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Separable potentials of rank one to five for the nucleon-nucleon ~ St-3 Dt channel are con-
structed using a method introduced by Ernst, Shatdn, and Thai. er. The potentials all have the
same deuteron wave function as the Reid soft-core potential. . In addition the phase shifts of
the rank-four and -five potential, s are quite close to the experimental phase shifts. A survey
of previously published separable potentia1. s of rank greater than one is made and it is con-
cluded that most of these potentials have unacceptably poor deuteron properties. A number

of erroxs that were made in the fitting of these potentials to the data are pointed out. A sim-
plification of the Reid soft-core potential for the ~Sl-~a& channel is also presented. The sim-
plified potential consists entirely of Yukawa terms but has experimental properties that gen-
erally differ from the original Reid soft-core properties by less than the present experimen-
tal error.

NUCLEAR REACTIONS Separable potentials fitted to Reid 8&- D& phase shifts,
deuteron wave function. Previous 8&- Bt separable potentials surveyed, er-
rors pointed out. Compared to UPE constructions. Simplified (local.) Reid

tensor ' force presented.

I. INTRODUCTION

Calculations of polarization phenomena in elastic
nucleon-deuteron scattering have recently been
quite successful in predicting much of the wealth
of experimental data that is available in this
area. ' ' There are, however, certain areas (such
as the nucleon polarization for energies above ap-
proximately 10 MeV) in which considerable im-
provement in the calculations is necessary. All

of the calculations to date have used rank-one sep-
arable potentials and an obvious next step mould be
the use of more rgalistic potentials. In particular,
the rank-one potentials of the Yamaguchi type are
poor representations of the 'Sy Dy channel since
they result in positive D-wave phase shifts' and

excessively lax'ge values of the mixing parameter
[One can show for an arbitrary rank-one po-

tential that 5, & 0 when 0& 6,& -,'v (5, =-,'v for E -15
MeV). ]

This paper presents several separable potentials
of rank one to five for the 35i-3Dx channel They
have been constructed using a technique described
by Ernst, Shakin, and Thaler' (EST) that results
in a separable potential that reproduces the half-
off-shell 7 matrices of a given potential at select-
ed energies. The EST method requires the use of
a potential that adequately describes the S,-'D,
channel and the Reid soft-core (SC) potential~ was
chosen for this purpose. However, it was found

desirable for ease in the evaluation of certain inte-
grals to simplify the structux'e of the subtracted

one-pion-exchange potential that Reid used. The
simplified potential, which consists entirely of Yu-
kama texms, is described in Sec. II. It is found that
none of its predictions for experimentally mea-
sured properties (bound-state energy, quadrupole
moment, phase shifts, etc. ) differ significantly
from those of the Reid SC potential.

Section III describes the potentials constructed
using the EST method. Four potentials of xank
one, tmo, four, and five are presented. All of the
potentials have the same deuteron bound-state wave
function as the Reid potential and the phase shifts
for the rank-four and -five potentials are quite
close to the experimental phase shifts. In making
these separable potentials, the Reid potential was
regarded simply as a necessary intermediary that
defined the experimental data and the primary goal
mas to find sepax able potentials that had both ac-
ceptable deuteron properties and realistic phase
shifts. For this reason, half-off-shell T matrices
at negative energies different from the deuteron
energy mere not used as input to the potential even
though this mould have been possible. '0 Neverthe-
less, as mill be seen in Sec. III, the negative ener-
gy properties of the potentials are reasonably close
to those of the Reid potential.

A number of separable potentials of rank greater
than one have already been published for this chan-
nel. "" The properties of these potentials have
been recalculated and the results are presented in
Sec. IV. It mas found that several errors were
commonly made in previous fits and as a result
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Although the x ' and x 'terms in V~ SOPEpcancel
for small x, they make the evaluation of integrals
involving Vr (such as the Fourier transform and
expectation values of the potential between trial
functions used in variational calculations) quite
complicated. For this reason it would be desirable
to be able to replace the SOPEP form given in Eq.
(2.2) with a series such as that given in Eq. (2.3)
(including a term a,e '/x). The large-x behavior
of such a series will differ appreciably from that
given in Eq. (2.5) but, as will be seen, there is no
significant degradation of the ability of the poten-
tial to predict the observed two-nucleon properties.

To find a function of the form given in Eq. (2.3)
that will closely reproduce the properties of

VT, sopEp we define

() P
3 3), (12 3) (2 6)

and

g(x}=(b,e "+b,e '"+b,e '"+b,e ~)/x, (2.7)

and we then choose the b, so that f(x) = g(x). In the
present work it was required that xg(x) ~,gf (x} so
that one of the 5, was determined by setting

II. SIMPLIFICATION OF REID SUBTRACTED

ONE-PION EXCHANGE-POTENTIAL TERM

The Reid soft-core potentials consist' of a term
that has the long-range behavior of the one-pion-
exchange potential (OPEP) and phenomenologically
fitted Yukawa potentials of shorter range than the
OPEP. In the case of the tensor potential for the
'$, -'D, channel, Reid uses

g b, ='-,'.

The other three parameters were found by requir-
ing three integrals of the form

f„(a)-=dxx"e "[f(x)-g(x)j
0

(2.8)v, (x) = v, „,„,(x}+ v„(x),
where x= pr with p, =0.7 fm '. The first term is
the subtracted OPEP (SOPEP) and has the form

(2.1)

to be zero. This condition was used since ihtegrals
of this form will arise in variational calculations
(such as the Raleigh-Ritz principle for the deuter-

1 3 3 „12 3
V (x) =-h -+—+—e * — —+—ex x'x' x' x'

(2.2) 0.6 I I I I I I
(

I I

where p =10.463 MeV is determined by the pion-
nucleon coupling constant. The second term is the
phenomenological term (V»opEp is the same for
both of Reid's soft-core potentials) and has the
form

0.4

e-3» ~-4» e-6»
Vr ~(x) =a, +a4 +a,x x x (2 3)

where the a, (some of which may be zero) were
used in the fit to the '$, - D, phase shifts. The
large- and small-x behavior of the SOPEP term
is

~ ~ ~ I I . ( I s ~ s I I ~ I

I IO
x * 0.7r {fm)

IOOO. lO.OI

Vr sopmp(x) ~
& Il/x

»~Q
(2 4) FIG. 1. Error in the approximate form of the SOPEP

for Vz. Shown are g-f(solid line), (g-f)/f(dotted
line), and x(g-f) (dashed line) as a function of x. Equa-
tions (2.6) and (2.7) define f and g.

