⁹⁶Mo(d, p)⁹⁷Mo reaction^{*}

L. R. Medsker[†] and J. L. Yntema Argonne National Laboratory, Argonne, Illinois 60439 (Received 15 October 1973)

The ${}^{96}Mo(d,p){}^{97}Mo$ reaction was studied with 16-MeV deuterons. Experimental angular distributions were analyzed by use of distorted-wave Born-approximation calculations to determine l values and spectroscopic strengths. The results are compared with previous data and the neutron configurations of ${}^{97}Mo$ are examined in comparison with neighboring molybdenum and zirconium nuclei.

NUCLEAR REACTIONS ⁹⁶Mo(d, p)⁹⁷Mo, E = 16 MeV; measured $\sigma(E_p, \theta)$; ⁹⁷Mo deduced levels, l_n, G_l .

I. INTRODUCTION

Approximately 40 levels are known¹ in ⁹⁷Mo below 4 MeV excitation. Although about 30 J^{π} assignments were tentatively made, only 7 J^{π} were unambiguous. This is due in part to the poor resolution in the (p, d), (d, t), and (d, p) experiments. Recent studies of Coulomb excitation,² $(\alpha, n\gamma)$,³ and $(\alpha, 3n\gamma)^4$ show that several low-lying doublets were unresolved in pickup and stripping reactions. The present improved measurements with the (d, p) reaction provide a more precise study of the levels in ⁹⁷Mo up to approximately 4 MeV excitation.

The low-lying levels in ⁹⁷Mo, with 42 protons and 55 neutrons, should be well described by configurations involving $(\nu d_{5/2})$, $(\nu g_{7/2})$, and $(\nu s_{1/2})$. The ground state of ⁹⁷Mo is known¹ to have $J^{\pi} = \frac{5}{2}^{+}$. Levels with $J^{\pi} = \frac{1}{2}^{+}$ have energies 888.2 and 2065 keV; however, the level at 679.6 keV is only tentatively assigned $\frac{1}{2}^{+}$. Levels with $J^{\pi} = \frac{7}{2}^{+}$ are at 657.92, 1024.53, and 1268.63 keV and several levels have the ambiguous $(\frac{7}{2}, \frac{9}{2})$ assignment. The present study attempts to confirm and elucidate spin and level assignments in ⁹⁷Mo.

II. EXPERIMENTAL PROCEDURE

A 16-MeV deuteron beam from the Argonne tandem Van de Graaff was used to obtain proton spectra at 15 angles between 8 and 58°. The outgoing protons were momentum-analyzed with a splitpole magnetic spectrograph, and spectra were recorded on Kodak NTB emulsion plates. The exposed plates were scanned by a computer-controlled plate scanner.⁵ The target, which had been rolled to a thickness of approximately 200 $\mu g/cm^2$. was enriched to ~96% in ⁹⁶Mo and contamination peaks due to other Mo isotopes were negligible. A typical spectrum is shown in Fig. 1. The overall resolution of the system was 15 keV full width at half maximum and approximately 85 levels were identified up to 4144 keV. The triplet at 690 keV. previously unresolved in pickup and stripping re-

FIG. 1. Typical proton spectrum of the ${}^{96}Mo(d,p){}^{97}Mo$ reaction at $\theta_{lab}=21^{\circ}$.

9 664

TABLE I. Optical-model parameters used in distorted-wave Born-approximation (DWBA) calculations of 96 Mo $(d,p)^{97}$ Mo.

	d	Þ	Bound-state particle
V (MeV)	110.0	50.0	Adjusted
r ₀ (fm)	1.06	1.25	1.20
<i>a</i> (fm)	0.86	0.62	0.70
W (MeV)	•••	•••	
W_D (MeV)	17.5	9.0	
r_0^{\prime} (fm)	1.42	1.30	
<i>a'</i> (fm)	0.65	0.60	
r_c (fm)	1.32	1.25	
$V_{s.o.}$ (MeV)	6.0	0	$\lambda = 25$

actions, was identified in the present experiment.

The data were analyzed with the program AUTOFIT⁶ in order to obtain excitation energies $(\pm 5 \text{ keV})$ and relative cross sections. The measured angular distributions were compared with distorted-wave calculations for which the opticalmodel parameters listed in Table I were used in the program DWUCK.⁷ The deuteron parameters were taken from the $(d, {}^{3}\text{He})$ studies of Ohnuma and Yntema⁸ with the exception that the value of

dor/dw (mb/sr)

FIG. 3. Angular distributions for levels excited in the ${}^{96}Mo(d,p){}^{97}Mo$ reaction. The solid lines are the DWBA calculations for $l_n = 0$ transfers.

20

40

θ_{c.m.}

60

FIG. 2. Angular distributions of the protons leading to excited states in 97 Mo observed with the 96 Mo(d, p) reaction. The solid lines are the DWBA calculations for $l_n = 2$ transfers.

