
PHYSICAL REVIEW C VOLUM E 9, NUMBER 3

Odd-even absorption and Coulomb-exchange effects

in the He+ He and H+ He sys«ms4 Sic

J. A. Koepke, Ronald E. Brown, Y. C. Tang, and D. R. Thompson
School of Physics, University of Minnesota, Minneapolis, Minnesota 55455

(Received 2 July 1973)

Differential cross sections for He+4He elastic scattering are calculated at c.m. energies
up to 44.5 MeV using the one-channel, resonating-group method. A phenomenological imagi-
nary potential, whose strength depends on whether the relative orbital angular momentum is
even or odd, is included in the calculation in order to account approximately for open reac-
tion channels. Exchange terms which arise from the nuc)eon-nucleon Coulomb interaction
also are included. The introduction of both the odd-even absorption and the Coulomb-ex-
change terms is found to lead to significantly improved agreement with experiment. In addi-
tion, the use of improved rms matter radii for He and ~H is found to yield P& bound-state
energies for the ~He+ 4He and 3H+ 4He systems which are more consistent with experiment
than found oreviouslv.

NUCLEAR STRUCTURE, REACTIONS YLi, 'Be; calculated 2P&, 2I"& levels.
4He(~He, ~He), E, =1.7-44.5 MeV; calculated c'p); deduced imaginary-poten-

tial strength, space-exchpnge mixture. Resonating-group method.

I. INTRODUCTION

Single-channel resonating-group calculations
have achieved some success in reproducing 'He
+4He elastic scattering data over a wide range of
energies, ' ' and at 44.5 Mev (c.m. )' a fit to the
elastic differential-eross-section data was im-
proved considerably by the inclusion in the theory"
of a phenomenological local imaginary potential
in order to account for effects of reaction chan-
nels on the elastic channel. Furthermore, reso-
nating- group calculations with local absorptive
potentials have been fairly successful in de-
scribing 'He+ 'He elastic scattering" and n +o.
elastic scattering" at energies above their re-
spective reaction thresholds. More recently, a
simple nonlocality has been introduced into the
imaginary potential through the inclusion of a
Majorana (space-exchange) component. This re-
sults in an odd-even orbital-angular-momentum
dependence of the absorptive potential. In studies
of the p+a system" and 'He+'He system' this
modification aided in obtaining good agreement be-
tween theory and the elastic scattering data over
a wide range of energies. In addition, a Majorana
component in the imaginary potential has been
employed" in an optical-model fit to differential-
cross-section and polarization data for the scat-
tering of 30-MeV protons from ' Ca. In that anal-
ysis" it was found that the presence of the Ma-
jorana component considerably improved the back-
ward-angle fits to both the differential-eross-sec-
tion and polarization data. In the present work,
therefore, we include such a component in our

absorptive potential.
In previous"'0 resonating-group calculations

for the 'He+ 4He and 3H+~He systems, the Cou-
lomb interaction between the two clusters was
obtained with the use of an unantisymIQetrlzed
wave function. This results in the omission from
the calculation of Coulomb-exchange terms, which
would affect the nonlocal part of,the effective nu-
cleus-nucleus interaction obtained from the reso-
nating-group method. Generally, the Coulomb-
exchange terms have a nonnegligible influence on

the calculated properties of the system. It has
been pointed out, "however, that, for the e+n
system which contains only even relative orbital
angular momenta between the clusters, the effect
of the Coulomb-exchange terms can be simul'ated

by an adjustment of the exchange mixture in the
employed nucleon-nucleon potential. On the other
hand, it has been found" that for a system such
as p+ o. , in which both even and odd relative
orbital angular momenta can exist between the
clusters, the Coulomb-exchange interaction in
states of even angular momenta is significantly
different from that in states of odd angular mo-
menta. Moreover, this odd-even feature of the
Coulomb-exchange interaction cannot be repro-
duced by an adjustment of the nucleon-nucleon
exchange mixture. Because of the possibility that
such an odd-even effect would also be present in
the 'He+4He and 3H+4He systems, we have in-
cluded the Coulomb-exchange terms in the pxeseni
calculation. Indeed, . we find that these terms also
produce such an odd-even effect here and that
their inclusion results in improved agreement
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with experiment.
Other improvements we make here over previous

calculations for the 'He+'He and 'H+4He sys-
tems'"'0 are the use of a nucleon-nucleon poten-
tial (potential B of Ref. 18; see also Refs. 11-14}
which fits better the lom-energy nucleon-nucleon
data and the use of more consistently determined
matter size parameters for the 'He and 'H nuclei
(see Appendix A).

1th the inclusion of the above-mentioned im-
provements in the present resonating-group
calculation, me have obtained rather good fits
to the spin-orbit-averaged energies of the 'P~
bound states of 'Li and 'Be and to 'He+'He
elastic scattering differential-cross-section
data "'"at 16 energies from 1.7 to 44.5 MeV.
The elastic scattering fits mere obtained with only
two energy-dependent parameters, the depth of
the imaginary potential, and the strength of its
space-exchange component. The energy range
from'2 to 10 MeV mas not included in the present
analysis because phase-shift splittings due to
noncentral forces are very important in this
energy region, "0and our calculation is performed
mith a central nucleon-nucleon potential.