1 3 3
Vr sopzp(x}

»~ce x x
(2 5)

the potentials are either very poor representations
of the $z Dy channel or else require that the sign
of their $-D coupling term be changed to get the
quoted properties. In addition, in many of the fits
the deuteron was largely ignored and as a result
the potentials give quite bad values of the deuteron
quadrupole moment (Q) and percent of D state (PD).
It is argued in Sec. IV that several multiparticle
calculations show that the deuteron properties of
a given potential strongly influence the results of
multiparticle calculations made with that potential.
Hence potentials whose deuteron properties differ
significantly from experiment may give erroneous
multiparticle results.

Section IV also contains a brief discussion of the
Harms' and Afnan and Read"" formulations of
the unitary pole expansion (UPE). Harms's UPE
appears to be very poor for this channel. Phase
shifts for several of the Afnan and Read UPE's are
presented and it is concluded that the separable po-
tentials introduced here result in significantly bet-
ter agreement with the two-body data.
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on binding energy).
A number of choices of a and the three values

of s were made in an attempt to minimize
~f (x)

—g(x)
~

in the region corresponding to r& 5 fm.
Using 0. = 1 and g = 1, 3, 5, the following values"
of the 5, were found:

b, = 1.7'728,

b, = 10.447,

g, =13.493,

b6 = -2.2124.

(2.9)

Figure 1 shows the error in approximating f (x)
by the resulting g(x). As can be seen, the relative
error exceeds 1% only for r& 2 fm (r =x/O. V).
Since the function values are quite small for r& 3

c; =a] -hb, (2.11)

and the g, are the phenomenological coefficients
found by Reid (a, -=0) and the 5, are given in Etls.
(2.9). The resulting potential will then consist en-

fm, the actual error in the function is still small
and should not appreciably affect any physical ob-
servable. Similarly the rather big error for small
g corresponds to a very small relative error and
also wi11 be given negligible weight in the integrals
(involving r'dr) that typically are used in two- and
multi-particle calculations.

One can now construct a simplified Reid soft-
core (SRSC) potential using

Vr(x) =(c,e *+c,e '*+c,e ~+c,e ~)/x, (2.10)

where

TABLE I. Comparison of predictions of the SRSC potential (see text) with the values for
the Reid SC potential. The SRSC values are given to the approximate accuracy with which
they were found, while the SC values are given to as many places as were quoted by Reid.
The SRSC values were computed using Reid's value of the nucleon mass (M=1/41.47 MeV
x fm ). A~/Az is the asymptotic ratio of the D- and S-wave components of the deuteron wave
function. The phase shifts are Stapp nuclear-bar phase shifts, and here and elsewhere in
this-article the effective range parameters are defined by k cot6p =a '+ 2r k + (Pr 3)k + ~ ~ ~ .
The quoted experimental values for the phase shifts are the extremes (not including the as-
signed errors) of the values given in the Yale (Y-IV)&&+„& fit {Ref.26), both the constrained
and unconstrained Livermore X fits {Ref.27), and the 700-MeV Livermore IX fit {Ref. 28).

SRSC
value

Reid SC ~

value
Experimental

value

Deuteron:
Eg (MeV)
Q (fm~)

PD (%%uo)

A~/A ~

2.2298
0.281
6.49
0.0264

2.224 60
0.2796
6,470
0.026 22

2.224 61 + 0.000 07
0.2875 + 0.002

2 — Sd

Effective range parameters:
a (fm)

r, (fm)

-5.39

1.73

-5.390

1.720

-5.423
-5.413
1.765
1.748
1.735'

~ o.oo5'
~ 0.005 '
~0 006'
+0.006 ~

Phase shifts (deg):
24 MeV:

6p

144 MeV:
6p

352 MeV:
6p

62

Eg

~ Reference 9.
Reference 31.' Reference 32.

81.7
-2.86

1.83

29.8
—15.9

4 7

-2.6
-24.3

9.2

81 70
-2.86

1.83

29.85
-16.10

4.37

-2.41
-24.69

8.61

Reference 33.
~ Reference 34.
~ Reference 35.

80 82
-2 8 -2 1
-1,5~ +1.8

29.0 29.5
-14.8 -15.4

2.8 4.3

-11 ~ +3
-31.5 -21

3 14
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TABLE II. The parameters used for the potentials in Eqs. (3.11)-(3.15). The E&, l
&

are the energies and angular
momenta at which the potentials reproduce the half-off-shell X matrix of the SHSC potential. They do not have any
particular relationship to the columns directly beneath them.

Designation 3 SD1A 3 SD1B 3 SD1C

lg
n

tl ~
2' 51

2+227

1
-1.0

-4.3208
-7.3664 x 10'
-5.1796x 103
-3.4184 x 104

6.1120x 105
-1.8643 x 108

2.1126x 108

-8.2028 x 105

1.2840 x 10'
1.0783 x 10

-3.7239x 10
9.6414 x 104

-4.6721 x 105

8.7268 x 10~

-7.4752 x 105

2.5535 x 105

2 y227

1
-1.0

-4.3734
-7.5754 x 10
-4.6083x 10
-3.9058x 10

6.3011x 105
-1.9015x 108

2.1484 x 10~

-8.3365x 10

1.2862 x 10'
1.0631x 103

-3.4225 x 10
9.3715x 10

-4.5651x 105

8.5198x 10~

-7.2825 x 105

2.4850 x 10~

200
2
2
1.0

2.1231x10'
8.4050 x 103

-2.2853 x 10~

1.9536x 10e
-7.6013x 10

1.4968 x 107
-1.4443 x 107

5.3947x 10~

-9.4241
6.0468 x 103

-1.2055 x 10~

I.0762 x 108
-4.2624 x 106

8.2522 x 10~

-7.6791x 10~

2.7315x 106

2.227

1
—1.0

4.4258 x 10'
g.g762x ] 02

-2.3439x 10
-2.2279x 104

8.6645 x 105
-2.6443 x 106

2.9290x 106
-1.0978x 10

-3.9543x 10
-3.2403 x 10

7.4255 x 10
-5.4675 x 105

2.2249x 106

-4,8436 x 10
5.0781x 10~

-1,9936x 10~

125
0
2

-1.0
-3.5537
-8.0231x 10
-3.7581 x 10
-4.9248x 10

6.8141x 10'
-2.0156x 10

2.2625 x 10~

-8.7560 x 105

1.1270x 10~

8.9827x 102
-4.6341x 10'

