parity states

Finally, we present in Figs. 6 and 7 results for the lowest
excited states with negative parity in 12C. Figure 6 displays an
array of results for the 3−0 state from our current investigation,
covering the three frequencies �� = 16, 20, and 24 MeV
and the three SRG flow parameters α = 0.04, 0.0625, and
0.08 fm4. Here we show the energy difference of the 3−0
state and the 0+0 ground state obtained in Nmax + 1 and Nmax

spaces, respectively.
There is a sizable spread of the excitation energy of the 3−0

state in Fig. 6 with both frequency and Nmax, indicating a slow
convergence compared to the typical positive-parity states,
both with and without the initial 3N interaction. Nevertheless,
our results indicate that the initial chiral 3N interaction
increases the excitation energy of the 3−0 state by a few MeV.

The excitation spectra of the lowest negative-parity states
relative to the 3−0 state are better converged; see Fig. 7.
Without the chiral 3N interaction the lowest 1−0 state and

FIG. 6. (Color online) Excitation energy of the 3−0 in 12C as a
function of (Nmax,Nmax +1) without (dashed lines) and with (solid
lines) initial chiral 3N interaction at three different SRG evolution
scales and three different HO basis frequencies. The unnatural parity
states are computed at Nmax +1, while the corresponding excitation
energy is calculated with respect to the ground state at Nmax so that a
pair of basis spaces defines each point in this plot.
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FIG. 7. (Color online) Negative-parity excitation spectra of 12C
obtained without and with initial chiral 3N interaction for two
different Nmax values, compared with experiment. These NCSM
results are calculated at �� = 20 MeV for flow parameter
α = 0.0625 fm4.

even more significantly the 2−0 states are too high in the
negative-parity spectrum. The chiral 3N interaction reduces
the excitation energy of both the 1−0 and 2−0 states, and
brings them in better agreement with the experimental data.
Our calculations also indicate that the fourth negative-parity
state is a 4−0 state, in agreement with the Jπ assignment
suggested by Millener [52].

IV. BENCHMARK OF IT-NCSM WITH NCSM

Apart from the discussion of the spectroscopy and other ob-
servables of 12C obtained with chiral NN + 3N interactions, a
second main goal of the present work is to present a benchmark
comparison between NCSM and IT-NCSM for ground- and
excited-state energies and electromagnetic observables. To this
end, Table I contains the numerical results from NCSM and
IT-NCSM calculations for our selected 12C observables in a
pairwise comparison.

The general setup of the IT-NCSM calculations presented
here is as follows. For basis spaces up to Nmax = (4,5) we
use the IT-NCSM code [7,21] for full NCSM calculations.
The energies for these full-space runs agree to within 1 keV
and the electromagnetic observables to within 0.1% with the
NCSM results obtained with the MFDn code. This establishes
a baseline for the numerical precision of the two independent
codes, which use the same JT -coupled NN and 3N matrix
elements as input.

Beginning at Nmax = 6, the IT-NCSM calculations in-
volve the importance truncation and threshold extrapolation.
A detailed discussion of the IT-NCSM can be found in
Refs. [7,21]. For the positive-parity spectrum, e.g., we target
the eight lowest eigenstates. For each of them we define a
reference state by using the corresponding eigenstate obtained
in the next-smaller model space and imposing a reference
threshold Cmin = 2 × 10−4 that eliminated all components
with amplitudes below this threshold. This value is expected
to be sufficiently small not to affect the final results; for a
detailed analysis, see Ref. [21]. These reference states enter

into the importance measure used to identify the relevant
basis states for the description of any one of the eight target
states; i.e., if the importance measure with respect to at least
one reference state is above the importance threshold κmin

the basis state is kept. We employ a sequence of importance
thresholds κmin = {3,3.5,4, . . . ,10} × 10−5 and solve for the
eigenvalues within each of the importance-truncated model
spaces separately. Based on the energies and observables
obtained for the different importance-truncated spaces we
perform an extrapolation κmin → 0. We use a third-order
polynomial fit to the results for the full range of importance
thresholds with equal weights. The uncertainty of the threshold
extrapolation is quantified by changing the order of the
polynomial by ±1 and by excluding the results of the lowest
and the lowest two threshold values. The uncertainties given
in Table I are the standard deviations obtained for this set of
extrapolations.

