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Statistical analysis of intermediate structure
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We study several statistical tests which can be used to determine whether experimental
data, typically a sequence of partial widths, are compatible with the statistical model of
nuclear reactions or, on the contrary, imply the existence of intermediate structure. These
tests are applicable to cases where the data can be ascribed to a definite partial wave. We
give a brief, but critical, discussion of the few known methods, and develop several new
tests. These new tests involve the study of the following quantities: (a) the length of the
longest unbroken sequence (run) of partial widths lying either above or below their median,
(b) the length of the longest x un about a value that we call the value of optimal run length,
(c) the distribution of runs up or down, i.e. , of unbroken sequences composed of increasing
or decreasing values, (d) the number of large adjacent partial widths, and (e) the ratio of
the mean-square successive difference to the variance. %'e apply these new tests and the
previous1y known ones, and discuss their merits and drawbacks, in the examples 4 Ca(p,p'),
6Fe(n, n) +Cm+n, ~Re(n, p) ~~In(e, p), 9 Zr+p Sn+ p ~ Ge(p,p), '"Pu(n, f), and
06Pb(n, n). We find reliable evidence for intermediate structure in all these cases, except

in the reactions 8~Re(e, p) and 5In(~, p).

NUCLEAR REACTIONS 40Ca( p, p'}, '~Fe(n, n} 44Cm + n, 87Re(n p) 5In-
(e,p), OZr+ y, Sn+y, ~ Ge(p, p), 39Pu(n, f ), 20~Pb(n, n); calcu1ated signifi-

cance level of intermediate structure, using new statistical tests.

I. INTRODUCTION

The partial widths of the compound-nuclear reso-
nances in a given channel may appear to be en-
hanced in a certain energy domain. It has been
proposed" ' that this feature may reflect the exis-
tence, at high excitation energy, of simple modes
of motion (doorway states" ') of the compound nu-
cleus. This dynamical interpretation of the data
is sometimes questioned, since the occurrence of
these experimental features can be purely acci-
dental, i.e., be compatible with the statistical
model of nuclear reactions. Intermediate struc-
ture (IS) is a statistically significant deviation
from the statistical model, which in addition takes
place in a limited energy interval. Therefore, a
dynamical interpretation of the data in terms of
IS and doorway states should usually be attempted
only when the data imply a significant deviation
from the statistical model. Sometimes, a detailed
statistical analysis is necessary in order to find
the significance level of a tentative IS. A statis-
tical test is said to be conducted at the o.-signifi-
cance level when there exists a risk n of re-
jecting the tested assumption (i.e., the validity
of the statistical model) when it actually holds

true. It is partly a matter of convention to set up
a limit beyond which this risk a is considered to
be significant. Here, we take this limit to be 0.
=0.05, which is the usual choice in statistical
analy8 1s.

The main purpose of the present paper is three-
fold, First, we give a very brief critical review
of the statistical tests which have been used in the
past to identify IS. Ne correct or complete some
of them. Secondly, we propose several new sta-
tistical methods. Finally, we apply these methods
to a number of experimental data. In Sec. II, we
briefly recall the main assumptions of the statis-
tical model, in a form which is suited to the pres-
ent context. Ne also give a more complete defi-
nition of IS. Section III is devoted to the methods
which can be used when only energy-averaged
quantities, for instance average total cross sec-
tions, are available. In Sec. IV, we discuss a
number of statistical tests for randomness which
can detect deviations from the statistical model.
These tests can be applied to average quantities
or to resonance parameters (e.g. , partial widths)
We briefly discuss two tests (Secs. IV C and IV 8)
which have been previously used, and one test
(Sec. IV 8) which was known but was, however,
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never appliecf to IS W. e propose five new methods
(Secs. IVD-IV 6, and IVI). One of these (Sec.
IV F}has been partly described in a recent letter
Section V contains a statistical analysis of several
specific reactions, namely 4'Ca(p, p'), Fe(n, s),
'~Cm+n, '87Re(n, y), '"In(s, y), "Zr+y, Sn+y,
"Ge(p, p), 239Pu(n, f), and 20'Pb(n, s}.

violations of assumption (i), since most dynamical
models of IS predict a violation of only that as-
sumption.

Let us first consider a situation where only one
channel is open. Using the unitarity property of
the scattering matrix, we can write Eq. (II.l) in the
two equivalent forms

H. STATISTICAL MODEL

We write the collision matrix in the form

8 = exp(2ig)
c.c.

(rr. 4)

S=exp(2f))
c.c.

N-1
Z-~, +-,'fr&-Q [e,'/(&-s, )]

(II.1)
and assume that all the parameters are indepen-
dent of energy. In a more accurate discussion,
we could take into account a smooth energy de-
pendence due to penetration effects (Sec. VB}.Let
us call Ey E2 &~ the resonance energies
ordered by increasing values and define the energy
differences

(II.5)

where e.c. denotes the complex conjugate of the
denominator. In the dynamical interpretation of
Eq. (II.5} in terms of the one-doorway-state model,
e& is the real matrix element

&g=&40lrfl 4g&, (11.5)

dg=E~ —Eg, (X=2, ..., N)

We call

E(1;.) =(I'„,r„,..., r„.)

E(d„)=(d„d„..., d„,)

(rr. 2)
which couples the doorway configuration P, to the
complicated modes of motion g~.~' If it is as-
sumed that E'(uz') is a random series, it can be
shown that assumption (i}is violated 'Thi. s is the
usual dynamical interpretation of IS.

%e call I an averaging interval, centered on E,
and introduce the strength function s,(E) in channel
C

the sequences of partial widths and of le'vel spac-
ings ordered according to increasing resonance
energies. Henceforth, we denote by x a random
variable, by x or x„oneof its observed values,
and by x the sample mean. The basic assumptions
of the statistical model are the following:
(i) E(I'„,) is a random series or a random sequence.
This means that the observed values I"„,I'„,
..., l~, are compatible w'ith the assumption that
they are indePendently drawn from the same dis-
tribution law or, equivalently, that E(I'~,) is a
random pexmutation of the N numbers F„,...,
I"~„witheach permutation having the same
probability.
(ii) E(dz) is also a random series
(iii) The partial widths I'„,and I'~, . in different
channels are not correlated.

The specification in (i) above that the I'~, are
obtained from the same distribution implies in
particular that they refer to resonances with the
same J . This remark will be of importance in
Secs. VD and VE. In some of the tests described
below, it is further assumed that the variables
f"„,and d~ follow Porter- Thomas and Vfigner dis-
tributions, respectively. Most of the tests dis-
cussed in See. IV can be applied to assumptions
(i) and (ii). However, we shall mainly discuss

where the bar denotes a local ensemble average.
For s, «1 and I»d, the average total cross sec-
tion in channel c is given by

&o,.„.(E)&I =
~ .g~s.(&),

C

where g~ is the familiar spin statistical factor.

III. ENERGY-AVERAGED CROSS SECTIONS

In the present section, we discuss three methods
which can be applied to the analysis of data corre-
sponding to averages over several resonances.
For definiteness, we take the example of an aver-
age total cross section.

A. Monte Carlo calculations

One can generate average cross sections from
random choices of the parameters appearing in
Eq. (II.1). For this purpose, one must assume a
given probability distribution for the quantities
I'„,'~ and dz. Such calculations have been per-
formed by Singh, Hoffman-Pinther, and Lang in
the case I'/d»1, by Baglan, Bowman, and Ber-
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Pr[n=s]=exp(-a) —.
nf

Here, n is the mean of z and is related to the
variance o' of n and to A by

a=@ '=AAE/D. (III.2)

Let us take as an example the reaction '~Pb(n, s).'

man' in a one-channel case with 1~/d «I, and by
Schrack, Schwartz, and Heaton' in various cases.
Their results indicate that the frequency of oeeur-
rence of bumps of statistical origin in average
cross sections is fairly large. Baglan, Bowman,
and Berman' take I'/d= 0.1, plot {o~,(E)) lversus
E, and count the mean number A of bumps per 1000
resonances. Their definition of a "bump" implies
two somewhat arbitrax'y cx iteria'.

(a) The size of the averaging interval I: They
choose I =Sd.