6.7653 x 10
-3.5518x 10

6.4575 x 10
-5.2143x 10

1.6839x 105

g, s =P, «+Go(E)Vg~, s ~ (3.1)

tirely of Yukawa terms. Table I compares some
of the properties of this potential with the values
found by Reid' for the SC potential and the experi-
mental" "values. It shows that the SRSC poten-
tial reproduces the Reid SC values with good ac-
curacy.

III. FIT OF SEPARABLE POTENTIALS

TO REID POTENTIAL

A. Description of method

Recently Ernst, Shakin, and Thaler' have de-
scribed a method for constructing separable po-
tentials that exactly reproduce the half-off-shell
T matrix of an arbitrary given potential at select-
ed energies. In a study of this construction for the
case of an attractive S-wave square-well potential
it was found that a potential of rank two would ac-
curately reproduce the phase shifts and off-shell
P matrices of the square-well potential over a
large energy region. " In this section the general-
ization of the EST method for the case of a tensor
potential will be written down and several separa-
ble potentials thusly derived from the Reid poten-
tial will be given.

Assume we have a potential V with a tensor com-
ponent. Then the Lipmann-Schwinger equation for
the scattering wave function with standing-wave
boundary conditions is

Here

(q' I Go(E) l q) = 5(q' —q) q 'P[E —g j(2p)]
(3 2)

where P denotes the principal value and p. is the
reduced mass of the system. The asymptotic state
is

(I', q'

ling,

) =5, g5(q' —k)/k', (3.3)

where k = (2pE)"' is the scattering momentum.
The half-off-shell K matrix is thus

&I' q'l«E&lI k&=&qi, e lyi, s&. (3.4)

If we solve Eq. (3.1) for a given set of s energies
E, and corresponding angular momentum /„we
can construct a rank-g potential as

'0 = Q V
I A, s(&Mo&ki,. z, I V, (3.5}

where

Q M(i &0(, s, I VI 4i, , s,g =
5~a . (3.6)

It is clear that since each Pf) Qg is an eigenstate of
H0+ V (FIO is the kinetic-energy operator), it is al-
so an eigenstate of H, +V. Thus the half-off-shell
K matrices &I', q' lK(E, ) l l„(2p )E"') are the same
for p and%).

The construction in Eqs. (3.5) and (3.6} is not
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TABLE II (Continued)

3SD 1C 3SD1D

125
2
3
1.0

1.0736
—4.8865 x 103

9.4047 x 10
-6,0674 x 105

1.8082 x 106

-2.8654 x 106

2.4172x 10~

-8.6357x 105

-1.7832 x 10'
-4.0113x 10~

6.7715x 10
-5.4478x 10~

1.9390x 10
-3.4505x l 0

3.1186x 106
-1.1631x 10~

400
2
4
1.0

—1.1198x 10
8.3278 x 103

-7.0915x 10
—1.1703x 105

2.3552 x 106

-6.8638 x 106

7.5982 x 10
-2.8870 x 10'

-6.7286 x 10'
-2.7096 x 103

1.0159x 10
-9.5617x 10~

4.4018x 10~

-9.9337x 106

1.0347 x 10
—3.9356x 106

—2.227

—1.0
-8.1050x 10'

8.5116x 103
-1.3499x 10~

7.3464 x 105
-1.8861x 106

2.8224x 106
-2.6146x 106

1.1328x 10

1.2321 x 102

-3.8813x 103

9.6396 x 103

1.9965 x 10~
—1~ 2593x 10'
3.0881 x 106

-3.5814 x 10
1.6212 x 106

50
0
2

-1.0
-1.1188
-6.6479x 103

1.6261x 105
-1.2198x 106

4.1709x 106
—.7.3040 x 106

6.2714 x 10
-2.0489x 106

5.9229x 10 '

1.0492 x 102

3.2374 x 10
-5.3017x 105

2.4685 x 10
-4.9743 x 1Q

4.5091x 106
—1.4619x 106

50
2
3

—1.0
-4.5656
-4.5477 x 102
-1.4047 x 104

4.7029x 10
2.8798 x 10~

2445 x 106

1.5618x 3.06

-6.4285 x 10~

2 ~ 8661
1.1757x 103

-6.0661x 103

1.2521 x 10~
—6.9725 x 105

1.1272 x 106
—9.5692 x 105

3.0694 x 105

300
2
4
1.0

-9.7073
-2.5115x 103

3.9751x 10
-1.8771 x 105

3.4551x10'
-3.7219x 10

4.8497 x 105
-3.6268.x 105

-2.9024 x 10'
—3.1782 x 103

3.2000 x 10
-1.3030x 10~

9.0334 x 104

3.8100x 10~

-5.6172x 10~

1.3777x 105

400
0
5
1.0

—8.9669x 10
1.0102 x 104

—2.3154x 10~

2.0195x 106
-8.1337x 106

1.6196x 107
—1.5419x 10~

5.5761 x 106

-1.7559x 102

6.6298 x 103
-7.7784 x 104

4.7809x 105

-1.4809 x 106

2.2224 x 10~
-1.3802 x 10
1.7069 x 105

l]
n

~n

bn() m

b„

possible if the matrix

V=&iI'i, , s, l VIA, , s,&

is singular. There is no guarantee that V will be
nonsingular" and one may construct local poten-
tials V (with no pathologies) such that for a cer-
tain energy E (itis I Vl ignis&

=0. This means that one
cannot use the above prescription to construct a
rank-one potential that reproduces gs. In general
one must make sure that V is not singular and
avoid sets of energies {E,) in the vicinity of singu-
larities of p. In the present work with the '5, -'D,
Reid potential, the determinant of V for a given
rank fit and a given set of l, was never found to
change sigg as the F., were varied in the range 1
to 1000 MeV.