FIG. 4. Angular distributions for levels excited by $l_n = 4$ transfers in the ${}^{96}Mo(d,p){}^{97}Mo$ reaction. The solid lines are DWBA calculations.

TABLE II. Present results for the 96 Mo $(d,p){}^{97}$ Mo reaction.								
l _n	J¶ a	G _{IJ}	E _x (keV)	l _n	JTT a			
2	<u>5</u> +	1,33	2745	(1)	$(\frac{1}{2}, \frac{3}{2})$			
(2)	$(\frac{3}{3}^+)$	0.034	2772	4	$(\frac{7}{2}, \frac{9}{2})^+$			
4	$\frac{1}{2}^{+}$	5.8	2833	2	$(\frac{3}{2}, \frac{5}{2})^+$			
0	$\frac{1}{2}^{+}$	0.94	2858	2	$(\frac{3}{2}, \frac{5}{2})^+$			
2	$(\frac{3}{2}, \frac{5}{2})^+$	1.07	2878	2	$(\frac{3}{2},\frac{5}{2})^+$			
(2)	$(\frac{3^+}{2}, \frac{5^+}{2})$	(0.035)	2904	2	$(\frac{3}{2},\frac{5}{2})^+$			

E _x (keV)	l _n	J ^{π a}	G _{1j}	E _x (keV)	l _n	J¶ a	G _{lj}
0	2	<u>5</u> +	1.33	2745	(1)	$(\frac{1}{2}^{-}, \frac{3}{2}^{-})$	0.085
482?	(2)	$(\frac{3}{2}^{+})$	0.034	2772	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.45
659	4	$\frac{7}{2}^{+}$	5.8	2833	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.30
680	0	$\frac{1}{2}^{+}$	0.94	2858	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.097
720	2	$(\frac{3}{2},\frac{5}{2})^+$	1.07	2878	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.091
753	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	(0.035)	2904	2	$(\frac{3}{2},\frac{5}{2})^+$	0.057
795	(0)	$(\frac{1}{2}^{+})$	(0.012)	2927	(3)		(0,13)
889	0	1+ 2	0.042	2950 ^b	2	$(\frac{3}{2},\frac{5}{2})^+$	0.12
993	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.031	2975			
1024	4	$\frac{7}{2}^{+}$	0.90	3015	2	$(\frac{3}{2},\frac{5}{2})^+$	0.10
1093?				3035	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	(0.086)
1116	5	$(\frac{9}{2})^{-}$	0.36	3074	2	$(\frac{3}{2}, \frac{5}{2})^+$	0,14
1135?		Ľ		3096			
1265	2	$(\frac{3}{2}, \frac{5}{2})^+$	1.08	3119			
1286	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.26	3154	0	$\frac{1}{2}^{+}$	0,081
1437	5	$(\frac{11}{2})^{-1}$	3,35	3192			
1516	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.095	3217	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.28
1550	0	$\frac{1}{2}^{+}$	0.16	3258		-	
1564	2	$(\frac{3}{2},\frac{5}{2})^+$	0.39	3293			
1629	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.76	3338	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.41
1699	(4)	$(\frac{7}{2}^+, \frac{9}{2}^+)$	(0.18)	3370	2	$(\frac{3}{2},\frac{5}{2})^+$	0.14
1726 ^b	0+2 ^c	$\frac{1}{2}^{+} + (\frac{3}{2}, \frac{5}{2})^{+}$	(0.08+0.13)	3391	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.10
1763	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.56	3466	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	(0.047)
1789	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.56	3501			
1848	(0)	$(\frac{1}{2}^{+})$	(0.087)	3547	(4)	$(\frac{7}{2}^+, \frac{9}{2}^+)$	(0.50)
1956	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.026	3567	(4)	$(\frac{7}{2}^+, \frac{9}{2}^+)$	(0.41)
2002	(4)	$(\frac{7}{2}^+, \frac{9}{2}^+)$	(0.23)	3596 ^b			
2034	0	$\frac{1}{2}^{+}$	0.23	3620	2	$(\frac{3}{2},\frac{5}{2})^+$	0.065
2047				3659			
2152	2	$(\frac{3}{2}, \frac{5}{2})^+$	1.02	3682			
2222	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.062	3706	(3,2)		(0.24, 0.066)
2267				3734			
2315	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.11	3786	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	0.12
2335				3892	(3,2)		(0.15, 0.042)
2378	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.18	3912	(2)	$(\frac{3}{2}, \frac{5}{2})^+$	(0.17)