The results of the full NCSM in these larger basis spaces
serve as important benchmarks for the IT-NCSM. In general,
we observe a very good agreement of the IT-NCSM results with
the full NCSM with deviations below 1% for almost all cases.
Beyond assessing this general agreement, the full NCSM
results provide a unique opportunity to test the reliability
of the uncertainty estimates obtained from the threshold
extrapolation protocol discussed above. It should be noted
that we do not account for the numerical uncertainty in the
NCSM result used as the benchmark. For energies this NCSM
uncertainty is expected to be about 1 keV; for electromagnetic
observables the NCSM uncertainty has not been quantified
previously, but based on the excellent agreement of the
full-space results for Nmax = (4,5) with an independent code
we expect uncertainties of the order of the last quoted digit.

Considering all NCSM and IT-NCSM pairs of results in
Table I, we observe that the IT-NCSM agrees within the quoted
uncertainty with the NCSM result in 60% of the cases. From
this observation one might conclude that the procedure used to
quantify the IT-NCSM uncertainties is reasonable and may be
interpreted in a similar way as a statistical standard deviation.
However, there are specific patterns in the size of the estimated
uncertainties and the agreement with the full NCSM results.

For the excitation energies of the positive-parity states the
estimated IT-NCSM uncertainties resulting from the threshold
extrapolation are below 50 keV and the majority of the IT-
NCSM results agree with the full NCSM within the estimated
uncertainty, though the fraction of cases showing an agreement
within the uncertainties decreases significantly for Nmax = 8
compared to Nmax = 6.

This is illustrated in Fig. 8, where we display the excitation
energies of the positive-parity states obtained in the full
NCSM and with the IT-NCSM; the estimated uncertainties
of the IT-NCSM are indicated by the boxes. The dashed bars
representing the IT-NCSM results almost always agree within
uncertainties with the solid bars representing the full NCSM.
The only case where the difference is more pronounced
is the excited 0+0. The atypical Nmax dependence of this
state already hints at a complicated structure of the wave
function which is dominated by small components; evidently,
this represents a more difficult situation for the importance
truncation and threshold extrapolation. For completeness we
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FIG. 8. (Color online) Excitation spectra of 12C with the chiral
NN + 3N interactions, obtained with the NCSM and the IT-NCSM,
as a function of Nmax, and compared with experiment. The solid lines
represent the NCSM result and dashed lines represent the IT-NCSM
results, with boxes indicating the typical threshold-extrapolation
uncertainties. These results are calculated at �� = 20 MeV with
the SRG evolution scale α = 0.0625 fm4. For Nmax = 10, only IT-
NCSM calculations targeting the lowest four eigenstates are currently
available.

also show excitation energies at Nmax = 10, which were
obtained in an IT-NCSM calculation targeting the four lowest
eigenstates.

For the excitation energies of the negative-parity states
relative to the 3−0 state, as shown in Fig. 9, the agreement
of the IT-NCSM and the full NCSM is equally good. Based on
the direct threshold extrapolation of the excitation energies
within the negative-parity space, the uncertainties of the
IT-NCSM energies are comparable to the uncertainties of
the positive-parity excitation energies. Note, however, that
the uncertainties of excitation energies of the negative-parity
states relative to the positive-parity ground state, as reported
in Table I, are significantly larger. This results from the
larger uncertainties of the threshold extrapolations for the
absolute energies of the 3−0 and the 0+0 states needed to
determine the offset of the negative-parity with respect to the
positive-parity spectrum. The uncertainties in this offset induce
sizable systematic uncertainties in the excitation energies of
the negative-parity states, as seen in Table I.

For radii and electromagnetic observables the threshold ex-
trapolations typically produce larger error bars, particularly for
long-range observables like the radii or quadrupole moments
and transitions. Nevertheless, even for these observables, the
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FIG. 9. (Color online) Excitation of the negative-parity spectra
of 12C with respect to the lowest 3−0 state using the chiral NN + 3N

interaction, obtained with the NCSM and the IT-NCSM, as a function
of Nmax, and compared with experiment. The solid lines represent the
NCSM result and dashed lines represent the IT-NCSM results. These
results are calculated at �� = 20 MeV with the SRG evolution scale
α = 0.0625 fm4. For Nmax = 9, only IT-NCSM calculated eigenstates
are currently available.

results in Table I show that the NCSM and IT-NCSM results
fall within the quoted IT-NCSM uncertainty in the majority of
cases.