In the above discussion no use was made of the
fact that l labels the angular momentum of the ini-
tial state and Eq. (3.5) may be regarded as the
rather obvious extension of the EST construction
to the case of multichannel scattering. Note that
if there are N channels then to get all the K...(Ei)
correct at n energies requires a rank nN separa-
ble potential.

For the 'S,-'D, channel, g does label the orbital
angular momentum and can have the two values 0
or 2. Thus to reproduce the three half-off-shell
K (or T) matrices K», K~ =K», and K» at a given
energy would require a rank-two potential. In
practice this may not be necessa, ry and in some of
the fits the energies and angular momenta were

I &i. ii&
= VI liE&,

and observe that

K,.i(E) -=(q i, .lUi, s&+(Ui ziti, a&

+(v, . , lG,(E) —v 'lv, , ,&

(3.'I)

(3.8)

is a stationary (in both (U;, el and IU, s&) expres-
sion for the on-shell K matrix. If we expand U in
a series of trial functions

I v, ,&
= g a. ..„Iw„& (3 9)

and require that Eq. (3.8) be stationary under in-
dividual variations of the a' s, then we get for each

staggered so that fits were made at (E„I, =0),
(E„12 =2), (E„I, =0), . . . . It is of course possi-
ble to include the deuteron bound-state energy as
one of the energies g, . In this case there is no
inhomogeneous term in Eq. (3.1) and the label l;
does not apply. Including the deuteron in the set of
energies to be fitted ensures that the deuteron wave
function (both the S- and D wave compon-ents) and
binding energy will be reproduced. If one uses just
the deuteron wave function as the input then the re-
sulting rank-one potential is the same as Harms's
UPA'+" approximation to the given potential.

The significant quantity in Eqs. (3.5) and (3.6) is
VI ili& which suggests that the Schwartz formula-
tion" of the Schwinger variational principle" is a
natural method for finding the required input from

In this method we define
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(» E) a set of linear equations which determine the
g, ~.„. Once these have been found it is straight-
forward to construct the separable potential given
in Eq. (3.5}.

Equation {3.7) and the occurrence of the term
&Ul V 'l p& in Eq. (3.8) place limitations on the
types of trial functions 8'„ that may be used in Eq.
(3.9) since one must be able to compute &U l V '

l U)
even if V is singular. For this reason it is use-
ful to write

w, (q)=(q'+n ') '

~*,.{e)=4'(4'+ n.') ' (3.13)

The Fourier transforms of Eq. (3.13) are (the
norm-preserving Fourier transform is used)

lw„) = Vlw'„&, (3.10)

where the W„' are chosen to be square-integrable
functions. Note that this should not be viewed as
an expansion of

l g& as Qa„ lW„') since the W„' do not
properly represent the asymptotic form of p.

8. Potentials

v„X„v„

&»ql~.&=+5 ~:.~i,.(e)

(3.11)

(3.12)

The method described in Sec. IGA was used to
construct rank-one through rank-five potentials
for the 'S,-'D, channel. The SRSC potential of Sec.
II was used as the input potential (V). In all cases
the deuteron bound-state energy was used as one
of the E, in Eq. (3.5) (attempts in which the bound
state was not used did not reproduce the deuteron
with sufficient accuracy to be acceptable). The
other E, 's (and l, 's) were chosen and varied by
hand in an attempt to get a good fit to the phase
shifts-predicted by the SRSC. With the exception
of the deuteron properties the off-shell predictions
of the separable potentials were not considered in
the choice of the F., and l, . Considerable difficulty
was encountered in choosing the F., and ), for the
higher rank potentials since the phase-shiit curves
tended to develop wiggles between the fitting ener-
gies. This is a difficulty of the EST construction
that does not seem to be present in systematic con-
structions such as the UPE's2~ 2' but the good fits
that are possible make it worth contending with.

The trial functions of Eq. (3.10) are natural for
the process of constructing the separable poten-
tials and searching for the best E,. However, they
are rather unwieldy for subsequent uses of the sep-
arable potentials, particularly if the separable
potential is to be evaluated in momentum space.
For this reason, the separable potentials have
been refitted in terms of form factors that have
simple representations in both coordinate and mo-
mentum space. In addition the coupling constant
matrix [I in Eq. (3.5}]has been diagonalised. The
resulting final form of the separable potentials is

In Eqs. (3.11)-(3.14) there is no reference to the
SRSC potential (V) that was used to construct Q.
Thus the user of these potentials can regard them
simply as separable potentials that in some way
were fitted to the 'S,-'D, data.

It was found that eight terms in the sum (3.12)
reproduced the form factors with sufficient accu-
racy. The c.'s used in Eqs. (3.13) and {3.14) were
chosen to be

n =-',m (fm '), (3.15)

where the units are indicated to be inverse femtom-
eters. Table II contains the resulting coupling con-
stants (x, ) and expansion coefficients (5„,. ). Note
that the g's have been normalized such that

l~, l
=1 Mevfm-' (3.16)

and the 5's are dimensionless. Table II does not
contain a rank-three potential since one could not
be found that significantly improved upon the re-
sults of the rank-two potential.

The bound-state properties and effective range
parameters for these potentials are given in the
first four lines of Table HI. These values and all
other values computed with these potentials were
obtained with a nucleon mass of

~=0.0241124 MeV 'fm ' (3.17)

which approximately corresponds to using the aver-
age of the neutron and proton mass (938.903 MeV/
c') and to kc =197.329 MeVfm. The small devia-
tions in the deuteron properties from the values
obtained with the SRSC potential in Sec. H are
principally due to the reexpression of the form fac-
tors in Eq. (3.12). Figures 2-4 compare the phase
shifts of these potentials with the SRSC phases and
Figs. 5-7 compare the off-shell scattering ampli-
tudes & pl F{E}l p& for negative Z of these potentials
with the SRSC values. The off-shell scattering am-
plitude is defined as

& plF(E&l p) =-v~& plT&E) I p&

=-,'l:&pls{E) I p) —Il,
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where the $ matrix is unitary on-shell. .