(b) The ratio H of the minimum height of a bump
to the mean cross section {v„,)l: They take
a=1.5.

The numbers quoted by Baglan, Bowman, and
Berman depend rather sensitively upon these con-
ventional criteria. One result of general validity
emerges, however, from their calculations: The
mean number (A), per 1000 resonances, of statis-
tical bumps of width largex' than or equal to Md
decreases fairly rapidly when M increases:
A=15 for %=10, A=10 for &=14, and A=2 for
Af =20. We emphasize that the results of these
Monte Carlo calculations cannot be directly com-
pared with the frequency of occurrence of bunching
of large partial widths. Indeed, Eq. (II.8) shows
that {v„,)~ is influenced by variations of d as well
as of I'.

In practice, the problem appears in the following
form. Suppose that one bump is observed in {o)~,
in an energy interval of size LhL. Is the probabil-
ity negligible (i.e., according to our convention,
less than 0.05) that at least one bump of similar or
of larger width and height is genexated in ~
from a sample of level spacings and widths drawn
from the distribution laws of the statistical models
In order to answer this question on the basis of
Monte Carlo calculations, the latter must be per-
formed with the experimental values of I", d, H,
and I. The first three quantities are rarely known
with good accuracy. Moreover, one would need to
calculate the probability distribution of the number
n of statistical structures in hE. This would re-
quire lengthy Monte Carlo calculations. One could,
as a first approximation, assume that the bumps
occur randomly, with an average of A bumps in
an energy interval D. Then, the probability dis-
tribution of n, in an energy interval ~, is
given by Poisson's law

For K=14, one has

Pr[s» 1]=0.13,

and for K=30, one finds

Pr[s» 1]= 0.26.

(ni. 4)

(111.5)

We conclude from Eq. (III.4) that the observed en-
hancement does not imply a significant deviation
fxom the statistical assumptions, since this would
require Pr[s» 1]c0.05.

In summary, the Monte Carlo calculations are
quite instructive but lengthy. They require the
knowledge of I', d, and H, which are usually only

poorly known. If the fine structure is resolved,
the methods described in See. IV are usually pre-
ferable.

B. Autocorrelation function

Pappalardo' proposed that, in the case I'/d» 1,
the autocorrelation function should display two
steps if two basic coherence widths exist. This
method was improved and used by Carlson and
Barschall'0 and by Schrack, Schwartz, and Heiton. '
It presents the drawback of not giving the signifi-
cance level of a tentative deviation from the
statistical model. Carlson and Barseha3. 1' have
also calculated the variance of the average cross
section, due to the fluctuations in the number and
width of resonance levels.

C. Correlation be@veen &o(E„))and (0(E„,)&

The average total cross section is given by Eq.
(II.8). If the statistical model holds, the quanti-
ties

(111.8)oa = &c(&a))g,

and 0~, are independent for I»T', I »d, and for

if I »I', while I~ d, condition (III.V) should be
replaced by

&a- &a-~ »I ~ (111.8)

We return to the relations (III.V) and (III.8) in Sec.
V, where we discuss several examples. Ne shall
see that condition (III.8) is in practice hard to ful-
fill, since the difference E,-EI, , must in any

The observed enhancement contains about M = 14
resonances. If one assumes H= 1.5, Bq,gian,
Bowman, and Berman' give X= 10, for D = 1000 d.
Then the probability of observing at least a statis-
tical bump in an energy interval containing K
resonances is obtained from Eqs. (III.l) and (III.2)

Pr[n»1] =1-Pr[n=0]=1 —exp(-KA x 10 ').
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case be kept smaller than the width of the tentative
IS. The statistical tests described in Sec. IV can
be used to investigate whether the sequence

@&)= (ox~ ~2~ " ~
o' N)

is random, as it should be if the statistical model
holds true.

ber U of runs has been calculated by Wald and
%'olfowitz. " To our knowledge, this test has never
been applied to IS. It requires two samples, i.e.,
a rather large number of ~tiaL widths. More-
over, and mainly, we saw in See. IVA that IS gives
rise to only a small deviation from the probability
distribution which prevails in the background.

IV. STATISTICAL TESTS FOR RANDOMNESS

A. Introduction

The purpose of the present section is to develop
several statistical tests which can be used to in-
vestigate whether a sequence of numbers, for
instance of partial widths, is random. The rela- .

tive merits and drawbacks of these tests must be
evaluated in each specific case. It is sufficient
that only one test give a significant deviation from
the statistical assumptions to conclude the exis-
tence of a significant deviation from the statis-
tical model.

We call x» x» ..., g~ the observed values of a
random variable x, which has a continuous prob-
ability distribution. Let E(x) denote the sequence

(IV.1}

where the observables are ordered in a prescribed
way, for instance with increasing values of the
associated energy. Usually, we illustrate the dis-
cussion by the example xz =I'z„since assumption

(i) is the one which is expected to be violated in
the vicinity of an IS. In most of the following tests,
it is checked whether E(x) is a random sequence.
One could also study whether the partial widths
and the level distances follow Porter-Thomas and
Wigner distributions, respectively. This type of
test, however, appears to be both less practicable
and less powerful, for two main reasons. First,
the available samples are usually too small. Sec-
ondly, Monte Carlo calculations indicate that IS
introduces only a small deviation from the Porter-
Thomas distribution of partial widths. '""

8. Comparison between two samples

Wald and Wolfowitz" proposed a method to de-
termine whether two samples of data are dx awn
from the same population. Thi.s test may, for
instance, be used to compare two sets of partial
widths& w1th one group I x.c corresponding to the
resonances lying in the region of the tentative IS,
while the other one F~,' contains the other reso-
nances. The values of the two sets are arranged
in a single array, by order of increasing magni-
tude. A "run" is defined as a series of consecutive
values belonging to the same set, either I '" or
l'2'. The probability distribution of the total num-

C. Number of runs about a reference value

James' proposed to use the following method to
identify IS. Let us choose some reference value

B, and call "run above" an unbroken series of ob-
served quantities lying above A. A "run below" is
defined in a similar way. The probability distri-
bution of the total number U of runs above and be-
low is the same as that calculated by Wald and
Wolfowitz. " Here U is the total number of runs
above and below, in a sample drawn from a bi-
nomial population whose probabilities p and

q(= I-p) are unknown. The present method gives
the significance level of the assumption that the
probability p remains constant throughout the

sample. If the numbers ee and n of values lying
above and below 8, respectively, are both larger
than about 10, one can assume that the quantity

(IV.2)

is a Gaussian variable, whose expected value
E(0) and variance o (U) are given by"

(rv. sa)

2mn(2mn m- n)-
(m+n)'(m+n-1) (IV.Sb}

For m =n = N/2, the reference value is identical to
the median of the sample. This is the choice which
has been made in the literature, ""where the test
was applied to neutron-induced fission reactions.
However, we shall see in Sec. VI that a choice of
8 different from the median is sometimes prefer-
able. In the presence of IS, we expect, as the
alternative to randomness, too large a proportion
of long runs above and below the median and,
hence, too few runs. When' or n is smaller
than about 10, the assumption that X is a Gaussian
variable is no longer justified. We found, how-

ever, that Swed and Eisenhart" have tabulated
significance levels for m, n &20. We give in Table
I the values of U such that Pr[U «Uj is equal to
0.05 and 0.01, respectively, for m «pg «20, m = 2,
3, ..., 10. We can assume without loss of general-
ity that m «n. We apply the present test in Secs.
VA, VB, VF, V G, and VI for cases wherem and

n can be smaller than 10.
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D. Longest run above the median

The length of a run is equal to the number of
values x„that it contains. Moore" argues that
the existence of a run above the median with a
length larger than or equal to 5 implies that
F(x) [Eq. (IV.I)] is not a random series, on a 0.03
significance level. We first describe why this
estimate is incorrect, and then show how to ob-
tain a correct evaluation of the significance level
of the randomness hypothesis of F(x) from the
length of the longest run relative to the median.