Section II contains a brief formulation of the
calculation, and in.Sec. III the present results
are compared mith experiment. In Sec. IV a dis-
cussion is presented of a proposed. effective inter-
action between the ~He and 'He nuclei. There the
odd-even features of the interaction are stressed.
Section V contains a summary and conclusions,
and the Appendixes contain the results of the
Coulomb-exchange calculation and describe the
determination of the rms matter radii for ~He,
'He, and 'H.

II. FORMULATION

The basic formulation of the one-channel reso-
nating-group description of the 'He+~He and
'H+4He systems has been given previously, '""
and therefore only a brief discussion of the
formalism is presented here. The most im-
portant features of the resonating-group method
are: (i) a variational principle is used to calcu-
late the relative motion function E(r) for the two
interacting nuclei; (ii) the seven-particle trial
wave function fox the system is completely anti-
symmetrized and is of the form 6[4,4, E(r)],
where 8 is an antisymmetrization operator and
44 and 4, describe the internal states of the two
interacting nuclei; and (iii) in the employed seven-
particle Hamiltonian operator a nucleon-nucleon
potential is used which reproduces the nucleon-
nucleon effective-range parameters.

The internal functions 4 are not varied in the

calculation, only the relative function F(r) is
varied. The spatial parts y4 and y, of the internal
functions are taken to be of the Gaussian forms

y, =exp[--,'nQ (r, —R4}'],

q, = exp[--,'It Q (r, —R,)'] .

The width parameters n, 5('He), and o('H} of Eq.
(1) are chosen to give the correct rms matter
radii for the respective nuclei. These param-
eters and the associated rms radii are given in
Table I, and the extraction of the matter radii
from the measured charge form factors is de-
scribed in Appendix A.

The nucleon-nucleon potential we use here is
not that of Hefs. 1, 3, 10, but is instead the im-
proved potential B of Ref. 18, which has been
used in recent resonating-group calculations for
other systems xx ""'"The two depth parameters
and two range parameters of this central poten-
tial are chosen to reproduce the nucleon-nucleon
effective™range parameters. The other param-
eter in the potential is a dimensionless quantity
u, which determines the space-exchange mixture
in the potential, but which does not affect the
effective-range parameters. The value N =1 cor-
responds to a pure Serber exchange mixture. As
mentioned previously, ' "the quantity u is treated
as an adjustable parameter in order partially to
compensate for defects in the calculation, prin-
cipally the lack of inclusion of specific distortion
effects." Because the two-nucleon scattering data
favor a near-Serber exchange mixture for the
nucleon-nucleon potential, the value of u finally
adopted should be reasonably close to 1. The
criterion used here to determine u is to choose
the value which best fits the energies of the 'P~
bound states of 'Li and 'Be (see Sec. III).

Vhth the introduction of a phenomenologieal
imaginary potential i W into the resonating-group
formalism, the relative-motion function E(r)
satisfies an integrodifferential equation of the form

=
~ K(r, r ')F(r ') ~r ',

mhere p is the reduced mass and E is the c.m.
kinetic energy at large cluster separation. The
direct nuclear potential VJr}, the direct Coulomb
potential Vc(r), and the kernel function K(r, r ')
are given by the resonating-group method and
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with

4z«-»«
(+) 0 ~ (r R)ls -I» (r-R)la)21+8 1+e (4)

R= 3.2 fm, a = 0.5 fm. (5)

Equation (3) has been used successfully in studies
of the p+a system" and the 'He+'He system"
over a broad range of energies. The use of the
exchange term CIP' in Eq. (3) is a simple way of
including some nonlocality in the imaginary po-
tential, which in principle should be nonlocal. "
Further rationale for the introduction of this ex-
change term, which causes an odd-even orbital-
angular-momentum dependence of the imaginary
potential, is given in Refs. 13 and 24. The spatial
form of the imaginary potential, as given by Eq.
(4), is of a Woods-Saxon shape having equal volume
and surface components, and, along with Eq. (5),
was used previously" to study the 'He+'He system,
We have investigated the effects of changes from

TABLE I. rms matter radii and width parameters n
and n [see Eq. (1)] for He, He, and H (see Appendix
A).

Nucleus

rms matter
radius

(fm)

Width
parameter

(fm )

4He
3He
3H

1.481
1.650
1.627

0.514
0.367
0.378

depend not only on the form chosen for the internal
functions 4, but also on the nucleon-nucleon po-
tential used. Because the nucleon-nucleon poten-
tial we employ here is not the same as that of
Refs. 1, 3, 10, the forms of V~(r), Vc(r), and
K(r, r ) in Eq. (2) are not the same as given in
Ref. 1. However, the required modifications to
the formulas of Ref. 1 are not complicated and can
be carried out in the manner indicated in the Ap-
pendix of Ref. 17. In addition to the kernel terms
used in Refs. 1, 3, 10, we here include those
terms in K(r, r') which arise from the nucleon-
nucleon Coulomb interaction. These Coulomb-
exchange contributions to the kernel are given in
Appendix B.

The imaginary potential in Eq. (2) is taken to be
of the form

W= (1+Cz P') U(r),

where P" is a Majorana operator which exchanges
the position of the c.m. of the a particle with that
of the mass-3 particle, C, is an adjustable pa-
rameter, and U(r) is given by

the values of Eq. (5) of the radius R and diffuse-
ness a, and changes from the equal volume and
surface component form of Eq. (4). No significant
improvements in fits to elastic scattering data
result from such changes.