As can be seen in Figs. 2-4, the phase shifts of
the potentials become significantly better with each
increase in rank. The rank-five 3SD1D potential
has phase shifts that differ by less than 3' from
those of the Reid potential for E»& 500 MeV and

produces a 5, phase shift that follows the Reid 5,
significantly past 500 MeV. However, the 3SD1D
phase shifts show a number of wiggles in the re-
gion 250 MeV& E» & 350 MeV. In addition, Figs.
5-7 show that the negative-energy T matrices for
the 3SD1C potential are much closer to the Reid
T matrices than are the 3SD1D values. For these
reasons the rank-four 3SD1C potential may give
more reliable results than the 3SD1D potential.

IV. COMPARISON WITH OTHER POTENTIALS

This section will compare the properties of the
potentials described in Sec. III with those of pre-
viously published separable potentials of rank
greater than one for the '$, -'D, channel. In Sec.
IVA we will consider separable potentials that
were phenomenologically fitted to the '$,-'D, data,
while in Sec. IV B comparison will be made with

the UPE's.

A. Survey of separable potentials

for the Sl- D, channel3 3

In this part we survey a number of separable po-
tentials of rank two or more that have been fitted
to the '$, -'D, channel. " ' Table III summarizes
the present author's calculations of the properties
of these potentials and may be regarded as an ex-
tension of a similar table published by Clement,
Serduke, and Afnan" (CSA). The present results

l20

IOO

are in agreement with those of CSA. for those po-
tentials that appear in both tables. ~

In Table III values have been marked as differ-
ent from the published values only for cases where
the difference appears to be too large to be ascrib-
able to the fact that the original authors may not
have quoted their parameters to sufficient accu-
racy. Some general remarks on Table III seem
in order.

A number of authors have used the Bjeden-
harn-Blatt approximation4s for the deuteron quadru-
pole moment. As has been pointed out by Signell, 44

this is not a good approximation (it is typically in
error by 50%%u~) and should be avoided. One of the
principle advantages of separable potentials is that
they greatly simplify calculations; in particular it
is very easy to get an analytic form for the two-
body bound-state wave function in momentum space
and to then use the Yamaguchi" formula for the
quadrupole moment to compute Q to arbitrary ac-
curacy.

The standard procedure" for fitting rank-one
potentials to the 'S,-'D, channel is to fit exactly
the deuteron properties Es, Q, PD, and the scat-
tering length g. This results in a potential that
fairly well reproduces the experimentally known

deuteron properties but which gives completely
wrong 5, and &, phase shifts. ' Exactly the opposite
policy seems to have been followed for the rank-
two potentials. ' In one case" the authors did not
report any bound-state properties of their poten-
tial while in most cases no attempt was made to
constrain the potential to have reasonabl'e values
for Q and P~. The result is that most of the pre-
viously published potentials listed in Table III have
very poor deuteron properties.

This neglect of the deuteron properties of the
separable potentials seems ill advised. Separable
potentials were originally advocated for three-body

80

60

O~ 40
-IO

20 4l

-20
40

-20
0 loo 200 300

E lab ( IHeV)

400 500

FIG. 2. Comparison of the S-wave phase shifts for
the potentials in Table II with the SR' phase shifts. The
solid line is the prediction of the SBSC potential while
the dashed line is 3SD1A, the dotted line is 3SD1B, the
dash-dot line is 3SD1C and the dash-dot-dot line is
3SD 1D.

I s I

200 300
E

) b (MeV)

FIG. 3. D-wave phase shifts for the potentials in
Table II. The lines are the same as for Fig. 2 except
3SD1A is not shown since it gives 62 & 0.

500
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scattering calculations on the basis of pole-domi-
nance arguments" or the quasiparticle method. "
Both of these approaches result in replacing the
two-nucleon g matrix with its factorized form val-
id in the'vicinity of a pole of the 7 matrix. In the
case of the channel containing the deuteron, this
factorized form is, of course, defined by the deu-
teron wave function and if there is any merit to
these arguments, the deuteron properties of a giv-
en potential will strongly influence three-body cal-
culations made with that potential. This appears
to be substantiated by the success" ' of N-d cal-
culations using rank-one '$,-'D, interactions in

predicting the deuteron tensor polarizations which

are strongly dependent upon the presence of a ten-
sor force in the N Npote-ntial. (Aarons and Sloan'

present a reasonable argument as to why these par-
ticular polarizations should depend on the tensor
force. ) Since both the 5, and s, phase shifts of the
rank-one potentials used are very poor, ' it must
be concluded that it is the D-wave part of the deu-
teron wave function that is producing the good ten-
sor polarizations.

Afnan, Clement, and Serduke" have made nucle-
ar matter and 4He Brueckner-Goldstone calcula-
tions using severa1 rank-two '$,-'D, potentials in
which the D-state probability of the deuteron was
varied while the remaining deuteron and the scat-
tering properties of the potentials remained rela-
tively constant (the 'fifth and sixth entries in Table
III are examples of the six potentials they consid-
ered). They found that the binding energy per par-
ticle in both cases was quite dependent on the D-
state probability. The importance of the deuteron
properties in nuclear matter calculations is further
emphasized by their observation that the saturation
curves for several local potentials (in particular
the Reid soft- and hard-core potentials' and the
Bryan-Scott" potential) are essentially the same

O
~O

0.
-500

I

-400
I s I

-300 -200
Ef. m (MeV)

I

- IOO

FIG. 5. The off-shell S-wave scattering amplitude at
negative energies for the potentials in Table II. Shown
are (p~F (E)~ p) for p =1 fm ' as a function of E See.
Eq. (3.18) for the normalization of E. The lines are the
same as in Fig. 2.

as the curve for the sepl, rable potential of the cor-
responding D -state probability.

These examples seem to cast considerable doubt
on the significance of multiparticle calculations
made with tensor potentials that contain a poor
representation of the deuteron and indicate that the
experimentally known properties of the deuteron
should be included with rather high weight in any
future fits of separable interactions to the '$y . Dy
channel.