Moore identifies the quantity P(k) in Eq. (17) of
Ref. 15 with the probability of finding one run of
length k in a sample of size N. This quantity P(k)
can be seen to give instead the ratio of the aver-
age number of runs of length k to the average num-
ber of runs with arbitrary length, when one con-
siders the totality of the runs among all the pos-
sible sequences F(x) obtained by reordering the
quantities x&. The quantity which gives the level
of significance of the randomness hypothesis of
F(x) is quite different: It can be identified with
the probability of finding, in a sample of size N,
at least one run of length larger than or equal to
k, on one (or on either) side of the median.
Mosteller" and Olmstead' have calculated the
minimum value that the length of a run (on one

side of the median, and on either side of the me-
dian, respectively) must take, in order to reject
the randomness hypothesis for a sample of size
N, on a significance level a. We give in Table II
these minimum lengths for a = 0.05 and 0.01 and
for various values of N. It is also useful to have
the maximum value that the sample size N must
take, in order to conclude, on a significance level
n, that the existence of one run of length ~d im-
plies nonrandomness. These values are given in
Table III, for a = 0.01 and 0.10, for runs on only
one side of the median, and on either side of the
median, respectively. This test is applied in
Secs. VA-VH.

E. Longest run relative to the value

of optimal run length

We define the value of optimal run length (VORL)
in the following way. Let a be the length of the
longest run above some given value m, and b

denote the length of the longest run below m. This
value m is identical to the VORL, k, when the
quantity f =min(a, k ) is maximum. Table IV
gives the value of the maximum size N of a sample
such that the observation of one run of length at
least f, , relative to the VORL, implies a deviation
from randomness, on a significance level e."

TABLE I. Values of U such that e Pr[U ~U] is equal to 0.05 and 0.01, respectively, for m =2-10 and 20~n ~m
(Sec. IVC).

e =0.05 0. =0.01 n 0. =0.05 0. =0.01 n n =0.05 +=0.01 n 0. =0.05 n =0.01

2
7
8

18
19
20

3
4
5
8
9

10
20

4
5
6

11
12
20

m=2

m=3

5
8
9

13
14
15
20

6
7
9

10
11
14
15
16
17
20

m=5

7
8
9

11
12
13
16
17
18
19
20

8
9

10
11
13
14
15
16
17
18
20

m=8

4
4
4
5
5
5
5
6
6
6
6

9
10
11
12
13
14
15
16
17
19
20

10
11
12
13
14
15
16
17
18
19
20

m= 10
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TABLE II. Minimum length of a run relative to the
median which implies nonrandomness, on a significance
level 0., for samples of size N (Sec. IVD).

TABLE IV. Maximum size of a sample that contains
one run of length at least f&, on each side of a cut 0,
which implies nonrandomness, on a significance level 0. ,
(Sec. IV E).

One side
of median

0. =0.05 e =0.01

Either side
of median

n =0.05 n =0,01
n =0.01 n =0.10

10
20
30
40
50
60

100
200

5
7
8
8
8
9

10
11

~ ~ ~

8
9
9

10
10
12
13

5
7
8
9

10
10
11
12

8
9

10
11
11
13
14

4
5
6
7
8
9

10

6
8

12
16
24
38
66

118

8
12
18
34
58

108
204
400

Table V gives the minimum value of f, which im-
plies nonrandomness, on a significance level a,
for a sample of given size N." This test will be
used in Secs. VA, V B, V C, V F, and VG. It has
not been applied before to IS.

F. Runs up and down

A "run up" of length d is a group of d+ 1 con-
secutive values such that

x„(&x„~„(j=0, 1, ..., d-1) . (IV.4)

A "run down" is defined in the same way. The
probability distribution of runs up and down has
been studied by Levene and Wolfowitz, ' Wolfo-
witz, ' and by Qlmstead. " In Ref. 5, we showed
how this method can be used to identify IS. In the
vicinity of an IS, one expects a smaller number of
short runs up and down for the partial widths, and
a larger number of long ones, than in the case
when F(I') is a random series. This was applied
to the cases 2~Pb(n, n) and '"In(n, y) in Ref. 5."
There we show how one can calculate, from the

One side
of median

n =0.01 n =0.10

Either side
of median

a = 0,01 e = 0.10

3
4
5
6
7
8
9

10

6
8

10
14
18
26
38
56

6
10
16
26
44
78

142
256

6
8

10
12
16
22
32
42

6
8

14
20
32
52
86

150

TABLE III. Maximum size of a sample that contains
one run of length at least g relative to the median, which
implies nonrandomness, on a significance level 0.'(Sec.
IV D).

observed number X(d, N) of runs up and down of
length d in a sample of size N, the level of sig-
nificance of the hypothesis that the sequence F(x)
is a random sequence. We also give in Ref. 5 a
table showing the minimum value that the length
of a run up or down must have in order that a
sample of size N displays a nonstatistical be-
havior, with significance levels a = 0.05 and 0.10,
res pectively.

It can also be useful to study the number K'(d, N)
of runs up and down of length larger than or equal
to d. The expected value I' and the variance v'
of K' are given by2o

I'(d, N) =a'N 5', -
o .2(d N) =c'I' e+'.

(IV.5a)

(IV.5b)

The coefficients a', 5', c', and e' are listed'4 in
Table VI for d & 5. Their values for d ~11 can be
found in Ref. 24. For H large, the ratio

K'(d, N) —I'(d, N)

o, (d, N)
(IV.6)

is close to a Gaussian variable. Moreover, the
fact that c'= 1 and e'—-0 for d ~ 4 indicates that
one can then approximate the probability distribu-
tion of K'(d, N) by a Poisson law of mean I', since
one has then o'=I'.

These tests involving runs up and down will be
used in Secs. V B-VH.

a =0.05 e =0.01

10
20
40

100

5
7
8

10

TABLE V. Minimum length of a run, on each side of
a cut k, which implies nonrandomness, on a significance
level e, for samples of size N (Sec. IV E).
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G. Mean~uare successive difference H. Serial correlation coefficient

The mean-square successive difference 6' of the
array x„..., x„is defined by

The serial correlation coefficient of lag h is
given by

(IV.7)

This quantity is less sensitive to slow variations
of the mean than the sample variance s':

, r

N N

g x,x„„-[( g x,)'/N]
j=1 j=l

Qz, '-[( f z, )'/N]
j=l j=l

(IV.10)

(IV.S)

On the contrary, 6' is more sensitive than s' to
rapid variations of the mean. Hence, the value of
the ratio

(IV.9)

TABLE VI. Expected value I'(d, N) and variance
ore (d,N) of the number of runs up and down of length at
least d, in a random sample of size N (Sec. IV F).

I'(d, N) =a'N -b'
a' Ql

ol 2 (d,N) =c'I'+e'
C e'

1 6.6 x10 i

2 25 x10 i

3 6.6 x10 2

4 1.38x 10 2

2.38x10 3

3.3 x10 '
4.16x 10 ~

1.83x 10 i

5.27x 10 2

1.15x 10 2

2.6 x10 i

3.16x 10 i

7.11x10
9.18x 10 i

9.82x10 i

-2.3x10 i

7.2x10 '
1.7x 10-2

can indicate the existence of a nonrandom varia-
tion of the mean of a nonygal population. If the
quantities xj are normally distributed, the ex-
pected value of 6' is 2v'. In this case, confidence
intervals corresponding to given significance levels
n have been computed for g.'+ ' In Refs. 24 and
25, confidence intervals are listed, which are
such that if the observed value of q is smaller
than or equal to the lower limit of the confidence
interval, the mean has a slow and nonrandom
variation, on the significance level a. If g is
larger than or equal to the upper limit of the inter-
val, the variation of the mean is cyclic and rapid,
on the significance level o. . To the best of our
knowledge, this test has not been applied before
to IS. We emphasize that this test can only be
applied to normal variables. Hence, it is usually
not applicable to partial widths in a given channel

c, which have a Porter- Thomas distribution. How-

ever, it can be applied, for instance, to the sums
of many partial widths. We shall use it in Secs.
VD and VE for the reactions "~Re(n, y) and "'In-
(n, y), respectively

L Large adjacent values

It happens that one observes in a sample of
widths, for instance, an unbroken sequence of
large widths. It may be that the length d of this
run above the median is not sufficiently large to
imply a nonstatistical behavior (Sec. IV D}, and
that the occurrence of d nonadjacent large widths
in the sample would also not be significant (Sec.
VA}. However, the fact that there exists d large
and adjacent widths may imply a nonstatistical
behavior. The purpose of the present section is
to develop a method to deal with such a case.