			TAB	LE II (Continued)			
E _x (keV)	l _n	J ⁿ a	G _{lj}	E _x (keV)	l _n	$J^{\pi \ a}$	G _{lj}
2411	2	$(\frac{3}{2},\frac{5}{2})^+$	0.060	3935	(2)	$(\frac{3}{2}, \frac{5}{2})^+$	(0.058)
2429	5	$(\frac{9}{2},\frac{11}{2})^{-}$	1.04	3983	(2)	$(\frac{3}{2}, \frac{5}{2})^+$	(0.076)
2462	0	$\frac{1}{2}^{+}$	0.086	4025			
2487	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.039	4053			
2511	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.16	4121			
2539	4	$(\frac{7}{2}, \frac{9}{2})^+$	0.92	4144	(2)	$(\frac{3}{2}^+, \frac{5}{2}^+)$	(0.055)
2557	0	$\frac{1}{2}^{+}$	0.082				
2650	2	$(\frac{3}{2},\frac{5}{2})^+$	0.056				
2677	2	$(\frac{3}{2},\frac{5}{2})^+$	0.022				
2697	2	$(\frac{3}{2},\frac{5}{2})^+$	0.050				

^a Assignments consistent with Ref. 1 and the present results.

^b Possible doublet.

^cA good fit to the measured angular distribution for this state was obtained only with the sum of $l_n = 0$ and $l_n = 2$ calculations.

the imaginary absorption potential had to be increased in order to obtain good fits to l = 4 and l = 5 angular distributions. The proton parameters were adapted from the Perey and Perey compilation.⁹ The spectroscopic strengths $G_{IJ} = [(2J_f + 1)/$ $(2J_i + 1)]C^2S_{ij}$ were derived from the differential cross sections by use of the expression

 $d\sigma/d\Omega = 1.53G_{ij}\sigma_{\rm DWUCK}/(2j+1)$,

where J_i , J_f , and j are the total angular momenta of the target nucleus, the residual nucleus, and the transferred neutron, respectively. The uncertainties in the relative values of G_{ij} are <10%.

III. RESULTS

The excitation energies, l_n transfers, and spectroscopic strengths determined in the present work are shown in Table II. Levels observed in the present study are consistent, within experimental uncertainty, with levels observed in previous ${}^{96}Mo(d, p){}^{97}Mo$ experiments.^{10, 11} In addition, the states at 659, 680, and 720 keV observed presently were unresolved in earlier particle-transfer reactions and the values of the l_n transfers observed for this triplet are in agreement with J^{π} adopted from other experiments.¹ The present J^{π} assignments for the 1437- and 2047-keV excitations are inconsistent with earlier values.¹⁰ Also, the present J^{π} for levels at 1516, 1550, 1763, 1956, 2378, 2511, and 2833 keV are in disagreement with the J^{π} adopted¹ for levels, identical within experimental uncertainty, observed in other experiments. The ambiguity could be explained in some cases if the compared levels

were not the same configurations.

The ground state and approximately 40 excited states in ⁹⁷Mo are reached by $l_n = 2$ transfers in

FIG. 5. Angular distributions for levels excited by $l_n = 5$ transfers in the ${}^{96}Mo(d,p){}^{97}Mo$ reaction. The solid lines are DWBA calculations.

FIG. 6. Energy level schemes of 97 Mo. The levels adopted from 97 Nb decay, $(\alpha, \times n\gamma)$ reactions, Coulomb excitation, and pickup reactions and the previous (d, p) data are compared with the present results.

the (d, p) reaction. Typical angular distributions are shown in Fig. 2. Approximately 56% of the l_n = 2 strength is almost equally distributed among the ground state and the 720-, 1265-, and 2152keV states. The remaining l_n = 2 strength is spread over 35 levels up to ~4 MeV excitation. The l_n = 0 strength is associated mainly with the 680-keV level (see Fig. 3) and the remaining strength is distributed over nine states below 3.2-MeV excitation. Examples of angular distributions for states reached by l_n = 4 and l_n = 5 transfers are shown in Figs. 4 and 5. Eight definite and four

TABLE III. Sums of spectroscopic strengths G_{lj} for states in subshells identified by their l values. The range of excitation energies E_x for which data are available is indicated in the last column.

Target	_	_		ı			E _x
nucleus	2	0	4	5	1	3	(MeV)
⁹⁰ Zr ₅₀	9.47	1.76	9.10	5.24	0.20	0.49	<4.8
$^{92}Zr_{52}$	9.89	2.35	11.72	8.06	0.08	1.53	<4.9
$^{94}Zr_{54}$	6.68	1.77	(2.39)	2.04	(0.60)	(0.49)	<4.0
⁹² ₄₂ Mo ₅₀	10.5	2.14	3.58	3.96	0.38	• • •	<3.8
⁹⁴ Mo ₅₂	8.36	1.60	2.80	3.12	0.12	• • •	<3.2
⁹⁶ Mo ₅₄	8.34	1.80	(11.7)	4.75	(0.085)	(0.52)	<4.2

tentative $l_n = 4$ assignments were made and three $l_n = 5$ transfers were identified.