Besides the potentials described in Sec. III, the
author has attempted to fit the '$, -'D, channel us-
ing rank-two potentials with form factors

(4.1)

where various integers were used for m. In these
fits three of the potential parameters were con-
strained to give good values of E~, P~, and Q

20—
0.4—

I

I

II:
/

O IO

0.2—

I

IOO
-10

0 500400
I I l I

200 300
lob (MeV)

FIG. 4. The ~& phase shifts for the potentials in Table
II. The lines are as described for Fig. 2.

-0.2
-500

I

-400
I i I

-300 -200
E (MeV)

I

- IOO

FIG. 6. The off-shell D-wave scattering amplitude at
negative energies for the potentials in Table II. The
lines are described in Fig. 2.



892 STE VEN C. P IE PER

80

-04-

Ol

L
O

40

40

-0.8-

-1.2
-500

I

-400
I s I

-300 -200
E (MeV)

I
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FIG. 7. The off-shell S- to D-wave scattering am-
plitude at negative energies for the potentials in Table
II. The lines are as described for Fig. 2. The curve
for SSD1D is indistinguishable from that of the local
SRSC potential.

while extensive searches were made on the remain-
ing parameters in an attempt to fit the phase shifts.
Potential 3SD1E in Table III is a typical result of
such a search. The potential is

FIG. 8. Comparison of the S-wave phase shifts of
some of the potentials in Table III with the Reid phase
shift. The potentials shown are identified in Table III
as: Ref. 21 (dotted line); Ref. 14 (dashed line); Ref. 20
(dash-dot-dot line); and the present article, 3SD1E
(dash-dot). The solid line is the prediction of the SRSC
potential.

V=-g Iv, &x,&v, I, (4.2)
where

T), (E) = (l', k
I
T(E) I l, k) . (4.6)

with

I v& &
= I~ ('SoP 0 o&(+I&a~'st&

and

q1/(g + 2)(l+3)/2

The parameters are

X, = -5.304 29, g =24.3648,

335 469 g2 2 554 7 1

yo~ 0o836 705 y02 0 562 653

y = 11.526 18, y = 1.026 59.

(4.3)

(4.4)

(4 6)

Figures 8-10 compare the phase shifts of this and
several of the better potentials in Table III with

the SRSC phase shifts. As can be seen, despite
the fact that this potential was constrained to give
reasonable deuteron properties, its phase shifts
are comparable to those of the other potentials.

To compute the phase shifts for a tensor poten-
tial it is customary to start with the Lippmann-
Schwinger equation for the half-off-shell T matrix:

T(E) I l, k& = VI l, k) + VGO (E)T(E) I l, k&, (4.6)

[The particular factor that relates T to S in Eq.
(4.V) will depend on the normalization of the initial
states

I l, k) and is not germane to the following
discussion. Here we are only concerned with the
absence of a factor i' ' in Eq. (4.7).]

Using the Lippmann-Schwinger equation for the
scattering wave function one can write the wave
function in terms of the half-off-shell T matrix as

I y, s&
=

I l, k& + G; (E) I
f' k'& &f', k'

I T(E) I f, k&, (4.9)

where a complete sum over the intermediate states
is understood. If the asymptotic form of the free
Green's function is used in Eq. (4.9) it is straight-
forward to find the asymptotic form of the scatter-

-10

'o -20

where
I l, k) is the initial state and again k = (2pE)'"

is the scattering momentum. Note that a +is pre-
scription is now being used in G,. Equation (4.6)
may be solved to find the on-shell T matrix and
then the scattering matrix is found as

-30—
I

100
I a I

200 300
E1 y

(M V)

I

400

S, , (E) = 1 —i2npkTg. , (E), (4 7)
FIG. 9. D-wave phase shifts for some potentials in

Table ID. The lines are as described for Fig. 8.
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ing wave function

80

(I', r
~ P, s) cc 6...(-)'e '""-I' 'S...e'". (4.11}

where Eqs. (4.7) and (4.8) have been used.
The phase shifts of both the Livermore" and

Yale groups" are also defined in terms of an S
matrix. However these groups use the S matrix
introduced by Blatt and Biedenharn" which is de-
fined by the relation

lg7I

40

IOO
I I I

200 300
EI b™vllab

500

[This is evident from Eqs. (3.2)-(3.4) and (3.10}
of Ref. 7 and from Eqs. (II-53) and (II-60) of Ref.
52.]Comp'aring Eqs. (4.10) and (4.11}we see that
the phase shifts have been defined in terms of an
S matrix (S) whose off-diagonal elements are minus
the off-diagonal elements of the S matrix that is
customarily computed.

A number of authors"""" have overlooked
this fact and as a result have fitted their potentials
to the wrong sign of the mixing parameter &,. In
these cases the correct value of &, may be obtained
by changing the sign of the off-diagonal potential
(V~) and column 3 of Table III shows when it was
necessary to do this. Changing the sign of p~ will
not change the values of Qpy $2y Eg or Pg but it
will change both the sign and magnitude of the quad-
rupole moment Q. If Q had been found from the
Biedenharn-Blatt approximation, this change will
also be for the better but if Q was directly comput-
ed from the deuteron wave function, then the re-
sulting q will be quite bad (typically -0.3 fm').
This is the case for the Monga~" potentials and
for this reason column 3 indicates that the sign of

Vp2 was not changed even though Mongan used the
wrong sign of e,. (As has been emphasized by
Breit and co-workers, ""the Biedenharn-Blatt
approximation does generally give the correct sign

FIG. 11. Comparison of the S-wave phase shifts from
the Afnan-Read form of the UPE with the SRSC phase
shifts (solid line). The UPE potentials shown are: lA
(dashed line); 1A1R gong dashed line); 2A1R (dotted
line); 2A2R (dash-dot line); and 3A2R (dash-dot-dot
line).

for Q. Hence one should be suspicious of a calcu-
lation that purports to give Q&0 and Qy&0 for low
energies. }

Comparison of Figs. 2-4 with Figs. 8-10 shows
that the potentials of Refs. 11-23 are generally
comparable in terms of their phase shifts to the
rank-two 3SD1B fit to the Reid potential but that
the rank-four fit (3SDIC) seems to be clearly
superior to all of them. If in addition one takes
into account the deuteron properties listed in Ta-
ble III then most of the previously published poten-
tials listed in Table III are clearly inferior to the
3SD1B potential. The 3SD1E potential does, how-
ever, have good deuteron properties and has a sig-
nificantly better &, phase shift than the rank-two
3SD1B potential. However, one might prefer the
latter potential since its off-shell behavior and
deuteron wave function will be closer to that of the
Reid potential.