Let us assume that p, , the actual average value
of x, can be calculated with a sufficiently narrow
confidence interval. From the distribution of g,
for instance from the Porter- Thomas distribution
in the case of partial widths, one can calculate
the probability p of the event

x&&t, (IV.II)
where t is chosen in such a way that Eq. (IV.11}is
fulfilled for all the observed values, x„,in the
"run. " The values of x~ can then be divided into
two categories, x„&t (with probability p) and
x„&f (with probability q = 1-p). This yields a
sample from a binomial population whose prob-
abilities p and q are known, if the probability
distribution of x is known. Von Bortkiewicz" and
Mood" have calculated the probability distribu-

where zj,„should be replaced by xj,„~for j+h &N.
The probability distribution of R„hasbeen calcu-
lated by Anderson, "when z is a normal variable.
The method based on the calculation of R„hasbeen
applied in Refs. 14, 27-29. We found out that Wald
and Wolfowitz" have calculated the distribution of
R„when x has a continuous, but otherwise arbi-
trary, probability distribution. We show in Sec.
V D that the values of R, and of g are very sensi-
tive to the possibility that only one resonance
(even among many) has been missed. This limits,
in some cases, the reliability of the tests based
on the calculation of g and R, and is related to the
fact that the tests described in Secs. IV G and IV 8
are very powerful. The test of Sec. IV H is applied
in Secs. VD and VE.
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tion of runs of length larger than or equal to a
given value, for x'andom events arising from a
binomial population of known probabilities p and
q. Let S» be the number of runs of length larger
than or equal to 0 in a sample of size N. The
expectation value E(S») and the variance o'(8») of
S» RI'8 glvell by

E(s,) =p' [(Iq- n)q+ i], (rv. i2)

x =fq ' (S NP"-q) (rv. 14}

is normally distributed with zero mean and with
VRX'1Rnce

8'(x») =p'q —(2k+ 1)p"q* . (Iv. is)
These expressions can be used to test the random-
ness of the xl'8 if the probability distribution of
x„is known. This method will be applied in Secs.
VA and VH to the reactions"Ca(p, p') and '~pu-
(n, f) We al. so show in Sec. VA that the occur-
rence of d nonadjacent large values may be not
significant, while a mn of d large values implies
R nonstatistlcRl behavior.

V. ANALYSIS OF EXPERIMENTAL DATA

A. Ca(p, p')

The cross section 4'Ca(p, p'} shows twelve —,
"

resonances between 6 and 8 MeV, among which
four levels, grouped between 7.1 and 7.3 MeV,
have particularly large widths. '"" These states
decay predominantly to the 3 level at 3.73-MeV
excitation energy in ' Ca. Table VD shows the
pRrtlR1 widths of the x'esonRnces ln this lnelRstlc
channel. These resonance states have been in-
terpreted in Ref. 34 as resulting from the spread-

TABLE VH. Resonance parameters for +Ca(p,p'),
from Ref. 34.

8'(S,) -p"{(Iq-211+I)(lq- 2u)

- 2(X- 211)(N- 21 1)p-
+ (lv-2a)(~- 2u- I}P'-[(X-n)q+ I]')
+p'[(~-k)q+ i] . (IV.13)

xn the limit N- ~, the variable

m= ~ Q (f'„»./il) (v.i)

is the product of a g' variable with 12 degrees
of freedom by the constant y, /12. Thus, we have

E(m) =il,
o(m ) = 6 '~y, .

(V.2)

(V.3)

Making use of the approximation i» =m,b, in (V.3),
we find

ing of a doorway state, whose configuration cor-
responds to the coupling of a 2p,~ single-particle
state to the 3 collective excited state of ' Ca.
Here, we show that the enhancement of the widths
cannot be ascribed to statistical Quctuations. Our
analysis hinges upon the assumption, whose
validity is discussed in Ref. 34, that a very broad
—,
"resonance at 8.135 MeV (I» = 22 keV) should
not be included in the analysis.

%'e first apply the test of Sec. IV D based on the
longest run above the median. Table VII shows
that the median of the sample is located between
1 and 1.2 keV. The longest run above has a length
equal to 4 which does not imply non andomness
(Table II). The test involving runs up and down

(Sec. IV F}cannot be applied, since several 1'„»
take equal values. The test based on the length

f», of the longest run relative to the VORL (Sec.
IV E) leads to a deviation from randomness of
F(I'1» ), on the level of significance a =0.10 only.
This is too large to imply the existence of IS, ac-
cording to our conventional limit e =0.05. The
tests based on the serial correlation coefficient
and on the mean-square successive difference are
not x'eliab?e, because of the experimental errors
and also because the I'„~.'s are not normally dis-
tributed.

Since the peculiar feature of the data consists in
the occurrence of four large and adjacent widths,
it is natural to apply the test described in Sec.
IVI. The observed mean (m,»,) of the sample of
I2 widths is 3.26 keV. Ne neglect the experi-
mental errors. It is important to estimate a
confidence interval for the actual mean p. of the
dlstl'lblltioll of I 1»i. We Rssllllle thR't I 1»i/i» ls R
g' variable with one degree of freedom. The sam-
ple mean

(MeV)

6.146
6.395
6.530
6.818
6.969
7.032

(0.1)
(0.1)
(0.1)
(0-1)
1.2

(0.5)

7.105
7.140
7.198
7.278
7.344
7.547

&xp
(keV)

7.6
8

13
8

(1.)
(1.4)

c(m) = 1.33 keV .
Since the sample mean m is close to a normal
varlab)e, we can calculate the following approxi-
mate confidence interval fox' p.:
Pr[3.26 keV —o « il «3.26 kev+o]

= Pr[1.93 keV « i» «4.59 keV] =0.68.
.4)
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FIG. 1. Values of the total cross section averaged over
20 keV, for 6Fe(n, n), for energies separated by 45 keV.
The dashed line is the sample median.

Table VII and Eq. (V.4) show that the four values
the run are larger than 1.3 times the upperxn e run

. Wevalue of the confidence interval (V.4) for p, .
have:

p=pr[I'„~.&1.3p]=Pr[x', & 1.3]=0.25. (V.s)

U
' E . (IV.12) and (IV.13), where M=12, k=4,

p=0.25=1- q, we find

E(84) =0.027, u'(S~) =0.027. (V.6)

According to the Tchebycheff inequality, which xs
valid for any distribution, we have

Pr[ j S,-E(S,) ) & 4.5o(S,)]s 0.05, (V.7)

from which we conclude, in the present case, that

Pr[S4& 0.77] + 0.05 . (V.S)

Comparing ls resuth' result with the observed value of
S (' e 'th 'ty} we conclude that the existence
of a set of four large consecutive values of I'„~
implies a deviation from the statistical assumption

t ~pl' / ) is a random variable drawn from a' population. We recall that this conclusion is
based on the assumptions that all resonanc s

popu
es listed

in Table VII are —,
"states and that the broad reso-

nance at 8.135 MeV should be treated on a separate
footing. ~ These assumptions appear quite well
u tif'ed We also emphasize that it is essentia

to use the fact that the four large values are ad-
jacent. Indeed, the probability of finding at least
four such large values in an arbitrary order, in a
sample of size 12, is 0.35, which is quite large.
FinaQy, we note that we used the approximation
p =2% ~ ln q.E . (V.3) and that we did not require a
very stringent confidence interval for p. . Despi

these approximations, we believe that thxs statls-
ti a1 nalysis is valuable in the present case. This
method should moreover be very useful xn oth
cases,

d andWe also apply to the I'~~. the test of %'al an
Wolfowitz described in Sec. IVC. We choose a
reference value R between 1.5 and e . a
VII shows that the total number of runs about this
value is equal to 3 and the numbers of I'„~.lying
above and below this reference value, respectively,
are m=4 and @=8. We conclude from Table I that
F(F&&~ ls no at a random series, on a significance
level a & 0.05.