With the nucleon-nucleon exchange parameter
Q fixed by the bound-state data and with the radius
and diffuseness of the imaginary potential fixed
by Eq. (5), there are only two energy-dependent
parameters in the calculation. These are the
strength of the imaginary potential, U, of Eq. (4),
and the exchange constant in the imaginary poten-
tial, C, of Eq. (3).

III. RESULTS

A. Bound states

As was mentioned in Sec. II, the value of the
exchange parameter Q in the nucleon-nucleon po-
tential is determined by reproducing as accu-
rately as possible the energies of the 'P~ bound
states of the nuclei 'Li and 'Be. Each of these
two nuclei has a 'P», ground state and a 'Py/2
first excited state, both of which are bound with
respect to breakup into 4He plus the appropriate
mass-3 particle. Because we use a purely central
nucleon-nucleon potential, our calculation yields
the same energy for the J=-,' state as it does for
the J=-,' state. Therefore, for each nucleus we
average the experimental energies of the ground
state and first excited state, weighted according
to the value of 1 s for each state. This results in
an averaged bound-state energy for 'Li of 2.307
MeV below the ~He+'H breakup threshold and for
'Be of 1.443 MeV below the 'He+'He breakup
threshold, and it is these energies which are com-
pared with the calculation. We find that, with a
single value of Q given by

Q = 0.984,

these two averaged energies are reproduced to
within 13 keV. This agreement is significantly
better than the 60-keV agreement found in a
previous calculation' which did not include ihe
Coulomb-exchange terms, which used a common
value for the rms matter radius of 'He and 'H,
and which used the previous, somewhat poorer,
nucleon-nucleon potential. The largest part of
this improvement is a consequence of the inclu-
sion of the Coulomb-exchange terms.

The adjustment of the exchange-mixture pa-
rameter Q is a phenomenological way to compen-
sate for the omission of the specific distortion
effect. It is certainly a rather crude procedure
and will yield accurate results only in those cases
where the specific distortion effect does not play
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a dominant role. Thus, it is indeed gratifying
that the resultant value for u turns out to be 0.984,
which is rather close to the value of 0.92 required
in the case of o, +a scattering for which the spe-
cific distortion effect has been shown to be un-
jmportant. " The fact that a common value of u
is capable of yielding consistent bound-state re-
sults in both 'Li and 'Be is not at all surprising,
but rather should be expected. It is merely a
reflection of the fact that specific distortion ef-
fects are very similar in these two mirror sys-
tems.

B. He+ He elastic scattering

In the present work we compare our calculated
differential cross sections with experimental
data~6'7'" at 16 Cm energieS frOm 1.7 tO 44.5
MeV. At a c.m. energy of 1.7 MeV, no reaction
channels are open, and therefore, with the u of
Eq (6) h.aving been determined from the bound-
state data, no adjustable parameters are present
in the calculation. The excellent agreement be-
tween theory and experiment" obtained at this
energy is shown in Fig. I.

In the c.m. energy region from about 2 to 10
MeV, phase-shift splittings due to noncentral
forces are quite important"; in particular,
strong 'F», and 'F,~ resonances occur. Hence,
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detailed comparisons of our calculated differen-
tial cross sections with experiment cannot be
made in this energy region, but could only be made
if noncentral forces were to be included in the
calculation. We can, however, compare our
calculated 'Li and 'Be 'F~ resonance energies
with the l s weighted average of the experimental
F7/2 and 'F,~ resonance energie s. We find that

the present calculated resonance energies are
about 0.4 MeV higher than the averaged experi-
mental energies. This is to be compared with the
previous calculation' which gave about 0.6 MeV for
this energy difference.

It appears from the calculation of Ref. 8 that, at
energies above the 'F~ resonance region, non-
central forces play only a minor role in the elastic
scattering. We therefore expect that our use of
a purely central nucleon-nucleon potential will
not cause major difficulties above 10 MeV. The
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FIG. 1. Comparison with experimental data of the
present calculation (solid curve) for SHe+4He elastic
scattering at a c.m. energy. of 1.7 MeV. The circles rep-
resent the data of Miller and phillips (Ref. 19) and the
triangles represent the data of Chuang (Ref. 19).
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FIG. 2. Comparison of the present calculation (curves)
with experimental (Ref. 5) data |points) for ~He+4He elas-
tic scattering at a c.m. energy of 17.09 MeV. The dot-
dashed curve represents a calculation with no im~~ary
potential. , the dashed curve represents a calculation with
an imaginary potential with no Majorana component, and
the solid curve represents a calculation with the full im-
aginary potential of Eqs. (3) —(5) employing the param-
eters of Table II.
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procedure we employ at these higher energies is
to calculate the differential cross section at each
energy for a range of values of Uo [Eq. (4)] and

C, [Eq. (3)] and to choose those values which pro-
duce the best visual fit to the experimental data.
Figure 2 compares three calculated curves with
experimental data' at 17.09 MeV. The purpose of
this figure is to show the general effects on the
calculated differential cross section produced by
the inclusion of an imaginary potential both with
and without a space-exchange component. The
dot-dashed curve in Fig. 2 represents the calcula-
tion with no imaginary potential, and this calcu-
lation is seen to yield too large a cross section at
most angles, thereby indicating the need for ab-
sorption in the theory. The dashed curve illus-
trates the best fit obtainable when an imaginary
potential with no space-exchange component is
used. Here the two main areas of disagreement
with experiment are the poor fit at backward angles
and the failure to fit the cross sections at the two
maxima near 75 and 115'. The solid curve shows
the marked improvement in fit which occurs in
both these areas when a space-exchange component
is included in the imaginary potential.