20

IO—

-IO

-20
Ol

40

-IO
0

I

IOO
I I

200 300
EI+b ( MeV)

I

400

-30-

I

IOO
I I

200 300
EIp b

I

400 500

FIG. 10. The ~~ phase shift for some of the potentials
in Table III. The lines are as described for Fig. 8.

FIG. 12. D-wave phase shifts for the Afnan-Read UPE.
The lines are as described for Fig. 11.
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B. Comparison with the UPE potentials

20-

I 0

-IO
0

I

loo
I I

200 500
E (M v)

400 500

FIG. 13. The ~& mixing parameter for the Afnan-Read
UPE. The lines are hs described for Fig, 11.

A few years ago Harms" provided a systematic
construction of separable potentials of increasing
rank whose properties converged upon those of a
given (local) potential. This unitary pole expan-
sion (UPE) has met with considerable success in
the construction of separable potentials to repro-
duce the off-shell effects of the Reid potential in
the '$0 channel. ' The first term of Harms's UPE
is known as the unitary pole approximation (UPA}
and for the '$, -'D, channel with the Reid potential
is the same as our 3$D~. That is, it is a rank-
one potential whose form factor is the deuteron
wave function. It thus has the same poor phase
shifts as any other rank-one potential in this chan-
nel (positive 5, and very large e,). The disappoint-
ing feature of Harms's UPE is that it requires a
potential of quite high rank to correct the bad
phase shifts associated with the first term in the
expansion. Some calculations made by the author
show that the rank-10 Harms's UPE consisting of
three attractive terms and seven repulsive terms
(which is designated as 3AVR) has 5, & 0 and has e,
values that are typically a factor of 4 too large.
Afnan and Read" have reported that a 12-term
Harms's UPE potential still gives 5, &0 and point
out" that such positive D-wave phase shifts will
result in considerable over attraction in nuclear
matter calculations. For these reasons it appears
that the UPE as originally proposed by Harms does
not seem suitable for the 'Sz Dy channel.

Afnan and Read"" have proposed a second type
of UPE for coupled channels. In their construction
the eigenfunctions used by Harms are projected
into S- and D-wave components and these partial
wave components are then individually coupled to
give the separable potential. (As opposed to the
Harms's UPE, in the Afnan and Read UPE the cou-

pling constant matrix is a function of the angular
momenta appearing on the left and right. ) The re-
sult is a potential with considerably better phase
shifts than the Harms's UPE but which has twice
the rank of the corresponding Harms potential.
[Contrary to a statement in Ref. 25, the nA mR
potential in the Afnan and Read construction is of
rank 2(n+m). j The Afnan-Read construction also
produces a deuteron wave function that is the same
as that obtained with the Re'id potential.

Figures 11-13 show the phase shifts for Afnan-
Read UPE's of rank 2-10. Comparing these with

Figs. 2-4 demonstrates that the potentials intro-
duced here give considerably better phase shifts
for a given rank. This is not unexpected since the
potentials in Table II have been directly fitted to
the positive-energy features of the Reid potential.
What is surprising is that the rank-four 3$D1C
potential has negative-energy properties (Figs.
5-V) that are somewhat closer to those of the Reid
potential than the Afnan-Read 1A1R and 2A1R po-
tentials even though the latter is a rank-six poten-
tial. On the other hand, the rank-five 3SD1D po-
tential has negative-energy properties that are
considerably different from the Reid potential. In
the Introduction (Sec. I} it was stressed that the
Reid potential has been used principally as a meth-
od of getting at the experimentally known features
of the 'Sy Dy channel. Nevertheless, using the
methods of Ref. 10 it should be possible to "im-
prove" the negative-energy properties of 3SD1D
by adding one or more ranks to it that are deter-
mined by the negative-energy properties of the
Reid potential.

V. CONCLUSiONS

The separable potentials 3$D1& through 3$D1E
presented in Secs. III and IV reproduce with rea-
sonable accuracy the experimental data for the
Sy 'D, channel and should prove useful for multi

particle calculations. These potentials appear to
be superior to the previously published separable
fits in this channel. The construction of Ernst,
Shakin, and Thaler that was used in Sec. III is
seen to be capable of yielding potentials that result
in a better reproduction of the Reid phase shifts
than UPE potentials of comparable rank.

The survey of previous separable potentials for
this channel presented in Sec. IV shows that a num-
ber of errors have been made in fitting '$,-'D,
separable potentials. Despite the apparent impor-
tance of the deuteron properties to multiparticle
calculations, many of these fits did not attempt to
reproduce the experimentally known deuteron prop-
erties. As a result it is concluded that these poten-
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tials are not sufficiently realistic to be reliably
used in multiparticle calculations.

Note added in proof: While this article was in
press, a paper" by Doleschall was received in
which two rank-two fits to the 'S,-'D, channel are
presented. The properties given by Doleschall
for these potentials have been reproduced by the
present author and do not change the conclusions
given in Sec. IV about the potentials presented in
this article.

ACKNOWLEDGMENTS

I wish to thank Dr. F. Coester for a critical read-
ing of the first draft of this article and for many
helpful comments. During the course of this work
I have had many useful discussions with Dr.
F. J. D: Serduke. Most of the calculations re-
ported here were greatly simplified by the use
of the SPEAKEASY computer language that has been
developed principally by Dr. Stanley Cohen.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
J. C. Aarons and I. H. Sloan, Nucl. Phys. A182, 369
(1972).

~S. C. Pieper, Nucl. Phys. A193, 529 (1972).
P. Doleschall, Phys. Lett. 40B, 443 (1972); Nucl. Phys.
A201, 264 (1973).
S. C. Pieper, Phys. Rev. C 6, 1157 (1972).
I. H. Sloan and J. C. Aarons, Nucl. Phys. A198, 321
(1972).

6S. C. Pieper and K. L. Kowalski, Phys. Rev. C 5, 306
(1972).