8. Fe(n, n)

Elwyn an od M nahan'"" gave some evidence for
th existence of an IS in the reaction MFe(s, n,
for E„=360keV. They did not, however, fin
signif' nt deviations from the Porter- Thomas and

Wigner distributions of the partial widths and

level spacings, respectively. They dkd not per-
form other statistical analysis of the data and ne-
glected to take into account the finite range of data
effects." Schrack, Schwartz, and Heaton' anal-
yzed the "Fe(n, n) cross section for E„&500 keV,

'th th thod described in Sec. III 8 and report
the existence of an IS at E„=770keV. In the
present section, we give a statistical analysis

de b d 'n 8 c. IV. We first discuss the average
t' then the fine structure parameters.

The energies E, and E, , which are such that

(o(E,))z and (o(E~,))l are not correlated, in the
frame of the statistical model, should fulfill the
relation (III.B). In the present case, d =I= 20 keV.
From the investigation of a simple model with

equidistant resonances, we concluded that one

v ual es of (e(E )) for E,—E, , =45 keV.k

the presence of a run down of length, or
&E„&620 keV, provided that the point at 530 keV
lies higher than that at 575 keV. Since the total
number of points is N= 14, Tabl e 1 of Ref. 5 shows
that the sequence F((v(Ek))I) is not random on a

'f' e level 0.05. Actually, the values
(c(530 keV)) and (o(575 keV)) are practically equ
and it appears dangerous to draw any definite con-

the method involving the number of runs up and
down of given length (Sec. IV F). We now assume
the existence of a run Mp of length 1 between
530 and 575 keV, since we just saw' that the other
alternative implies a deviation fro m the statistical
model. The results of this analysis, based on
Table 2 of Ref. 5 and on Table VI of the present
paper, are shown in Table VQI. The quantity P,
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TABLE VIII. Runs up and down for (o(Ez)}I, for
"Fe(n,n).

TABLE X. Runs up and down for I'&, for 5 Fe(n, n).

1
2

)3

K(d, 14) I(d, 14)

5.91
2.33
0.74

2.37
1.19
0.74

0.11
0.03
0,001

K(d, 13)

1
2
2

I(d, 13)

5.49
2.15
0.675

2.28
1.14
0.705

0.02
0.45
0.03

r'„=[1 eV/$, (eV)]'"r,. (V.9)

We first apply the test based on the runs up and
down (Sec. 1V F}to the quantities r~~, for a sample
of size 13. The results are shown in Table X.
They imply a deviation from randomness of the
type expected for IS, i.e., a too small number of
runs of length 1, and a too large number of long
runs. We note that we cannot apply the test to the
partial widths F„proper, because several take

TABLE IX. Fine structure parameters for Fe(n, n).

(keV)
r~

(keV)

I'
(eV)

2
Vq

(keV2)

186.5
220.0
243.5
273.0
314.5
360.5
382.0
406.0
438.0
469.5
499.5
559.5
614.0

3.5
1.3
0.3
3.5
5.5
9.3

10.0
2.5
1.5
1.5
2.5
2.5
2.0

8.1
2.8
0.6
6.7
9.8

15.5
16.3
3.9
2.3
2.2
3.5
3.3
2.6

1465.02
1143.02
213.43

1003.98
1027.68
274.11
185.43
362.12
654.32
969.92

1652.40
1383.67

defined in Ref. 5, gives the approximate level of
significance for nonrandomness for the analyzed
quantities. Thus, we conclude to the existence
of nonrandomness, on a 0.001 level of significance.

We apply to the data of Pig. 1 the test of Wald
and Wolfowitz (Sec IV.C}. We choose the refer-
ence value 8=3.1 b. Then, we have U=5, m=n=7.
Table I shows that the randomness hypothesis
cannot be rejected with this test. The same con-
clusion is reached with the tests of Secs. IV D and
IV E.

We now turn to the analysis of the fine structure
parameters, which were measured by Bowman,
Bilpuch, and Newson" for 360 & E„&650 keV.
The values of I'„andE„for the s-wave reso-
nances located between 186 and 614 keV are given
in Table IX. It is appropriate to extract the
penetration factor for s wave, thereby defining
the quantities

medv, ' = 1000 keV'. (V.11)

Table IX shows that there is an unbroken se-
quence of five F'„above the median. Table 0
shows that the randomness hypothesis cannot be
rejected for these parameters (N=13). The
lengths of the longest run above the median are
4 and 2, for the I'„and v,', respectively; they
are compatible with randomness of these param-
eters.

We also apply to the quantities F'„and v,' the
test based on the VORL (Sec. IVE). For the ra~'s,
the VORL (k) is located between 3.5 and 3.9 eV

TABLE XI. Runs up and down for v, for 5 Fe(n, n).

K(d, 12) I(d, 12)

1
2

w3

5.08
1.97
0.609

2.18
1.09
0.670

0.03
0.17
0.28

equal values. In Ref. 36, the quantities v~' defined

by Eq. (11.6}are extracted from the identity be-
tween Eqs. (II.4) and (II.5), disregarding the ener-
gy dependence of the I„.With this proviso in
mind, we give in Table XI, the results of the test
involving runs up and down applied to the quantities
v&2 given in Ref. 36. They show that the number
of runs of length 1 is too small so that F(v,'} is
not a random sequence. This may indicate that
the doorway interpretation outlined in Sec. II is
not valid. However, we note that several values
of v,' are practically equal" and the penetration
effects might thus considerably modify the results
of this test. A fit of the experimental data, using
Eq. (II.5}, with an energy dependent I t [see Eq.
(V.9)], would be of interest

We also apply the test involving the length of the
longest run above the median (Sec. IV D) to the
quantities I'z, Fz, and v, '. The value of the sample
median is such that half of the observed values of
1"„,I'„,or v,' are larger than this value. We have

medI'„=2.5 keV,

medi"
&

=3.5 keV,

and
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(Table IX) and the length f, is equal to 5. Table
IV shows that this corresponds to a deviation from
randomness for the sequence F(I'0&), on a signifi-
cance level n = 0.01. The VORL (k) for the v,' is
located between 362 and 969 keV' with f, =3. This
does not imply a nonstatistical behavior.

Finally, we apply to the quantities F~ and v,'
the test of Wald and Wolfowitz (Sec. IV C). For
the I'„and a reference value 8 = 3.6 eV, we ob-
tain U=4, m=6, and n=7. For the v,' and a refer-
ence value R = 1000 keV', U = 5, m = n = 6. Table I
shows that the randomness hypothesis is rejected
for the I'O„but not for the v,'. This confirms the
possible validity of the doorway-state interpreta-
tion.

C. Cm+ n

D. Re(n, y)

Stolovy, Namenson, and Godlove" measured,
for the s-wave resonances in the reaction '"Re-
(s, y), the ratio B~ of the yield of photons with

TABLE XII. Runs up and dove for the rat|o of average
fission to capture, for 244Cm+e.

K (d, 49) I(d, 49)

9
14

2
0
1

20.47
8.74
2.45
0.52
0.09

4.52
2.31
1.40
0.70
0.30

0.006
0.01
0.37
0.23
0.001

The ratio of average fission to capture in '44Cm

+n for E ~5 keV shows~ a few structures which
were identified by Moore" as IS, on the basis of
the test of Wald and Wolfowitz described in Sec.
IVC, on a 0.006 significance level. Here, we

apply to the data plotted in Fig. 4 of Ref. 12 (ratio
of average fission to capture cross sections) the
test involving runs up and down described in Sec.
IV F. The averaging interval (I = 100 eV) contains
about eight resonances" and the conditions of Sec.
III C are fulfilled. The sample size is equal to
49.

Table XII shows the results. The (too small)
number of short runs and the existence of one
run down of length 5 both indicate significant
deviations from the statistical model. We also
apply the tests of Secs. IV D and IVE to the data of
Fig. 4 of Ref. 12. The length of the longest run
abave the median is 6 which does not imply non-
randomness (Table II}. The VORL, k, has the value
O.V x 37 and f~ is equal to V. This implies non-
randomness on a significance level e = 0.05 &Table

V).

energy higher than 4 MeV to that of photons with
energy higher than 1 MeV. A bump appears, in
the vicinity of B„=120 eV, in the plot of B~ versus
S~, with a width of only 30 eV. We discuss
whether this bump implies the existence of an IS.