In Table II we list the values of U, and C, which,
at each of the 16 energies considered, give the
best visual fit to the experimental data. Also
listed at each energy is the calculated total re-
action cross section 0„. The uncertainties given
for U, and CI correspond to the ranges over which
these parameters can be varied before the quality
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of the fit is significantly worsened. The resulting
uncertainties in v„are also given. In Figs. 3-5
are shown comparisons with experimental data
(points) of the best fits (solid curves) obtained
at 9 representative energies. The dashed curves
at 10.14 MeV (Fig. 3) and 24.36 MeV (Fig. 4) indi-
cate the best fits at these two energies when the

TABLE II. Values of Ci [Eq. (3)j, Uo [Eq. (4)j, and
total reaction cross section vz obtained at each c.m.
energy E analyzed in the present work.

X
UJ
lK
LIJ
LI

C)

IO =

(MeV) Cr
Uo

(MeV) (mb)

1.70
10.14
11.39
12.53
13.66

14.81
15.95
17.09
18.51
20.95

0
—0.50+ 0.30
—0.50 + 0.30
—0.65+ 0.30
—0.70 + 0.20

—0.75+ 0.20
—0.75 + 0.20
-0.85+ 0.15
—0.75+ 0.25
—0.55+ 0.35

0
o.95~ 0.10
1.10+ 0.20
1.15~ 0.25
1.00+ 0.10

1.10+ 0.15
1.15+ 0.20
1.45 + 0.20
1.70+ 0.25
2.10+0.25

0
294 +25
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261 +20
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FIG. 3. Comparison of the present calculation (curves)
with the data of Jacobs and Brown (Ref. 5) for He+ He
elastic scattering at c.m. energies of 10.14, 13.66, and
15.95 MeV. The imaginary potential of Eqs. (3) —(5) was
used along with the parameters of Table II. The dashed
curve illustrates the best fit obtainable at 10.14 MeV
when no Coul. omb-exchas~e terms are included in the
calculation.



Coulomb-exchange tex ms are omitted fx om the
calculatloQ. C18Rrly there is R slgnlflcRnt im-
provement in fit when the Coulomb-exchange tex'ms
are included. At other energies such improve-
ments also occur although they are not always so
striking as at the two energies shown. A general
compal'lson ln Pigs. 3-5 of the solid cux'ves with

IOOO

the data points illustrates that the present calcu-
lation, with only two energy-dependent parameters,
does reproduce the experimental data fairly mell
over a broad energy range. In Pigs. 3 and 4 the
angular region near 40' shows the largest dis-
crepancy between theox'y and experiment. Al-
though tbe genex'al manner ln which the dxffer-
entlRI cx'oss section ln thi8 RngulRr x'eglon changes
shape with incx'easing energy is well reproduced

IOOO—

IOO =

IOO =

lO =

iOO—

CO

l000 =

O. l
'

0
I I I I I I I I

20 40 60 80 I00 l20 i@0 I80 l80

cm. ANGLE ( dog } 0) I I I

0 20 40 60 80
I I I

I00 IRO l40 l60 Iso

FIG, 4. Cgmparison of the present calculation (curves)
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MeV. The imaginarff potential of Eqs. (3) —(5) was used
along with the parameters of Table II. The dashed curve
illustrates the best fit obtainable at 24.36 MeV when no
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FIG. 5. Comparison of the present calculation (cuxves)
with the data of Fetscher et ag. Qef. 8) for ~He+4He elas-
tic scattering at c.m. energies 32.00, 37.00, and 44.50
MeV. The imaginary potential of Eqs. (3) —(5) was used
along with the parameters of Table II.
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by the calculation, we note that the energies at
which the calculated and experimental curves be-
gin to show a maximum near 40'differ somewhat.
Such problems 'with energy depeadences of differ-
ential cross sections have been observed in other
resonating-gx oup calculations. "An additional
area of noticeable discrepancy is present in Fig.
5 in the angular region near 100, where the calcu-
lated relative minimum in the cross section has
a much lower value than does the experimental
minimum. Two effects not included in the present
calculation are known to produce shallower cross-
section minima. These are the use of noncentral
forces, as was done in a study of the p+n sys-
tem, "or the use of a two-Gaussian wave function
to improve the description of the 'He nucleus, as
was done in a study of the p+'He system. " In ad-
dition, the angular region in question is the region
where interference between the direct amplitude
and exchange amplitudes is important, "and there-
fore even small defects in the calculation could
show up rather strongly in this region. An assess-
ment of the relative importance of these possi-
bilities will require further investigation.