In Fig. 6, the results of the present work are shown in comparison with earlier (d, p) data and with the levels in ⁹⁷Mo adopted¹ from the results of experiments with pickup and stripping reactions, Coulomb excitation, $(\alpha, xn\gamma)$ reactions, and ⁹⁷Nb decay. New low-lying levels observed presently have excitation energies 753, 795[$l_n = (0)$], 993[$l_n = (2)$], and 1550($l_n = 0$) keV. Above 1.6-MeV excitation energy, ~60 new levels were identified. The present results are summarized in Tables

TABLE IV. Centers of gravity (keV) of the states in the subshells indicated by their l values. The range of excitation energies E_x for which data are available is given in the last column.

Target nucleus	2	0	4	l 5	1	3	E _x (MeV)
$^{90}_{40}$ Zr ₅₀	1429	1544	2988	2647	2887	2828	<4.8
$^{92}Zr_{52}$	1254	1198	2137	2388	3340	3884	<4.9
⁹⁴ Zr ₅₄	1633	1591	(2835)	2027	(2480)	3647	<4.0
92 42 Mo 50	1200	1646	1598	2320	• • •	2899	<3.8
⁹⁴ Mo ₅₂	1132	1308	1230	1949	2520	•••	<3.2
⁹⁶ Mo ₅₄	1734	1321	1447	1630	(2745)	(3564)	<4.2

FIG. 7. Comparison of spectroscopic strengths for $l_n = 0$ and $l_n = 4$ transfers to levels in zirconium and molybdenum isotopes.

III and IV, where the sums of spectroscopic strengths and the energy centers of gravity are compared with the data¹²⁻¹⁴ for odd-A molybdenum and zirconium nuclei. The sums of strength are consistent with the description in which $2d_{5/2}$, $2d_{3/2}$, $1g_{7/2}$, and $1h_{11/2}$ are the active neutron orbitals in the vicinity of N=56. Table IV and Fig. 7 show the changes in the level energies as pairs of nucleons are added. The $l_n = 0$ strength is more fragmented as pairs of neutrons and pairs of protons are added; however, the centers of gravity are approximately the same. In the case of $l_n=4$, the centers of gravity change most with the addition of the pairs of protons to the zirconium isotopes. For the molybdenum isotopes, the lowest state observed by $l_n = 4$ transfer decreases in excitation energy as pairs of neutrons are added to ${}^{93}_{42}\text{Mo}_{51}$. If this systematic trend exists also for the zirconium isotopes, one would expect a strong l_n = 4 transfer to a state at about 1 MeV in ${}^{95}\text{Zr}$; however, no such state has been reported in the literature.

The technical assistance of J. Bicek and the cooperation of the group at the tandem are gratefully acknowledged.

*Work performed under the auspices of the U. S. Atomic Energy Commission.

- ¹L. R. Medsker, Nucl. Data <u>B10</u>, 1 (1973).
- ²J. Barrette, M. Barrette, R. Haroutunian, G. Lamoureux, S. Monaro, and S. Markiza, Phys. Rev. C 5, 1376 (1972).
- ³L. Mesko, A. Nilsson, S. A. Hjorth, M. Brenner, and O. Holmlund, Nucl. Phys. A181, 566 (1972).
- ⁴C. M. Lederer, J. M. Jaklevic, and J. M. Hollander, Nucl. Phys. A169, 489 (1971).
- ⁵J. R. Erskine and R. H. Vonderohe, Nucl. Instrum. Methods 81, 221 (1970).
- ⁶J. R. Comfort, Argonne National Laboratory Physics

Division Informal Report No. PHY-1970B (unpublished). ⁷We are grateful to Dr. P. D. Kunz for making this program available to us.

- ⁸H. Ohnuma and J. L. Yntema, Phys. Rev. <u>178</u>, 1654 (1969).
- ⁹C. M. Perey and F. G. Perey, Nucl. Data <u>A10</u>, 539 (1972).
- ¹⁰S. A. Hjorth and B. L. Cohen, Phys. Rev. <u>135</u>, B920 (1964).
- ¹¹F. Ajzenberg-Selove and S. H. Maxman, Phys. Rev. <u>150</u>, 1011 (1966).
- ¹²H. Verheul and W. B. Ewbank, Nucl. Data <u>B8</u>, 477 (1972).
 ¹³D. C. Kocher, Nucl. Data B8, 527 (1972).
- ¹⁴D. C. Kocher, Nucl. Data <u>B8</u>, 527 (1972).
- ¹⁴L. R. Medsker and D. J. Horen, Nucl. Data <u>B8</u>, 29 (1972).

[†]Present address: Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19174.