Because of the large number of final states in-
volved, the distribution of B„is close to a normal
one. Only the first 46 measured values of B„,
corresponding to 0 & E~ & 200 eV, are suitable for
the statistical analysis because, above 200 eV,
some resonances are being missed. " The serial
correlation coefficient R, [Eq. (IV.10)] is equal to
0.34 and corresponds to a nonstatistical behavior,
on a 0.005 significance level. "

Here, we discuss the reliability of this analysis
and apply three other statistical tests. First, we
emphasize that, even if one assumes that only
s-wave capture resonances are included in the
analysis, they correspond to two possible spins
for the compound nucleus, namely 2 and 3. Hence
the data, in the frame of the statistical model, are
actually drawn from two different populations
(approximately normal populations but with dif-
ferent means and standard deviations) and the
validity of any of the statistical tests described
in Sec. IV is highly questionable. This remark
also applies to the reaction "'In(n, y) discussed in
the following section.

We notice from Table II of Ref. 28 that one reso-
nance at E~ = 108 eV (in the region of the tentative
IS) has been left out of the analysis, probably be-
cause the corresponding value of B„is somewhat
too small to be accurately determined. We calcu-
late the variation of the serial correlation coef-
ficient R, when a value B„=0.09 is assumed for
this resonance (the average value of B„for the
sample of 46 resonances is 0.10 and the standard
deviation is 0.01). We then find that R, becomes
equal to 0.20, which no longer implies a non-
statistical behavior for F(B~). We return below
to the sensitivity of this test to the omission of
only one resonance even in a large sample. We
now apply the test involving the mean-square suc-
cessive difference (Sec. IV G). We find, for the
first 46 values of B„,g=1.29, which implies a
nonstatistical behavior, on a level of significance
n & 0.01.'+" However, -if a value 0.09 is assumed
for the B„at108 eV, g becomes equal to 1.56
which no longer corresponds to a nonrandom
series for the B~.

We conclude that the tests described in Secs.
IVG and IVH appear to show the same essential
features. They apply to normal populations and
are very powerful. This last characteristic is
not always a quality in practice. As emphasized
in Ref. 24 (page 159}, a less powerful test gives
often more reliable conclusions than a powerful
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one. Indeed, the results of a very powerful test
have the counterpart of being very dependent upon
experimental errors, as shown by the present
example.

We also apply the test of runs up and down (Sec.
IV F}to the two sets of the 46 first values of B~,
with and without the resonance at 108 eV. We do
not find any significant deviation from randomness
in these two cases. The results are shown in
Tables XID and XIV. This reflects the fact that
this test may not be very powerful to detect non-
randomness, in some cases. Again, we emphasize
that this may in practice be an advantage, in the
sense that the conclusions can be more reliable.
We expect, on general grounds, the test of Sec.
IV F will lead to negative conclusions concerning
the presence of an IS where the dispersion of the
measured quantities [B~, I'~, or c(E„)]around their
local mean is of about the same magnitude as the
variation of this local mean due to the IS.

We also apply the test of Sec. IVD. Fo»0&E,
& 130 eV, there exists a run above the median of
length 9, which implies nonrandomness, on a sig-
nificance level o.& 0.05 (Table II}.However, if the

resonance at 108 eV has a B„value lying below the
median, the length of the run above decreases to
5 which no longer implies nonrandomness.

After completion of this study, we learned that
Stolovy, Namenson, and Godlove" refined and
extended their measurements of neutron reso-
nances up to about 3 keV in the target nucleus
'"Re. They found an order of magnitude more
resonances than previously reported" and no evi-
dence for IS. This confirms the conclusion drawn
above concerning the fact that the tests of Secs.
IV G and IV H may be too powerful and thereby too
sensitive to experimental errors. For this reason,
we believe that our analysis is of interest, even if
it. was applied to unreliable data, and decided to
report it for the purpose of illustration.

E. In(n, y)

Coceva et al."measured the ratio Bz of the
yield of photons with energy larger than 4 MeV to
that of photons with energy higher than 1.6 MeV,
for the reaction '"In(n, 'y), in the neutron energy

TABLE XHI. Rung up and down for B&, for ~ Re(n, y).
The resonance at 108 eV is not included.

TABLE XIV. Runs up and down for B&, for YRe(n, y).
A value B&= 0.09 is associated with the resonance at
108 eV.

K(d, 46) I(d, 46)

1
2
3

16
8
3
1

19.22
8.19
2.29
0.58

4.37
2.24
1.35
0.73

0.23
0.47
0.30
0.28

TABLE XV. Runs up and down for B&, for 5In(n, y),
when all the measured values of B& are included.

range 40 eV-1 keV. They found a nonstatistical
behavior for the B„associated to s-wave reso-
nances, between 40 and 500 eV, on a 0.01 signifi-
cance level. This conclusion is based on the tests
of Secs. IVC and IVH. The serial correlation co-
efficient R, is equal to 0.41, for the first 34 values
of B„(E~&500 eV)."We include all the 56 levels
below 1000 eV, obtain R, =0.284, and still find
nonrandomness, on a 0.01 significance level. We
also compute the mean-square successive dif-
ference and find g=1.29, for M=56, which im-
plies a nonrandom energy dependence of the mean
of the B„,on a 0.01 significance level. '+" If
only the first 34 values of B~ are taken into ac-
count, we find q =1.11, which implies nonrandom-
ness on a 0.01 significance level. This confirms
our remark in Sec. VD, that the tests of Secs. IVG
and IV H usually lead to similar conclusions. We
mentioned in Ref. 5 that the test involving runs up
and down (Sec. IV F) does not lead to the rejection
of the randomness hypothesis for the first 34
values of B„.When all the 56 values of B~ are
included in the analysis of runs up and down, the
same conclusion is reached, as shown by Table
XV. This again shows that the test of Sec. IVF is
less powerful than the tests of Secs. IVG and IVH.
We have discussed in Sec. VD the reliability of the
conclusions drawn from the different tests, when
experimental errors are taken into account. We
also apply the test of Sec. IVD. For 170&E„&330
eV, a run above the median of length 10 is present,
in the sample of 56 values of B„.This implies non-
randomness, on a significance level e =0.01
(Table IH). As in the case of "'Re(n, y), we em-
phasize that all the results of the statistical anal-
ysis are very questionable, because the values
of Bz are drawn from at least two different popu-

I
2
3

)4

K(d, 46)

14
7

1

I(d, 46)

19.22
8,19
2.29
0.58

4.37
2.24
1.35
0.73

0.12
0.30
0.10
0.28

1
2

w3

K(d, 56)

28
10

2

I(d, 56)

23.38
10.02
3.51

4.83
2.48
1.59

0.17
0.50
0.17



STATISTICAL ANALYSIS OF INTERMEDIATE STRUCTURE 735

lations corresponding to levels of different angu-
lar momenta. Hence, we believe that a measure-
ment of the spins of the resonances is necessary
before concluding to the existence of IS.

F. Zr+y and Sn+y

Axel, Min, and Sutton" have studied the dipole
photointeraction cross section, cr&, , in "Zr+y,
for 8.5 &E& & 12.5 MeV, with an energy resolution
of 70 keV. They found local enhancements near
9 and 11.5 MeV, and tentatively associated them
with IS. We subtract the tail of the giant dipole
resonance (o, d ) from the data given in Fig. 4 of
Ref. 39. The resulting values are plotted in Fig.
2, for energies separated by 70 keV. Since the
conditions listed in Sec. IG C are fulfilled, we can
apply to th0 data in Fig. 2 the test of Sec. IV F
based on runs up and down. We note that the num-
bers of runs up and down of a given length are
fairly independent of the precise way in which the
tail of the giant dipole resonance is drawn. Table
XVI shows the results of the test. We conclude to
nonrandomness for the sequence F(c&—o,~ ). The
long runs lie between 8.5 and 10 MeV, where IS
can thus be located. The test of Sec. IV F gives no
significant deviation from randomness bebveen
11.4 and 11.8 MeV, where Axel, Min, and Sutton"
have assumed IS by visual inspection of the data.
This disagreement is due to the fact that some
points plotted in Fig. 4 of Ref. 39, in this energy
domain, are correlated (Sec. 111C) and have to be
left out of the statistical analysis (for these points,
E,-E, ,& 70 keV and i=70 keV).