A final comparison with experiment is shown in
Fig. 6. The data' at 173.2 were measured in
order to test the resonating-group prediction"

~ 160
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L" xx
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FIG. 6. Comparison of the present calculation (vertical
bars) with experimental data at c.m. angles of 173.2'
QM. 6) and 155' beefs. 4, 5, 8). Some of the 155' points
were interpolated from data at nearby angles. The length
of the bars reflects the uncertainty in the calculation pro-
duced by the uncertainties in the imaginary-potential,
parameters of Table II.

of a sharply backward-peaked resonance structure
in the differential cross section. The prediction
of this structure arises from the exchange terms
present in the calculation due to the use of a
completely antisymmetrized wave function. In
Ref. 6 the data were compared with a calculation
which employed the previous nucleon-nucleon po-
tential (see Sec. II) and which did not include
Coulomb-exchange terms or an imaginary poten-
tial. In that comparison the calculated cross sec-
tion showed a more marked structure than the
experimental cross section and rose to a peak
cross-section value of about twice that of experi-
ment. The cross sections of the present ealeu-
lation, which are shown in Fig. 6, give a better
fit to the 173.2 data than did the calculation of
Ref. 6. We should stress that the 173.2' data
were not employed in the determination of the pa-
rameters of Table II, and therefore the calcula-
tion of the 173.2 excitation function can be re-
garded as a prediction made after the parameters
of Table II are determined from angular distribu-
tions at fixed energies. The fact that the calcu-
lation in Fig. 6 is represented by bars rather than
points is a refiection of the uncertainties in Uo

and CI given in Table D. In Fig. 6 the 155' data
and calculation are shown to illustrate the absence
of the resonance structure at somewhat more
forward angles.

In Tables III and IV we list the real parts and
the imaginary parts, respectively, of the phase
shifts we have calculated in the present work.
Although our calculation does not yield perfect
agreement with experiment, we feel that these
phases should be useful as starting values in a
phase-shift search on the elastic scattering data
and would help to avoid the ambiguities inherent
in phase-shift searches. In Table III we adopt the
following convention2' for the rea1 parts of the
phases:

Liming = (sy+ sy )'w
q

E~O

where n~ is the number of true bound states and

nz is the number of Pauli-forbidden bound states
for states with orbital angular momentum I .
For the 'He+4He system we have n~=0, n&=2 for
E = 0; nl, = 1, n& = 1 for / = 1; n~ = 0, n& = 1 for / = 2;
and n~=0, n&=0 for l~3.

Vfe conclude-this section with some brief com-
ments on other studies of the 'He+'He system in
the energy region considered here. Dunnill et al."
have performed an optical-model analysis of
their 'He+'He elastic scattering data at c.m.
energies from about 7 to 11 MeV. It is difficult
to make meaningful comments about their poten-
tial parameters, because they were not able to
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TABLE OI. Heal parts of calculated phase shifts (deg) for 3He+4He elastic scattering at
c.m. energies E We~).

1.70
10.14
11.39
12.53
13.66

342.8
275.6
268.4
263.8
259.7

344.4
271.7
265.3
260.0
255.0

179.5
179.9
179.3
179.9
179.9

0.4
161.2
161.3
161.3
160.8

0
0.3

2.9
4.8

0
3.9
5.9
8.0

10.4

0
—0.3
-0.4
—0.4
-0.5

0
0.2
0.3
0.5
0.7

0
0
0

-0.1
-0.1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

14.81
15.95
17,09
18.51
20.95

254, 9
249.9
246.7
237.7
227.1

250.3
245.8
241.7
236.8
229.0

179.4
178.1
177.9
173.2
167.9

160.5
160.1
159.6
158.8
157.3

7.2
10.0
13.3
17.7
25.0

13.2 -0.5
16.3 -0.4
19.1 -0.2
22.9 0.0
30.1 0.8

1.0 -0.1
1.3 —0.2
1.7 —0,2
2.2 -0.2
3.4 —0.3

0.1
0.1
0.1
0.2
0.4

0 0
0 0
0 0
0 0

-01 0

22.77
24.36
32.00
37.00
41.00
44.50

221.2
216.4
197.4
187.3
180.2
174.3

223.7
219.3-
201.4
191.6
184.7
179.3

165.4
163.2
153.9
148.3
144.2
140.6

156.0
154.9
149.5
145.7
142.7
140.3

32.0
38.1
64.0
73.8
78.4
80.6

34.8 1.6 4.4 -0.3
39.6 2.4 5,3 —0.3
64.7 8.3 11.0 0,5
74.5 13.1 15.0 1.5
79.2 17.3 18.2 2.6
82.6 21.3 20.1 3,8

0.6
0.7
2.0
3,1

5.1

-0,1 o,l
-0.1 0.1
-0.2 0.3
-0.1 0.6

0.1 0.9
0.3 1.2

obtain very good fits to the data. For example,
the fit we obtain here at 10.14 MeV (Fig. 3) is
considerably better than they obtained at a com-
parable energy. Vincent and Boschitz" have car-
ried out an optical-model analysis of their 18-MeV
(c.m. ) data in which they attempted to fit the total
reaction cross section o& as mell as the elastic
scattering differential cross section. Unfortunately
they mere led to assess the very large lomer
limit of 1300 mb to 0~ through an incorrect extrap-
olation to zero angle of the 'He-breakup differen-
tial cross section (see footnote 16 of Ref. 10). 1n
order to obtain such a large value of 0„ in their
optical-model analysis, they were forced to em-

ploy an imaginary potential having mhat me con-
sider an unrealistically large radial extent. Their
resulting fit to the scattering data is reasonably
good, homever. Our interpretation of the data of
Vincent and Boschitz" is that it yields a lower
limit to the total reaction cross section of about
300 mb, which is consistent mith Table O.
Fetscher ef al, ."have measured 'He+'He elastic
scattering differential cross sections at c.m.
energies from 28 to 44 MeV and have compared
their data with a resonating-group calculation
mhich included a nucleon-nucleon spin-orbit po-
tential. They point out that the effect of this non-
central potential is only minor at the energies

TABLE IV. Imaginary parts of calculated phase shifts (deg) for 3He+4He elastic scattering
at c.m. energies E (MeV).