There is a systematic trend in uncertainties of the IT-NCSM
results when going from Nmax = (6,7) to Nmax = (8,9). First
of all, the uncertainty estimates increase with increasing Nmax.
This is attributable to the fact that the IT-NCSM space covers
a smaller fraction of the complete Nmax space so that the
threshold extrapolation has to account for the contribution
of a larger fraction of discarded basis states. Second, the
fraction of cases in which the IT-NCSM agrees with the NCSM
within the uncertainties is reduced for Nmax = (8,9). This
might be explained by uncertainties that are not accounted for
by the threshold extrapolation and uncertainty quantification
protocol. An example are inaccuracies resulting from building
the importance-truncated space for Nmax = (8,9) on refer-
ence states that already result from an importance-truncated
Nmax = (6,7) calculation; the uncertainties inherited from the
Nmax = (6,7) states and the additional reference threshold Cmin

are not yet accounted for by the Nmax = (8,9) uncertainty
estimate. Because a numerical propagation of these uncertain-
ties is computationally expensive, one might consider other
threshold extrapolation schemes that are robust in this respect.
A promising candidate is a threshold extrapolation based on
the energy variance [53,54] and studies along these lines are
in progress.

These benchmark comparisons show that the intrinsic un-
certainty estimates extracted from the threshold extrapolation
provide a suitable guideline for the accuracy of the IT-NCSM
results. However, one has to keep in mind that the estimates
do not capture the accumulation of uncertainties throughout a
sequence of importance-truncated calculations with increasing
Nmax. The relative size of the uncertainties depends on the
observable and the structure of the states. If the resulting
uncertainty appears too large for a specific application, one
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may elect to decrease the importance thresholds, which is
guaranteed to improve the results and reduce the extrapolation
uncertainties.

V. SUMMARY AND CONCLUSIONS

We have presented ab initio NCSM and IT-NCSM calcula-
tions of 12C using SRG-evolved chiral NN + 3N Hamiltoni-
ans. Both, spectra and electromagnetic properties are examined
as a function of the SRG flow parameter as well as a function
of the model-space parameters (Nmax,��). We have extended
previous investigations with the same Hamiltonian to larger
model spaces and to a larger set of observables. Furthermore,
we have benchmarked the IT-NCSM with the NCSM in model
spaces where the latter is feasible.

For most low-lying positive-parity states the excitation
energies are reasonably well converged, though noticeable
exceptions are the first excited 0+0 state (the Hoyle state)
and the first 0+1 state. Indeed, it is known that to converge
the Hoyle state one needs significantly larger model spaces.
Electromagnetic observables such as magnetic moments and
M1 transition strengths are also reasonably well converged, but
quadrupole moments and E2 transitions are not yet converged,
even in the largest model spaces that we have considered here.
This should, however, not be surprising, since the E2 operator
is a long-range operator, and hence convergence is notoriously
slow in a HO basis.

The comparison of our theoretical spectra with experiment
reveals some remarkable points. For most of the positive-parity
states the excitation energies obtained without the initial
chiral 3N interaction are in good qualitative agreement with
experiment. Typically, the agreement is improved by including
the chiral 3N interaction, in particular for the rotational
excitations, the lowest 2+0 and 4+0 states. Also the 0+1
state is very sensitive to the 3N interaction, and in better
agreement with experiment than without the 3N interaction.
A surprising exception is the 1+0 state. It is in good agreement
with experiment without the chiral 3N interaction. However,
with the chiral 3N interaction the excitation energy is pushed
about 4 MeV below the experimental value.

The excitation energies of the lowest excited negative-parity
states with respect to the 3−0 state (the lowest negative-parity
state) are also reasonably well converged. However, the
negative-parity states converge slower than the positive-parity
states in terms of absolute energies, and hence the excitation
energies of the negative-parity states are not converged with
respect to the ground state. Nevertheless, it appears that the
dominant effect of the chiral 3N interaction on the negative-
parity states is an overall upward shift of the states with respect
to the positive-parity ground state.

The excitation energies of the 1+0 state and the 0+1
state represent valuable test cases for next-generation (chi-
ral) Hamiltonians. The failure of the present chiral NN
at N3LO plus 3N interaction at N2LO to quantitatively
capture the physics of these states represents a challenge
for improved chiral interactions, in particular the 3N in-
teraction at N3LO [55,56]. Further detailed investigations
into the structure of these states and their sensitivity
to different existing chiral NN + 3N interactions are in
progress.

In terms of enlarging the model space, which may be
necessary to address these issues, there are alternatives to the
straightforward but challenging task of enlarging the HO basis
itself. In particular, it may be more fruitful to adopt another
basis with improved infrared properties such as the Coulomb-
Sturmian basis [57–59]. Alternatively, it may be more efficient
to remain within the HO basis (thereby preserving factorization
of the center-of-mass motion) but selecting symmetry-adapted
basis spaces such as those recently advocated for light nuclei
[44] and especially for 12C [60,61]. Another avenue is the
explicit treatment of clusters and their relative motion in
the NCSM with continuum that was recently formulated and
successfully applied to the description of the unbound nucleus
7He [62].
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Phys. Rev. Lett. 107, 072501 (2011).
[9] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and
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