We also apply the test of Sec. IV C to the data of
Fig. 2. The median of the sample has a value close

TABLE XVI. Runs up and down for Zr+ y, for the
difference between the measured cross section and the
tail of the giant dipole resonance (Fig. 2).

E(d, 32) I(d, 32)

13.40
5.63
1.56
0.33

3.63
1.85
1.11
0.55

0.02
0.38
0.31

&10 4

to 3.4 mb. For this reference value, we have (Sec.
IV C and Ref. 17) U= 12, m = n = 16. This result
implies nonrandomness, on a 0.05 significance
level (Table I of Ref. 17). The tests of Secs. IV D
and IV E do not give significant deviations from
randomness.

We apply similar analyses to the reaction Sn+y,
for which o&, —o, ~ can be obtained from Fig. 3 of
Ref. 39, for 6 & E& & 9.5 MeV. The vp.lues of
oz, -o„separated by 70 keV are plotted in Fig. 3.
The results of the test of Sec. IV F are given in
Table XVII. We conclude to the existence of an IS
between 7.5 and 8.8 MeV. The results of the test
of Sec. IV C applied to the data of Fig. 3 are the
following, for a reference value equal to 7 mb (Sec.
IV C and Ref. 17): U='10, m =n = 17, and Pr[U ~ 10]
=0.004. They indicate nonrandomness, on a 0.004
significance level. There exists a run of length 11
above the median, for 7.5 & E& & 8.8 MeV. Table I
shows that this run above implies IS, on a signifi- .

cance level n& 0.01. However, the present analysis
is less reliable than the preceding one ("Zr+y),
because natural Sn is used as a target and several
isotopes contribute to the cross section. Thus, it.
is not certain that we are dealing with a sample of
values drawn from a single population.

Cl
E

Ql
b

I

b~

25

20

15

10

0

Zr+ Y

10

SA+ p

I I

10 11

I

12 13

0.
I

8
E& (Mev)

FIG. 2. Values of the difference between the photo-
interaction cross section and the tail of the giant dipole
resonance, for 9 Zr+ y, for energies separated by 70
keV. The dashed line is the sample median.

FIG. 3. Values of the difference between the photo-
interaction cross section and the tail of the giant dipole
resonance, for Sn + p, for energies separated by 70
keV. The dashed line is the sample median.
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G. Ge(p, p)

Temmer et al. found five substructures within
one —,

"isobaric analog resonance at 5.05 MeV in
"Ge(p, p); the energy resolution was about 3 keV.
The widths of these substructures (= 30 keV} are
much larger than the individual widths (= 1 keV)
of the compound nuclear states. The average
spacing of the compound nuclear resonances is
also about 1 keV. Refined measurements of the
cross section of 'OGe(p, p), with an energy reso-
lution of 400 eV, were recently performed by
Meyer 'etal. We subtract from the data of Meyer '
etal. , averaged over 3 keV, a s~ooth cross sec-
tion, corresponding to an average over an energy
interval I ) 20 keV, for a scattering angle 8=90 .
The points which fulfill the conditions given in Sec.
III C are separated by about 4.4 keV. These values,
b, (do/dQ}, , are shown in Fig. 4, for 4.94 (E~
(5.10 MeV. The substructure at 5.13 MeV' is ex-
cluded from the analysis, since it does not corre-
spond to a —,

"contribution. "We apply to the data of
Fig. 4 the test of runs up and down (Sec. IV F}. It
has the advantage of being fairly independent of
the precise value and shape of the smooth cross
section obtained by averaging over I ) 20 keV. The
results are shown in Table XVIII. We see that the
number of short runs is too small, and the number
of long runs too large, thus implying nonrandom-
ness. The most striking structure is located at
about 5.04 MeV (Fig. 4). Even if the values cor-
responding to this structure are excluded from the
statistical analysis, four runs of length 3 remain,
in a sample of size 29. This still implies non-
randomness, on a 0.02 significance level, which
shows that significant substructures, other than
the one at 5.04 MeV exist, presumably at about
4.97 and 5.06 MeV. The test of Sec.IVC applied
to the data of Fig. 4 gives the following results"
for the reference value at 5 mb/sr: U=17, m=19,
n=18, Pr[U (17]=0.35. The randomness hypothe-
sis cannot be rejected with the test of Wald and
Wolfowitz. The same conclusion is reached if we

apply the tests of Secs. IVD and IVE. Finally, we
note that some of the substructures appear to be
excited in inelastic scattering, in a way which de-

I/l

30
E

20
E

a 10
'U

0
0

a
-10

Ge(p, pj

-20

-30

I

L, 950
I

5.000.
I

5.050

Ep(ke~)

I

5.100

FIG. 4. Values of the difference between the differen-
tial cross section (~= 90 ) averaged over 3 keV and over
I ) 20 keV, respectively, for ioGe(p, p), and for ener-
gies separated by 4.4 eV. The dashed line is the sample
median.

pends upon the nature of the outgoing channel. It
is only in the elastic channel, however, that at
least three significant structures exist.

H. Pu(n, f)

The total, elastic, and fission cross sections for
'"Pu+ n were extensively studied by the Saclay
group~2. ~~ i6 for 0 + E + 660 eV. The spins an
parities of the resonances were identified. Two
statistical tests indicate a nonstatistical behavior
for the 1' resonances. " The first one involves
the fission widths, averaged over 110 eV ((I'z)).
By a Monte Carlo method, the very small value
of (I'z) obtained between 550 and 660 eV was found
incompatible with pure statistical fluctuations of
the I'z." The second test was that of Wald and
Wolfowitz (Sec.IVC). It was applied to the indi-
vidual fission widths for the 1' resonances and it
was found that F(I'&) is not a random series. "
With this test it is, however, not possible to find
the position of IS. We therefore apply the test
described in Sec. IVD, which involves the length
of the longest run above the median. Figure 5

TABLE XVII. Runs up and down for Sn+ y, for the
difference between the measured cross section and the
tail of the giant dipole resonance (Fig. 3).

TABLE XVIII. Runs up and down for ~ Ge(p,p), for
the difference between the cross section averaged over
3 keV and over I & 20 keV, respectively.

1
2
3

m4

E (d, 34) I(d, 34)

14.23
5.99
1.66
0.42

3.75
1.91
1.15
0.62

0.03
0.30
0.28
0.005

1
2

~3

E (d, 37)

13
1
6

I(d, 37)

15.48
6.54
2.26

3.91
2.00
1.27

0.26
0.003
0.002
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( ) 21/s 1/a
& obs (V.12}

where g is the number of resonances in the corre-
sponding 110-eV interval. Assuming then a nor-
mal distribution for (I'f), we calculate confidence
intervals, on a 0.05 significance level, for the
corresponding actual mean, on each interval.
These values are shown in Fig. 6 (full lines). We
also compute the mean m of the full sample of
(I"~),+ (N= 145) and a confidence interval for the
corresponding actual mean, on a 0.05 significance
level. They are represented by the dashed lines
in Fig. 6. We see that the region between 550 and
660 eV implies a nonstatistical behavior. This
result is in agreement with the Monte Carlo calcu-
lations of Ref. 16. We return to this point below,
where we show that the apparent anomaly around
600 eV is probably due to the existence of IS
around 400 eV, in the sense that the anomaly at
600 eV disappears if the points around 400 eV are

250 - 239p„

200-

)
p l50-

shows all the fission widths calculated for the
identified 1' resonances, between 0 and 660 eV.4"4~

The dashed line is the median of the sample of
the 145 fission widths. W'e see that a run, above
the median, of length 12 is present between 355
and 430 eV. Table II shows that this run implies
nonrandomness for the (I'„),+, on a significance
level n = 0.01. We also apply the test based on
runs up and down (Sec.IV F) to the (I'z},+. We do
not find significant deviations from randomness
with this test. We also consider the mean of the
fission widths, (I'/), on each 110-eV energy inter-
val. We estimate the standard deviation of this
mean, in each 110-eV interval, by the method
described in Sec.VA, which assumes a Porter-
Thomas distribution for the I'z. We have:

omitted from the analysis. W'e note that some fis-
sion widths for the 1' resonances could not be
calculated and that some values of (I'z},+ used in
our analysis are maximum values. 44 It is clear
that if many 1' fission widths have been omitted
in the analysis, all the results of the statistical
tests are very questionable.