10.14
11,39
12.53
13.66
14.81

8.9 7.9 7.4 9.5
9.9 8.9 9.0 10.4
8.5 10.1 7.8 11.6
7.5 8.9 6.8 10.2
7.5 10.0 6.9 11.4

0.6
1.1
1,1
1.1
1.4

0.4
0.8

1.9
2.9

0 0
0 0
0 0
0 0
0.1 0

0

0
0
0

15.95
17.09
18.51
20.95
22.77

8.0 10.3
7.5 13.5
9.6 14.7

12.3 15.8
11.9 1'7.9

7.4 11.8
6.7 15.5
9.5 17.0

13.7 18.4
13.2 21.0

1.9 4,1
1.8 6.9
4.3 10.0

12.7 15.5
14.7 21.6

0.1
0.1
0.2
0.7
0.9

0.1 0 0 0 0
0.2 0 0 0 0
o.4 o o o o
0.7 0 - 0 0 0
1.2 0.1 0.1 0 0

24.36
32.00
37.00
41.00
44.50

11.9 18.8 13.3 22.1
13.9 18.1 15.5 21.0
13.9 19.7 15.3 22.5
13,9 21.0 15.2 23.6
123 251 133 278

16.9 26.2
24.5 31.1
22.2 31.3
20.6 30.6
17.2 34.2

13 16 01 01 0 0
4.7 4.7 0.5 0.5 0.1 0
7.6 8.2 1.0 1.0 0.1 O.I

10 1 11 8 1 6 1 7 0 2 0 2
10.8 17.2 2.0 2.8 0.3 0.4
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they consider. In addition, they have introduced
phenomenologieal absorption factors into the cal-
culation in an attempt to account for effects of
reaction channels on the elastic channel. Their
calculation shows qualitative agreement with
experiment, but is a much less accurate repro-
duction of the data than we obtain here. This may
be due to the fact that their absorption factors do
not account for reactions nearly as well as does
our imaginary potential; however their neglect
of Coulomb-exchange terms and use of a nucleon-
nucleon potential with a simpler central part than
we use (see Sec. II) will also affect the quality of
their fit.

IV. EFFECTIVE POTENTIAL

Because the resonating-group method is im-
practical to apply to all nuclear systems of inter-
est, it is very useful to ob.ain on effective real
potential V,«which is simple enough to be readily
used in elastic scattering analyses yet which con-
tains the important features of the interaction
given by the resonating-group calculation. To be
precise, V,«would be employed in an analysis by
replacing Eq. (2) with the equation

h2

-2'
—V'+E-V -V (r)-fW, F(r)=0.eff C

In the expression adopted for V,« it is particu-
larly important that exchange effects be accounted
for in some manner. It has been shown previously
(see for example Fig. 2 of Ref. 10 and Fig. 2 of
Ref. 24) that a striking manifestation of the ex-
change effects present in resonating-group cal-
culations is an odd-even orbita1-angular-mo-
mentum dependence of the real parts of the phase
shifts, wl. erein the odd-l phases show a de-
creasing trend with increasing l which is dis-
tinctly different from that of the even-l phases.
A similar odd-even dependence to the phase shifts
can be given by a simple real potential containing
a space-exchange component. In fact, it has been
shown in a study of the n+o. system" that an ef-
fective real potential V,ff of the form

will, in the Born approximation, yield the same
scattering amplitude as does the resonating-group
calculation. In Eq. (9) V~(v) is as given in Eq. (2),
P" is a space-exchange operator as in Eq. (3), and

V,(1 ) and V~(r) are energy-dependent potentials
representing exchange processes. In an optical-
model type analysis, Eq. (9) can be simplified
somewhat by taking V~, V„and V~ to have the
same phenomenologically determined shape, and
this would yield a V,«of the form"

v, =(I+c~')v„(r),
where C~ is an energy-dependent parameter.

In order to give a semiquantitative assessment
of the importance of exchange processes for 'He
+'He scattering in the energy region considered
here, we have taken in Eq. (10)

C, = 1.13, C„=-O.IV. (12)

At energies above 50MeV, C~ and C~ decrease
slowly in absolute magnitude with increasing
energy. The values in Eq. (12) indicate that it is
important to include exchange effects in the real
potential, and the negative value of C~ shows that
the effective real potential is more attractive in
odd-l states than in even-l states. It is of inter-
est to note here that Votta et aL."have success-
fully used a Majorana component in the real opti-
cal potential to fit elastic scattering data of 85-
MeV protons on 'He and 'He.