7Throughout this paper the Stapp nuclear-barred phase-
shifts [H. P. Stapp, T. Ypsilantis, and N. Metropolis,
Phys. Rev. 105, 302 (1957)] are used, however fol-
lowing current convention we will not write the bars
over the symbols. Since only the 8&-3D& channel is
being considered, 60 will designate 63, and 52 will
designate 63&&.

D. J. Ernst, C. M. Shakin, and R. M. Thaler, Phys.
Rev. C 8, 46 (1973).

SR. V. Reid, Ann. Phys. (N.Y.) 50, 411 (1968).
D. J. Ernst, C. M. Shakin, and R. M. Thaler, Phys.
Rev. C (to be published).

"I.R. Afnan, D. M. Clement, and F. J. D. Serduke,
Nucl. Phys. A170, 625 (1971).

' H. J. Faustmann, H. Oberhummer, and H. F. K. Zingl,
in Fez Particle Probelms in the Nuclear Interaction,
edited by I. Claus, S. A. Moszkowski, R. P. Haddock,
and W. T. H. van Oers (North-Holland, Amsterdam,
1972), p. 34.

' T. F. Hamman and Q. Ho-Kim, Nuovo Cimento 64B,
356 (1969) and footnote 24 of Q. Ho-Kim and R. Proven-
cher, Nuovo Cimento 14A, 633 (1973). I am indebted
to Dr. Ho-Kim for pointing out the correction to his
potential that appears in the second article.

'4S. Kahana, H. C. Lee, and C. K. Scott, Phys. Rev.
185, 1378 (1969).

SA. N. Mitra and V. L. Narasimham, Nucl. Phys. 14,
407 (1959). The values of t, A, , and X2 found by
R. J. W. Hodgson, Can. J. Phys. 47, 499 (1969) have
been used for this potential.

~6R. Mehrotra and K. S. Gupta, Phys. Rev. D 1, 3459
(1970). The corrected coefficients given in Ref. 19
have been used.

"T.R. Mongan, Phys. Rev. 178, 1597 (1969).
J. H. Naqvi, Nucl. Phys. 36, 578 (1962).

' H. C. Pradham and Y. Singh, Phys. Rev. C 7, 856
(1973).

F.A. Schaposnik and H. J. de Vega. Nuovo Cimento
13A, 923 (1973).

'A. P. S. Sirohi and M. K. Srivastova, Nucl. Phys.
A201, 66 (1973).
G. L. Strobel, Nucl. Phys. A116, 465 (1968).
F, Tabakin, Ann. Phys. (N.Y.) 30,. 51 (1964).

24E. Harms, Phys. Rev. C 1, 1667 (1970).
25I. R. Afnan and J. M. Read, Flinders University Report

No. FUPH-R-68, 1972.
I. R. Afnan and J. M. Read, Phys. Rev. C 8, 1294
(1973).

2'In this paper all numbers that are used to define a
problem (potential parameters, masses, scattering
energies, etc.) are given to 16 places. Thus 1.2345 is
to be interpreted as 1.234 50000. . . +1x 10
R. E. Seamon, K. A. Friedman, G. Breit, R. D.
Haracz, J. M. Holt, and A. Prakash, Phys. Rev. 165,
1579 (1968).
M. H. MacGregor, R. A. Amdt, and R. M. Wright,
Phys. Rev. 182, 1714 (1969).
M. H. MacGregor, R. A. Amdt, and R. M. Wright,
Phys. Rev. 173, 1272 (1968).

'R. C. Greenwood and W. W. Black, Phys. Lett. 21, 702
(1966).
R. V. Reid and M. L. Vaida, Phys. Rev. Lett. 29, 494
(1972); Phys. Rev. A 7, 1841 (1973).
H. A. Bethe and P. M. Morrison, Elementary Nuclear
Theory (Wiley, New York, 1956), 2nd Ed. , p. 106.

34T. L. Houk, Phys. Rev. C 3, 1886 (1971).
H. P. Noyes, Annu. Rev. Nucl. Sci., 22, 465 (1972).

36D. J. Ernst, C. M. Shakin, R. M. Thaler, and D. L.
Wei,ss, Phys. Rev. C 8, 2058 (1973).

37I am grateful to Dr. F. Coester for pointing this out to
me.

3 S. C. Blatt, J. S. Levinger, and E. Harms, Phys. Lett.
40B, 23 (1972). Note that, as is pointed out in Ref. 25,
the sign of e& reported in Fig. 1 of this paper is in
error.
C. Schwartz, Phys. Rev. 141, 1468 (1966).

40B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469
(1950); B.A. Lippmann, ibid. 102, 264 (1956).

4~D. M. Clement, F. J.D. Serduke, and I. R. Afnan,
Nucl. Phys. A139, 407 (1969).

42The only exception is the potential of Hammann and
Ho-Kim (Ref. 13) for which CSA used parameters
published in a preprint while here the parameters of
the published article with the correction to the B2&&
term are used.

43L. C. Biedenharn and J. M. Blatt, Phys. Rev. 93, 1387



STE VEN C. PIE PER

(1954).
44P. Signell, Phys. Rev. C 2, 1171 (1970).
4~Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95, 1635

(1954),
4~A. C. Phillips, Nucl. Phys. A107, 209 (1968); T.Brady,

M. Fuda, E. Harms, J. S. Levinger, and R. Stagat,
Phys. Rev. 186, 1069 (1969).

47The potentials of Mitra and Narasimham (Ref. 15),
Mehrotra and Gupta (Ref. 16), Naqvi (Ref. 18), and
Pradham and Singh (Ref. 19) were fitted in much the
same manner as the rank-one potentials and also have
positive 52 phase shifts.

4SC. Lovelace, Phys. Rev. 135, B1225 (1964).

49R. D. Amado, Phys. Rev. 132, 485 (1963).
R. A. Bryan and B, L. Scott, Phys. Rev. 177, 1435
(1969).

5'J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399
(1952).

52G. Breit and R. D. Haracz, in High Energy Physics,
edited by E. H. S. Burlop (Academic, New York, 1967),
Vol. I, p. 21.

S~G. Breit, J. Lucas, and M. Tischler, Phys. Rev. 184,
1668 (1969).

+P. Doleschall, University of Helsinki Report No. 27-73,
1973 (to be published).