We also performed an analysis of the 103 values
of (I'f),+ published in Refs. 42 and 43, which do not
include 42 values of lz which are not accurately
known and may be maximum values. We first ap-
plied to this sample of 103 resonances the test of
Sec. IVE, which involves the VORL, k. In the pres-
ent case, k = 15 meV, f~ = 9. Table V shows that the
sample is not random, on a 0.05 significance level.
The longest run above k (length 9)lies around 400
eV, while the longest run below k (length 12) is lo-
cated around 600 eV. It is the latter set of pointsbe-
tween 550 and 660 eV which was found responsible
for a significant deviation from the statistical be-

239
lOO Pu+ n

90

80

70

60

50

Eco

30

20

10
IOO—

50 -. .
o~ — o A ~

!

~ ~
~ ~

~ ooo ~
~IP I~ ~ ~

M og
~ ~ ~ oo

~ ooo
~o ~

II
~ ~ ~

~ ~ ~

~ ~
~o ~

~ ~ '~ ~ ~

~o oo oilh o

0 I00 200 500 400 500 600 700
E„(eV)

FIG. 5. Fission widths for the 1+ resonances between
0 and 660 eV, for ~ Pu+n. The dashed line is the sam-
ple median.

I I I I

110 220 330 440 550 660
(eVj

FIG. 6. In full lines: (F&);=-„'Qzeaz/(o'~/I&+ and con-
fidence interval for the corresponding actual mean (a
= 0.05); n is the number of 1+ resonances in each interval

i
d.E/ = 110 eV. In dashed lines: m = f45Qg (Fg f}f+ and
confidence interval for the corresponding actual mean
(0. = 0.05).
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p =0.25, q =0.75. (V.14}

The expectation value and the variance of the num-
ber of runs of length equal to or larger than 6
are [Eqs. (IV.12) and (IV.13)]

E(S8) =0.018, o (g~) =0.018.

The Tchebycheff inequality then gives

(V.15)

Pr[S, &E(S,)+4.5o(S,)]=Pr[S,& 0.621] &0.05.

(V.16)

Hence, the observed value S, = 1 shows that the six
adjacent values of F& between 380 and 440 eV imply
a significant deviation from randomness for F(I&).
The same method also leads to the conclusion that
the existence of 12 small adjacent values between
575 and 645 eV implies a significant deviation
from randomness. The latter conclusion is also
reached when the six large widths between 380
and 440 eV are omitted in the analysis. However,
this long run Uelow k disappears if we consider
the sample4' of 145 values of (I~ ),+ whiclr was
studied above. This is gratifying, since a long
run belozo has no known theoretical interpretation.

I. Pb(n, n)

In the elastic scattering of neutrons by '~Pb,
11 —,
"resonances have been observed between 200

and 650 keV, and 3 further ones between 650 and
750 keV." We leave out the latter resonances
from the present discussion, since their pa-
rameters are somewhat uncertain because of a
sizaMe p-wave background. We have previously
applied' to the 11 values of I „obtained from
Ref. 46 and to the 10 values of v& taken from Ref.
37, the test based on runs up and down (Sec. IV F)

havior in Ref. 16 (Monte Carlo method} .Such a
set of abnormally small widths appears difficult
to reconcile with the doorway state model of IS,
which mould lead to an enhancement of the widths.
One may therefore conjecture that the anomaly is
due to the long run above the VORL. We investi-
gated this possibility in applying the test which is
based on the existence of large adjacent values
(Sec.IVI) to the run above k.

We first calculate, using the same method as in
Sec. VA, a confidence interval (o. =0.05) for the
mean p of the sample of 103 values of (I'~),+, and
obtain

Pr[23.1 meV & p & 40.5 meV] = 0.95 .
Between 380 and 430 eV, we find an unbroken
sequence of six values of F& larger than 1.3 times
the upper limit of the confidence interval (V.13).
Assuming a Porter-Thomas distribution for the
I'~, we have (Secs. IVI and VA)

and found a significant deviation from randomness
for the I'z (o. =0.04) but not for the vz'. We now

apply to these two sets of quantities the test based
on the number of runs about a reference value
(Sec. IV C }.We obtain (Fig. 1 of Ref. 5 and Table
I) for the I'„and a reference value lying at 2.2 eV:
m=8, n=3, U=2, and Pr[C'&2]&0.05; for the v~'
and a reference value at. 1.3 MeV': m=3, n=7,
U=2, and Pr[G&2'] & 0.05. These results imply
nonrandomness for the I'„and for the v~'. We
notice that the reference values are not the median
of the samples. If the reference value is chosen
equal to the median, the randomness hypothesis
cannot be rejected. We also applied the tests of
Secs. IVD and IV E and did not find significant
deviations from randomness with these tests, for
the I'~ and v~'.

Vl. CONCLUSIONS

We developed in the present paper several sta-
tistical methods for testing whether a set of data,
ordered in a prescribed way, is a random se-
quence. These tests can be applied to the deter-
mination of the significance level of an assumed
IS, whenever the data can be associated with a
given angular momentum and parity. This restric-
tion is essential, because the observed quantities
should be drawn from the same PoPulation. In
practice, these methods are therefore applicable
at low energy, or when the background due to other
angular momentum components can be reliably
evaluated. These tests can be applied to reso-
nance parameters, or to a sequence of ave~aged
quantities. In the latter case, however, one must
choose the sequence of points in such a way that
they should form a random series in the frame of
the statistical model (Sec. III C).

Among the methods discussed here, two have
been applied previously: the test of Wald and
Wolfowitz (Sec. IV C) and the test based on the
serial correlation coefficient (Sec. IV 8). The
test of Wald and Wolfowitz is valid for an arbitrary
distribution. The test based on the serial correla-
tion coefficient has been developed for normal
populations. It is a very powerful one; this un-
fortunately also implies that the conclusions drawn
from this test are very sensitive to experimental
errors. We described and applied several new
tests. The first two are based on the longest run
above the median (Sec. IV D) and about the VORL
(Sec. IV E), and are valid for any distribution. In
Sec. IVG, we proposed the use of a test based on
the mean-square successive difference; it shares
the same qualities and drawbacks as the method
based on the serial correlation coefficient (Sec.
IVH). These two tests are well adapted to exhibit
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a smooth nonrandom energy dependence of the
mean of a normal population, but are very power-
ful, and therefore very sensitive to experimental
errors. For instance, we showed in Sec. VD that
the significance level obtained from these tests
can be drastically modified by the omission of only
one resonance in the region of the assumed IS,
even in a large sample. In Sec. IVI, a new meth-
od based on the existence of several large and
consecutive observed quantities is proposed. It
appears to be very useful in some cases, but
requires the knowledge of the probability distribu-
tion of the tested quantities. Another test (Sec.
IV F) involves runs up and down. This test is valid
for arbitrary distributions; it is not very powerful,
and is therefore less sensitive than others to the
presence of experimental errors, in the case of
large samples. In general, the test of Wald and

Wolfowitz (Sec. IVC} cannot determine the posi-
tion of the IS. On the contrary, the tests involving
the length of the runs above the median (Sec. IV D},
or around the VORL (Sec. IVE),and the method
based on the existence of adjacent large values
(Sec. IV I} can locate the IS. The test involving
runs up and down (Sec. IV F}can also localize the
IS phenomenon when runs up and down of abnor-
mally large length are present. Finally, we recall
that it is sufficient that only one statistical test
yields significant deviations from the statistical
model to establish the existence of IS.

We are very grateful to Dr. H. Derrien and Dr.
V. Meyer for having sent us some experimental
results prior to publication. One of us (C.M.}
thanks the members of the Physics Department of
the University of Rochester for their warm hospi-
tality.
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