Because of the success we have had here and
for other systems with an imaginary potential
containing a space-exchange component, it is
proposed that in general the imaginary part of
the effective potential be given the form of Eq. (3),
in which, lacking a microscopic model, one
wollld attelllpt 'to determine U(t') oil a phellolllello-
logica1. basis. On comparing the values of CI in
Table II with the value of C„ in Eq. (12) we ob-
serve that the sign of CI is the same as that of
C~ and that the magnitude of CI is about 3 to 5
times that of C~. The equality of the signs of C,
and Cs and a large value for the ratio Cl /C„have
also been found to occur in resonating-group
studies of the light systems p+ o. (Ref. 13) and
'He+ 'He (Ref. 14) and in an optical-model anal-
ysis of the p+ "Ca system. " In contrast to the
parameter C„, we have no microscopic model for
determining CI, and therefore at present we offer
no explanation for these empirically determined
relationships between the two exchange param-
eters.

where V~(r) is the direct nuclear potential of Eq.
(2) and C~ is an energy-dependent constant. De-
viations of Cn from unity and C„ from zero are
measures of the strength of exchange processes.
Values for C~ and C„at each energy were ob-
tained by choosing them to reproduce as well as
possible the phase shifts given by the resonating-
group calculation. " The degree to which this pro-
cedure reproduces the resonating-group phases is
indicated in Fig. 2 of Ref. 10. The values obtained
for CD and C„vary somewhat with energy, and
these values averaged over the energy range 20
to 50 MeV are
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V. CONCLUSION

Into the present study of the 'He+'He and 'H
+'He systems we have incorporated the following
improvements over previous calculations".
use of improved rms matter radii for the mass-3
nuclei, use of an improved nucleon-nucleon po-
tential, inclusion of Coulomb-exchange terms,
and use of an imaginary potential containing a
Majorana component. The present calculation
reproduces rather well bound-state and scattering
data over a wide energy range. Particularly
satisfying is the success in calculating the ex-
perimentally observed rise in the e1astic scat-
tering differential cross section at backward
angles, which implies" that exchange processes
are accounted for in a reasonably correct manner.

As in other single-channel resonating-group
calculations, we have found that the introduction-
of an odd-even orbital-angular-momentum de-
pendence into the imaginary potential results in
an improved fit to experiment. With the presence
of this feature, satisfactory agreement between
theory and experiment, in particular around the
diffraction maxima and at backward angles, can
now be obtained over a wide energy range.

The Coulomb-exchange terms are found to be
particularly important for the bound-state calcu-
lation and at energies around 10 and 24 MeV. The
reason is probably that the contribution from these
terms becomes especially. large in energy regions
where resonance levels exist. Indeed, a simple
A-matrix analysis of the calculated phase shifts
does give an indication of the existence of a broad
l = 2 level near 10 MeV, and of both an l = 4 and an
5 =5 resonance level near 24 MeV.

%e have also indicated here that a simple real
potential containing a Majorana component is a
reasonable type of potential to employ in lieu of
performing a full resonating- group calculation.
In fact, this type of real potential has been used
recently in optical-model analyses. "'-' Finally,
we wish to state the possibility, which has also
been mentioned elsewhere, ""that exchange pro-
cesses in heavy-ion scattering may be rather well
accounted for through the use of an effective inter-
action which contains Majorana components in
both its real and imaginary parts.

%'e wish to thank Dr. Ch. Neddigen for sending
us the numerical values of his experimental re-
sults.

APPENDIX A: rms MATTER RADII

In this Appendix we use information obtained
from electron scattering data to determine the
rms matter radii of the nuclei 'He, 'He, and 'H.

Two types of nuclear form factor E(q') are in-
volved in this determination: the charge form
factor C(q'), which is the Fourier transform of
the nuclear charge density, and the body form
factor B(q'), which is the Fourier transform of
the nuclear matter density. With the exception of
the charge form factor of the neutron, these form
factors are related to the appropriate ms radii
(2 2) through the low-q' expansion"

F(q 2) =1-~(r 2)q2+ ~ ~ ~

and for the neutron the expansion is

C.(q') = -'. (2'&'„q'+ "
(A1)

(A2)

The nucleon ms radii needed in the present anal-
ysis are obtained from a consideration of the
low-q' expansion of the tluantities GE2 = 2[C2(q')
+ C„(q')] and G~=-2'[C2(q2) —C„(q')] of Janssens
et a/. " The following charge form factors for
low q' are obtained:

C~(q2) =1 —0.12048q'+ ~ ~

C„(q') =+0.02116q'+ ~ ~ ~,

(A3)

(A4)

C (q')
C,(q')+ C.(q') '

Upon making a low-q ' expansion of Eq. (A6) and
employing Eqs. (Al) and (A2) we obtain the fol-
lowing equation for the ms matter radius (r') „
of the 4He nucleus:

(A6)

(2, 2) (2.2)c (2.2)c (2 2)c (A7

We take the ms charge radius to be (2 2)'
= (1.67 fm)', which is consistent with the electron
scattering data. 22'2 Equations (A5) and (A7) then
yield the result

(2 2) '~2=1.481 fm,

and use of Eq. (8) of Ref. 3 yields the width pa-
rameter a=0.514 fm ' listed in Table I.

Finally, we discuss the determination of the rms
matter radii for the nuclei 'He and 'H. Sehiff"
gives the following equations relating the.charge
form factors and body form factors for 2He(2) and
2H(f), respectively (we drop the argument q'):

2C ~
= 2C2(B, —2B,') + C„(B,+ 2B ',), (A9)

C, = 2C„(B,- sB2 ) + C2(B, + 2Bt ) i (A10)

where q is in units of fm '. Equations (Al) through
(A4) yield, for the nucleon ms radii:

(2')'=0 7229 fm' (r')' = —0 1270 fm' (A5)

First we determine the 'He rms matter radius.
The body form factor B (q') is related to the
charge form factor C (q') by the following simple
relation" ":
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where the body form factors B arise from the
S-state part of the mass-3 wave function, and the
body form factors B' arise from the product of the
S-state part with the S'-state part of the mass-3
wave function. The form factors B' are con-
siderably smaller in magnitude than the form fac-
tors B (see Fig. 4 of Ref. 41), and it is a good ap-
proximation to sei B,'=B,' (see footnote 6 of Ref
41). The B' can then be eliminated from Eqs.
(A9) and (Ala) to yield

2C, + C, = C2(2B, +B,) + C„(B,+ 2B,) . (Ail)

with

+ 2 2(2 2)c + L(2, 2)c (2 2)c (2, 2)C

= 2.698V fm'.

On applying Eqs. (Al) ahd (A2) to Eq. (All) we ob
tain

2 (w2} + ~
(2 2) 2. 2

APPENDIX B: COULOMB KERNEL

2 V 24(v)= — e ' /ff,
Ww

(a2)

and the symbols a, , b, , c, , e, (i=1, 2, 3), and 8,
are defined in Ref. 1. Before listing the kernels
for the two systems 3H+4He and 'He+4He it is
convenient to define the following quantities:

The Coulomb-exchange terms contribute a part
Kc(r, r') to the kernel K(r, r') of Eq. (2). We list
here the partial-wave expanded kernel f2'(r, w'}

defined by

+1
k~c(r, r') =2wrr' ff (r, r'P', (g) dp,

J

where P, (g) is a Legendre polynomial, and i/, is
the cosine of the angle between r and r'. In the
following e is the electronic charge, o, and 5 are
as in Eq. (1}, the error function 4 is defined by

The numerical value in Eq. (A13) is obtained
through use of Eq. (A5) and by taking the values
of the ms charge radii to be (2'};=(1.&V fm)'
and (r'); = (l.VO fm)' as given by the data of
Collard eg gE.42 To determine individual values
for the ms matter radii (w '), and (2 2), a re-
lationship between them in addition to the re-
lationship of Eq. (A12) is needed. For this we

use the following difference relation:

1/2

p 1 2 p89
p

1 j(2p )1/2

83

P ~ 3 P

(2'),'" (2'),—'"= 5 = 0 0232 fm. . P28 2P P
s P67

The numerical value in Eq. (A14) is obtained from
a var iational calculation for the mass-3 system
and arises from the Coulomb repulsion between
the t'wo protons in 'He. This type of calculation
is described in Ref. 38, and the nucleon-nucleon
potential w'e use for the determination of 5 is the
potential of Ref. 38 having a hard core of radius
0.45 fm. Although some error is expected in the
magnitudes of the two rms radii ealeulated in this
way, the difference 5 should be determined rather
well. " Equations (A13) and (A14) can be solved
for the rms matter radii, giving

p 2 (2p )1/2 2 2 ~11~232 2 1/2

13u + 15m

2nP22 1/2

P 34 P23y P37 Y
f 11

1 ~P 2 2 2uP„P„
~12 Og

s ~13 3 y0 2+ $5~~+ 3~2

(85}

&w'), '"=( .'2- a)5'" i+5=1.&50fm, p
1/2

p2 =—~ p2 &

(3p )1/2

p 2 —(&p )l/2

On applying Eq. (&) of Ref. 3 to the values given,
in Eq. (A15), the width parameters of Table 1 are
obtained. q, = )I.)r+Mqr'(, i=1 to 14,



with 6~p
1/2

1 VP48
p p

t 1 ip

6 P. I9L2=~(15o.+9(2), M2=-L215
29 89 Q+ 5

&&p 1/2

1,2=~7 {6p„)'/2, hi2=-1,2,

X (3p )1/2 iif —lL(3p )1/2

I 10 -341 Pi10 —j1 ~ll 4 t 11 +2

2ep„q'/2 &+2+ ~12 5 1 12 ~5 % ~13 6113 ~6p

50.- 30.
6 6

p 93
14 9 14 ~9 {88)

With these definitions the Coulomb kernels k, ' (r, 2') and I2, r(2, 2') for the 'H+'He and 'He+'He systems,
respectively, are given by:

f 1Pl ~1&+ ~f10~ + 2P1 g3 + 1P —p+~ +1t'r I ~ + d++2Pl
1 - ~1 ~10 4-

g4

x e" '~" "r (lI) dll+r
' r (-+8

)I

-ti~t" ~ "&838 3 ~ 4 l& + 14 +
-1 - ~8 09 014

f2&r(2 &/) 2&&2& &-(2/72(1(r +r' )
1

~g~ 1 @~1 + ~10 + 1 @ I2 +@ ~11 + 1 @~3 + 1 ~ (6/V)crggpI

(r,', ~ )g( 1
)I 2~ -1&~|a*"

&& ~ (il) d/1+ 2p2 g ( x& ) 2&&2& &-(2/r/4 (r2+r'2)

8 (810)
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